Rock Mass Mechanical Behavior in Deep Mines: in Situ Monitoring and Numerical Modelling for Improving Seismic Hazard Assessment Francesca De Santis

Total Page:16

File Type:pdf, Size:1020Kb

Rock Mass Mechanical Behavior in Deep Mines: in Situ Monitoring and Numerical Modelling for Improving Seismic Hazard Assessment Francesca De Santis Rock mass mechanical behavior in deep mines: in situ monitoring and numerical modelling for improving seismic hazard assessment Francesca de Santis To cite this version: Francesca de Santis. Rock mass mechanical behavior in deep mines: in situ monitoring and numerical modelling for improving seismic hazard assessment. Earth Sciences. Université de Lorraine, 2019. English. NNT : 2019LORR0020. tel-02130780 HAL Id: tel-02130780 https://hal.univ-lorraine.fr/tel-02130780 Submitted on 16 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Université de Lorraine Ecole Nationale Supérieure des Mines de Nancy Laboratoire GeoRessources École doctorale SIReNa Thèse Présentée pour l’obtention du titre de Docteur de l’Université de Lorraine En Géosciences Par Francesca DE SANTIS Rock mass mechanical behavior in deep mines: in situ monitoring and numerical modelling for improving seismic hazard assessment Soutenue publiquement le 5 février 2019 Devant le jury composé de : Beata ORLECKA-SIKORA (Ass. Pr.) Institute of Geophysics, Polish Academy of Sciences Rapporteur Martin GRENON (Pr.) Université Laval, Québec, Canada Rapporteur Evelyne FOERSTER (PhD) Commissariat à l'énergie atomique et aux énergies Examinatrice alternatives, France Katshidikaya TSHIBANGU (Pr.) Université de Mons, Belgique Examinateur Yann GUNZBURGER (Mcf.) GeoRessources, Université de Lorraine, France Directeur de thèse Pascal BERNARD (Pr.) Institut de Physique du Globe de Paris, France Co-directeur de thèse Isabelle CONTRUCCI (PhD) Institut National de l’Environnement Industriel et Encadrante des Risques, France Savka DINEVA (PhD) Luleå University of Technology, Suède Invitée Anders NYSTRÖM (Ing.) Boliden, Suède Invité Laboratoire GeoRessources, Ecole des Mines de Nancy, Campus ARTEM 92 Rue Sergent Blandan, 54042 Nancy Acknowledgments At the end of this very enriching experience, I would like to express my special appreciation and thanks to the people who have contributed to this work. Je tiens à remercier fortement mon directeur de thèse Yann Gunzburger, mon co-directeur Pascal Bernard et mes encadrants Isabelle Contrucci et Vincent Renaud. C’est grâce à votre soutien, vos conseils et votre disponibilité que j’ai pu mener cette thèse à son terme. Merci Yann pour ton intéressement, ta disponibilité, tes idées et pour m’avoir toujours poussé à faire de mon mieux. Merci beaucoup aussi pour m’avoir rappelé à plusieurs reprises qu’une thèse n’est jamais terminée ! Ça m’a permis de ne pas me perdre et de garder à l’esprit mon objective. Pascal, tu m’as montré la magie de la sismologie et tout ce qu’on peut apprendre et découvrir en analysant un signal microsismique. Je t’en remercie beaucoup ! Isabelle, merci de m’avoir accueilli à l’Ineris au tout début de mon arrivé, lorsque je ne parlais pas encore en français et que j’avais très peu de connaissances sur la sismicité induite. Tu as été toujours disponible et pleine de conseilles à me donner tout au long de ce projet de thèse. Nous avons aussi partagé l’expérience bizarre et marrante de se perdre dans la forêt suédoise sous la neige. Vincent, tu m’as fait découvrir le monde de la modélisation numérique. C’est uniquement grâce à ton investissement, ton intérêt et tes enseignements que j’ai pu énormément apprendre sur la modélisation en très peu de temps. Merci d’avoir été patient et disponible à chaque fois que je t’ai appelé pour te dire : FLAC à planté ! Special thanks go to Shahram Mozaffari for having been my mentor and my guide underground the mine. My gratitude goes also to Anders Nyström for all the interesting discussions and the support he gave me. Johan Olsson, Lena Lilja and Michaela Åberg Seliö helped me tremendously in interpreting and understanding the complex geology of Garpenberg mine. Thank you for this and also for the very nice time spent in their office in Garpenberg. A special thank is also for Savka Dineva who was present at numerous PhD meetings with very interesting advices. I also would like to thank Beata Orlecka-Sikora, Martin Grenon, Evelyne Foerster and Katshidikaya Tshibangu for having participated to the thesis jury and for their interest and their brilliant suggestions on this work. Je tiens à remercier aussi particulièrement Jannes Kinscher et Armand Lizeur pour toutes nos discussions et pour l’aide précieux qu’ils m’ont donnés tout au long de ce parcours. Mes remerciements vont également à Alice Tonnellier, Roxane Muller, Nicolas Spitzensteder et Regis Toussaint. Chacun de vous a énormément contribué à la réalisation de cette thèse. C’été un grand plaisir de travailler avec vous ! Un grand merci aussi pour Emmanuelle Klein et Pascal Bigarré pour m’avoir soutenue énormément et pour leur confiance en mes capacités. Je remercie également toute l’équipe de l’Ineris et de GeoRessources et très particulièrement tous les doctorants avec qui j’ai partagé le statut de thésard avec toutes les joies et les difficultés qui y sont associées. Un ringraziamento speciale anche alla mia famiglia e ai miei cari amici in Italia. Siete il mio punto fisso nella mia vita qua e là in Europa. Last but not the least, I would like to express all my gratitude to the miners who work every day deep inside the earth. i Résumé élargi Afin d'améliorer notre compréhension des phénomènes mécaniques qui induisent la sismicité dans les mines profondes, cette thèse propose d'étudier la réponse des massifs rocheux à l'exploitation minière à travers une approche multi-paramètres. Pour ce faire, les données géophysiques et géotechniques enregistrées in situ ont été comparées et interprétées à l’aide d’un modèle géomécanique 3D, en considérant les caractéristiques de la méthode d’exploitation et de la géologie locale. La méthodologie proposée a été appliquée au gisement de Lappberget dans la mine de Garpenberg (Suède), où le minerai polymétallique est extrait par la méthode « Sublevel stoping » jusqu’à des profondeurs de 1300 m. Cette méthode d’exploitation consiste à extraire le gisement à l’aide de tirs (explosifs) effectués entre deux niveaux consécutifs de la mine, en créant des cavités de 25 m de hauteur, dites « Stopes ». L'étude s’est déroulée sur une période de deux ans, entre février 2015 et décembre 2016, au cours de laquelle la sismicité induite par l'exploitation minière a été surveillée par un réseau sismique, tandis que les variations de contrainte et de déplacement ont été mesurées par deux cellules de mesure de contrainte et un extensomètre, tous installés près des zones excavées. Au cours de la période d'étude, 52 stopes ont été extraits, dont le Stope 13 qui a été complètement exploité sur toute la hauteur de la zone étudiée. Cela a constitué une occasion unique de suivre la réponse du massif rocheux au fur et à mesure de la progression des excavations. Les données sismiques enregistrées au cours de la période d'étude ont été analysées en tenant compte de leurs caractéristiques spatio-temporelles par rapport à la production minière. Ensuite, la réponse du massif rocheux a été interprétée en fonction des paramètres sismiques à la source ainsi que d'autres caractéristiques des événements microsismiques. Puis les données sismiques ont été comparées et interprétées avec les mesures géotechniques. Par la suite, un modèle numérique 3D statique, élastoplastique, de grandes dimensions (cube de 1,5 km d’arête), à maillage dense a été construit. Celui-ci intègre la géométrie précise des 4 unités lithologiques observées et le calage avec les mesures de contrainte a permis de retrouver l'état de contrainte vierge. Le modèle simule l’excavation des 52 stopes exploités dans le gisement de Lappberget pendant la période étudiée, ce qui permet d'analyser la réponse du massif rocheux en termes de contraintes et de déformations induites dans toute la zone d'intérêt, ainsi que d'autres paramètres mécaniques. Enfin, les résultats du modèle ont été comparés à l'analyse des données sismiques afin de mieux déterminer tous les mécanismes en jeu. Le premier résultat a été obtenu par l'étude du catalogue microsismique : on montre que les tirs de production jouent un rôle primordial dans la génération de la sismicité induite, même si l’activité microsismique est plus dépendante de la séquence minière, que du volume exploité. En particulier, le Stope 13, qui a été complètement excavé pendant la période étudiée, a fortement influencé le taux de sismicité. On observe une première période (jusqu'en mai 2016) caractérisée par une faible réponse du massif rocheux à l'exploitation minière, suivie d'une augmentation globale de l'activité sismique pendant une deuxième période de forte réponse à l'exploitation. L’analyse spatiale des événements a mis en évidence deux zones principales d'activité sismique : le cluster central, autour du Stope 13 et près de la zone de production, et le cluster de droite dans la partie Est de la mine, en coïncidence avec une région caractérisée par la présence de certaines zones géologiques faibles (talc- schistes).
Recommended publications
  • Fire and Smoke Spread in Underground Mines
    Site inventory of operational mines– fire and smoke spread in underground mines. Rickard Hansen Studies in Sustainable Technology 2010:01 Mälardalen University Summary This report is part of the research project “Concept for fire and smoke spread prevention in mines”, conducted by a research group at Mälardalen University. The project is aimed at improving fire safety in mines in order to obtain a safer working environment for the people working for the mining companies in Sweden or for visitors in mines open to the public. This report deals with the second step in the project: the site inventory in operational mines. The main purposes of the inventory are: - To get a clear picture of the risks in the different mines. - To get a clear picture of the protective measures of each mine. - Optimize the choice of design fires for each mine. To find out what the present situation was at the operational mines, a site inventory was conducted at the two LKAB mines. The site inventories were conducted through actual visits to the specific sites and through e-mail correspondence with LKAB personnel responsible for the different sections and areas. During the inventories, predefined forms for each type of item were used in order to facilitate the work. The following items were examined: - Combustible materials in general, for example large amounts of wood. - Vehicles - Cables - Fire barriers - Ventilation systems - Extinguishing systems Besides the above items, earlier fires and fire incidents were also examined. As the two LKAB mines are tremendously large with a large amount of equipment etc, only the most common vehicles were listed and examined further.
    [Show full text]
  • 080515 Lindahl Bukarest II
    Sustainable Mining in Europe – The Nordic experience Lars-Åke Lindahl SveMin (Swedish Association of mines, mineral and metal producers) Non-energy mining industry in Europe Bucharest, 15 May 2008 Outline • Introduction • The three pillars of sustainable development/sustainable mining – Economic – Social – Ecology/Environment • Concluding comments Health & Safety Energy Environment Exploration Metalprod. access to land Swedish Association of Mines, issues Mineral and Metal Producers EU- Competence Treaties monitoring with unions The three pillars of Sustainable development • Economic • Social • Ecology/Environment Source: SGU Source: SGU Mines in Sweden Swedish mine production 2006 Metal Production Part of EU Place production Iron 23.3 Mt 89.6 % 1st Gold 6.8 t 32.8 % 1st Silver 292 t 16.9 % 2nd Iron (Poland) Sulphide Gold Zinc 210 Kt 25.4 % 2nd Industrial Minerals (Ireland) Operating Planned Lead 55.6 Kt 30.8 % 2nd (Ireland) Copper 86.7 Kt 12.4 % 2nd (Poland) Source: SGU (Swedish Geological Survey) KIRUNA MINE (LKAB) Automated drillrig, Kiruna mine Remote Controlled Electrical Loader, Kiruna mine THE AITIK MINE (Boliden) Source: SGU Source: SGU The three pillars of Sustainable development • Economic • Social • Ecology/Environment 70 60 Swedish Mining and Mineral Industry (all employees) Lost Day Injury Frequency Rate 1988-2007 50 Occupational Accidents 40 30 20 No. per 1 million worked hours 10 0 1988 1989 1990 1991 1992 Under ground 1993 Surface Total 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Mining Industry
    [Show full text]
  • Iron Ore in 1997, an Increase of 4.6% Compared with the 1996-97 Production Increased by 0.5%
    IRON ORE By William S. Kirk Iron ore is essential to the economy and national security of the U.S. production data for iron ore are developed by the U.S. United States. As the basic raw material from which iron and Geological Survey (USGS) from two separate, voluntary surveys steel is made, its supply is critical to any industrial country. Scrap of domestic operations. The annual “Iron Ore” survey (1066-A) is used as a supplement in steelmaking, but is limited as a major provides 100% of total production shown in tables 1 through 4. feed material because the supply of high-quality scrap is limited. This information is supplemented by employment data, mine Virtually all (about 98%) iron ore is consumed by the steel inspection reports, and information from consumers. The industry. American Iron Ore Association (AIOA) provided data on ore Domestic and international iron ore production levels rose in shipments from loading docks on the upper Great Lakes as well as 1997, with international production reaching a record level of receipts at transfer docks and furnace yards nationwide. The dock 1,035.9 million metric tons. Domestically, shipments exceeded and steel plant data were compiled jointly by AIOA and the those of 1996 by 1.0% although consumption fell slightly. American Iron and Steel Institute (AISI). Companhia Vale do Rio Doce (CVRD), the world’s largest iron Although iron ore was produced by 14 companies, 9 of them ore producer, was privatized, reversing Brazilian Government accounted for 99.5% of all domestic production. The 14 policy that had been in effect for more than 50 years.
    [Show full text]
  • This-Is-Lkab.Pdf
    THIS IS LKAB PERFORMANCE IN IRONMAKING IT STARTS WITH THE IRON 1696 The ore-rich mountains 1912 Kiruna Church is completed, 1982 LKAB takes the decision 2010 LKAB earmarks a budget Luossavaara and Kiirunavaara, a gift from the company to the to introduce large-scale sub-level of billions of kronor for future after which LKAB was named, parish. The church will be moved caving, increasing productivity urban transformations in Kiruna are mentioned for the first time to the new centre of Kiruna as part noticeably. LKAB develops olivine and Malmberget. in a document by Samuel Mört, of the urban transformation. pellets, which prove to be a highly a bookkeeper at the Kengis works. competitive pellet product. 2011 LKAB makes record profits. 1940 Narvik is invaded by the The same year the LKAB Academy 1888 The first ore train rolls Germans and the port is blown up. 1989 The subsidiary Minelco, foundation is established to along the Ore Railway from Malm- Ore traffic focuses on Luleå until now LKAB Minerals, is estab- secure future recruitment. berget to Luleå. the port of Narvik is rebuilt. lished. Its task is to develop markets for the iron ore outside 2015 LKAB celebrates 125 1890 The company 1955 LKAB’s first pelletising of the steel industry. years and publishes a book about Luossavaara-Kiirunavaara plant – the first such plant in the company’s history. Aktiebolag – LKAB – is formed. Europe – is taken into operation 1997 Wireless communication in Malmberget, increasing the is introduced into LKAB’s under- 2018 The starting shot for the 1898 Hjalmar Lundbohm is degree to which the iron ore is ground mines using the Wireless SUM (Sustainable Underground appointed as local manager in upgraded and thus also the value Underground Communication Mining) initiative to develop a new Kiruna.
    [Show full text]
  • LKAB 2019 Annual and Sustainability Report
    2019 ANNUAL AND SUSTAINABILITY REPORT LKAB aims to create prosperity by being one of the most innovative, resource-efficient and responsible mining and minerals companies in the world. 02 LKAB ANNUAL AND SUSTAINABILITY REPORT 2019 CONTENTS INTRODUCTION RESPONSIBILITY AND GOVERNANCE The year in brief 2 Sustainable enterprise 50 Comments by the President and CEO 4 Risks and risk management 51 How we create value 8 Comments by the Chairman of the Board 58 Objectives for sustainable development 10 Corporate governance report 59 Board of Directors 66 BUSINESS CONTEXT AND STRATEGY Executive management team 68 Global context 13 Strategic priorities 16 FINANCIAL RESULTS Group overview 70 PRODUCTS AND MARKETS Financial statements 73 Customer offering 21 Notes 83 Drivers and trends 22 The Board’s attestation 121 Market development 24 Auditor’s report 122 OPERATIONS SUSTAINABILITY NOTES Exploration 27 Notes to the sustainability report 126 Mining 31 Auditor’s Limited Assurance Report Processing 33 on the Sustainability Report 144 Transport 34 OTHER INFORMATION Suppliers 35 Mineral reserves and mineral resources 146 Employees 36 Ten-year overview 150 Social responsibility 40 Terms and definitions 151 Environmental responsibility 44 Annual General Meeting and financial information 153 Impact in the value chain 48 Addresses lkab.com Administration report pages 2–3, 8–14, 35–72 and 121. Sustainability report pages 8–14, 35–41, 44–47, 50–56 and 125–143. RAIL TRANSPORT PORTS ABOUT LKAB’S ANNUAL AND SUSTAINABILITY REPORT 2019 The Board of Directors and the President hereby submit the annual and sustainability report for Luossavaara-Kiirunavaara AB (publ), corporate identity number 556001-5835, for the calendar year 2019.
    [Show full text]
  • The Mineral Industry of Sweden in 2015
    2015 Minerals Yearbook SWEDEN [ADVANCE RELEASE] U.S. Department of the Interior August 2019 U.S. Geological Survey The Mineral Industry of Sweden By Alberto Alexander Perez Sweden is located in northern Europe and shares the production of minerals and mineral products; of this amount, Scandinavian Peninsula with Norway (which borders it to 71% was employed in the production of steel and other refinery the west and north) and Finland (which borders it to the products, about 15.8% was employed in the mining sector, and north and east). Sweden also shares its southern border with the remainder (13.2%) worked in the industrial minerals, ballast, Denmark. Sweden is underlain by Precambrian rocks that are and dimension stone production sector (Geological Survey of part of an area known as the Baltic Shield (or Fennoscandian Sweden, 2017b). Shield). Archaean rocks occur only to a limited extent in In 2015, Sweden exported mostly machinery, motor vehicles, the northernmost part of the country. The rocks in the rest paper products, pulp and wood, iron and steel products, and of the north of Sweden and in the eastern and southern chemicals, and its main export trading partners were Norway parts of the country were formed, and were in many cases (which received about 10.3% of Sweden’s exports), Germany also metamorphosed, in connection with the Svecokarelian (10.3%), the United States (7.7%), the United Kingdom (7.2%), orogeny. In contrast, the bedrock in southwestern Sweden Denmark (6.8%), Finland (6.7%), the Netherlands (5.2%), was metamorphosed during the Sveconorwegian orogeny. Belgium (4.4%), and France (4.2%).
    [Show full text]
  • Condition and Performance Control of Mine Hoist LKAB's Kiruna Mine
    Service reference case description Condition and performance control of mine hoist LKAB’s Kiruna mine LKAB Kiruna mine ABB delivered its first complete mine Luossavaara-Kiirunavaara AB (LKAB) is an international high-tech minerals group, one of the world’s leading hoist in 1937. Since then, more than producers of upgraded iron ore products for the steel industry 600 units all over the world have been and a growing supplier of industrial minerals products to installed. High speed and heavy loads other sectors. with high safety and performance, Most of the iron ore products are sold to European steel- demand advanced technology for drive, works. Other important markets are North Africa, the Middle control and brake systems. Qualified East and Southeast Asia. Industrial minerals are sold mainly maintenance personnel and fast in Europe but also to growing markets in Asia and the USA. LKAB has around 3,700 employees, of which about 600 are access to competence is necessary to outside Sweden. maintain high safety, high performance and availability. ABB offers mine hoist Both LKAB’s mines in Kiruna and Malmberget are among the world’s most modern, thanks to investments in advanced services for condition and performance technology and large-scale production systems. control to maintain the equipment in the “as commissioned” condition. The production at Kiruna, Sweden’s northernmost city, is fully automatic from loading to unloading pocket in the head frame. The yearly output of the plant is 30 million tons of iron ore products. ABB has a unique capability to engineer, deliver, install and provide after sale service for entire mechanical and electrical mine hoist systems of all types.
    [Show full text]
  • The Norrbotten Technological Megasystem: Impact on Society and Environment
    The Norrbotten Technological Megasystem: Impact on Society and Environment Jessica Malmberg [email protected] James Buckland [email protected] August 15, 2015 The Kaptensgropen at Malmberget. Contents 1 Introduction 4 1.1 Norrbotten at Present . 4 1.2 A History of Norrbotten . 4 1.3 A History of Industry in Norrbotten . 4 1.4 Defining the Norrbotten Megasystem . 5 1.5 The Place of Community and Environment in the Norrbotten Technolog- ical Megasystem . 5 2 Community 8 2.1 Adapting to a Megasystem . 8 2.2 The Norrbotten Community . 8 2.2.1 A Short History of Kiruna . 8 2.2.2 A Controlling Interest . 9 2.3 Kiruna, G¨allivare/Malmberget, and Aitik . 9 2.3.1 The Relocation of Kiruna . 9 2.3.2 The Slow Malmberget Disaster and Relocation to G¨allivare . 10 2.3.3 The Relative Tranquility of Aitik . 12 2.4 Megasystemic Repercussions of the Norrbotten Megasystem . 12 2.4.1 Disease and Mortality amongst the Mining Community . 12 2.4.2 Indigenous Peoples in Norrbotten . 14 2.4.3 Mining Jobs in Norrbotten . 14 2.4.4 Conclusions on Megasystemic Repercussions . 14 2.5 Industrial Resistance to the Norrbotten Megasystem . 16 2.5.1 Environmental protests . 16 2.5.2 Unionization in Norrbotten . 16 2.5.3 Diversification of Industry in Kiruna . 16 3 Environment 18 3.1 Lule˚aharbour . 18 3.2 Porjus . 20 3.3 Malmberget - Kiirunavaara - LKAB . 22 3.4 Aitik - Boliden . 22 3.5 The environmental aspect of mining from different parties . 24 3.5.1 Geological Survey of Sweden .
    [Show full text]
  • Kiruna Mine, Sweden Iron Ore Extraction Under Challenging Conditions Iron Ore Extraction Under Challenging Conditions
    SIKA AT WORK KIRUNA MINE, SWEDEN IRON ORE EXTRACTION UNDER CHALLENGING CONDITIONS IRON ORE EXTRACTION UNDER CHALLENGING CONDITIONS PROJECT DESCRIPTION A reliable supply of consumeables such as the Sika Sigunit® With an ore body 4 km long, 80 m thick and reaching a depth the Sika plasticizers and retarders as well as a range of other of 2 km, LKAB’s Kiruna is the world’s largest, most modern products are absolutely critical to keep this operation going on underground iron ore mine. Since exploitation began at the a daily basis and to secure the large throughput rates of the site over 100 years ago, LKAB has produced over 950 mil- concrete batch plants on surface. lion tons of ore, yet only one third of the ore body has been extracted. PROJECT REQUIREMENTS The extraction-process requires large amounts of sprayed Sprayed concrete must have concrete to secure the mine development. Since 2008 Sika is ́ Early strength of 4 MPa at 4h (Hilti method) the main supplier for admixtures and underground construc- ́ 28 days strength > 40 MPa tion technologies at Kiruna. Located in Swedish Lapland, ́ A maximum dosage of accelerator of 10% north of the arctic circle, the challenges in terms of logistics, ́ A product stability of minimum six months admixture storage and concrete production are manyfold. ́ Open time > 4h Sika, together with its partner LKAB took on the challenge ́ Energy absorption according to ASTM 1550-05 of 490 J many years ago and today the LKAB operations are a show piece of best mining practice for many, large, block cave proj- SIKA SOLUTION ects all around the world.
    [Show full text]
  • European Union & Critical Metals
    Critical Metals for Europe www.criticalmetals.eu Critical Metals – Introduction . Aiming to supply high purity critical metals into Europe including lithium, cobalt, vanadium, nickel, copper, manganese and alumina. Focussed on the rapidly growing EU rechargeable battery market principally Lithium Ion Batteries (LiB) and Vanadium REDOX Flow Batteries. Aiming to establish a LiB recycling plant in Sweden and thereafter produce battery chemicals for supply to precursor manufacturers or cell manufacturers in Europe. Advancing a diversified portfolio of battery metals mining projects in the Nordic region to control battery metals feedstock for our own battery chemical production facility. 2 Critical Metals – Northern Sweden & Finland . Skellefteå – home to proposed Northvolt Giga factory, Boliden recycling facility / refinery and proposed Critical Metals LiB recycling facility. Luleå – home to Facebook’s European servers. Malå – home to Critical Metals. White Boxes – Critical Metals Project Pipeline. 3 European Union & Critical Metals – Macro Theme . The European Union (EU) needs between 10 and 20 Lithium Ion Battery (LiB) Giga factories. €20 Bn is required to fund this growth. 1st Giga factory expected to be built in northern Sweden, by Northvolt. EU faces intense global competition for critical metals to supply the Giga factories. Substantially more critical metals need to be sourced from within the EU. LiBs are powering electric vehicles (EVs) and stationary storage devices. EU member countries are now legislating the changeover to EVs . Forecast growth of EVs is massive. Waste generated from end-of-life LiBs will be large and must be recycled. Nordic region already has high EV penetration and advanced waste collection system. 4 Critical Metals – Our Strategy .
    [Show full text]
  • Geometallurgical Programs – Critical Evaluation Programs of – Critical Viktor Lishchuk Geometallurgical Applied Methods and Techniques
    LICENTIATE T H E SIS Viktor Lishchuk Department of Civil, Environmental and Natural Resources Engineering Division of Minerals and Metallurgical Engineering ISSN 1402-1757 Geometallurgical Programs – Critical ISBN 978-91-7583-636-2 (print) Geometallurgical Programs – Critical Evaluation of Applied Methods and Techniques Applied Methods and Geometallurgical – Critical of Programs Evaluation ISBN 978-91-7583-637-9 (pdf) Evaluation of Applied Methods and Techniques Luleå University of Technology 2016 Viktor Lishchuk Mineral Processing Geometallurgical programs – critical evaluation of applied methods and techniques PREP Viktor Lishchuk Division of Minerals and Metallurgical Engineering (MiMeR) Department of Civil, Environmental and Natural Resources Engineering Luleå University of Technology SE-971 87 Luleå Sweden Supervisors: Pertti Lamberg and Cecilia Lund Luleå University of Technology Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1757 ISBN 978-91-7583-636-2 (print) ISBN 978-91-7583-637-9 (pdf) Luleå 2016 www.ltu.se ABSTRACT Geometallurgy is a team-based multidisciplinary approach aimed at integrating geological, mineralogical and metallurgical information and yielding a spatial quantitative predictive model for production management. Production management includes forecast, control and optimization of the product quality (concentrates and tailings) and metallurgical performance (e.g. recoveries and throughput); and minimization of the environmental impact. Favourable characteristics of an ore body calling for geometallurgical model are high variability, low mineral grades, complex mineralogy and several alternative processing routes or beneficiation methods. Industrial application of geometallurgy is called a geometallurgical program. This study undertook a critical review and evaluation of methods and techniques used in geometallurgical programs. This evaluation aimed at defining how geometallurgical program should be carried out for different kinds of ore bodies.
    [Show full text]
  • 4. Seismic Moment Tensor
    MASTER'S THESIS Focal Mechanisms and Seismic Moment Tensors of Seismic Events in Kirunavaara Mine (Methodological- and Practical Aspects) Johan Skott 2013 Master of Science in Engineering Technology Civil Engineering Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering PREFACE A long journey of studies are about to end. My studies started long ago, in first class the autumn 1995. Ever since then I have been going to school and now I’m about to finish this chapter of my life. It’s a chapter filled with curiosity, hard work, but most of all – joy! This master thesis is the final part of my Master’s degree in Civil Engineering at Luleå University of Technology by the Division of Mining and Geotechnical Engineering. This thesis has been written in cooperation with LKAB in Kiruna and started in the beginning of 2012 and will now be completed almost two years later. I have spent many days and evenings completing this work, still this thesis and my gained knowledge of mining seismicity would not have been what it is today without my two supervisors, Christina Dahnér (LKAB) and especially Savka Dineva (LTU). Thank you! Most of all, I want to thank my family and friends who have supported during this last year of intensive work. Thank you all! Oppdal, December 2013 Johan Skott i ABSTRACT With increasing depth of mining in underground mines, the challenges with problems with rock bursts related to seismic events also increase. Seismic monitoring systems are installed in mines for monitoring of the seismic events and better understanding of the cause for them.
    [Show full text]