Solid Earth Discuss., https://doi.org/10.5194/se-2019-85 Manuscript under review for journal Solid Earth Discussion started: 22 May 2019 c Author(s) 2019. CC BY 4.0 License. A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems Sebastian Heimann1, Hannes Vasyura-Bathke2, 4, Henriette Sudhaus3, Marius Paul Isken3, 1, Marius Kriegerowski3, 4, Andreas Steinberg3, and Torsten Dahm1,4 1GFZ German Research Centre for Geosciences, Potsdam, Germany 2Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 3Institute for Geoscience, University of Kiel, Germany 4Institute for Earth and Environmental Sciences, University of Potsdam, Germany Correspondence: Sebastian Heimann (
[email protected]) Abstract. The finite physical source problem is usually studied with the concept of volume and time integrals over Green’s functions (GF), representing delta-impulse solutions to the governing partial differential field equations. In seismology, the use of realistic Earth models requires the calculation of numerical or synthetic GFs, as analytical solutions are rarely available. 5 The computation of such synthetic GFs is computationally and operationally demanding. As a consequence, on-the-fly re- calculation of synthetic GFs in each iteration of an optimisation is time-consuming and impractical. Therefore, pre-calculation and efficient storage of synthetic GFs on a dense grid of source to receiver combinations enables efficient look-up and utilisation of GFs in time critical scenarios. We present a Python-based framework and toolkit - Pyrocko-GF- that enables pre-calculation of synthetic GF stores, which are independent of their numerical calculation method and GF transfer function.