Traumatic Extremity Injuries

Total Page:16

File Type:pdf, Size:1020Kb

Traumatic Extremity Injuries TRAUMATIC EXTREMITY INJURIES Jassin M. Jouria, MD Dr. Jassin M. Jouria is a medical doctor, professor of academic medicine, and medical author. He graduated from Ross University School of Medicine and has completed his clinical clerkship training in various teaching hospitals throughout New York, including King’s County Hospital Center and Brookdale Medical Center, among others. Dr. Jouria has passed all USMLE medical board exams, and has served as a test prep tutor and instructor for Kaplan. He has developed several medical courses and curricula for a variety of educational institutions. Dr. Jouria has also served on multiple levels in the academic field including faculty member and Department Chair. Dr. Jouria continues to serves as a Subject Matter Expert for several continuing education organizations covering multiple basic medical sciences. He has also developed several continuing medical education courses covering various topics in clinical medicine. Recently, Dr. Jouria has been contracted by the University of Miami/Jackson Memorial Hospital’s Department of Surgery to develop an e- module training series for trauma patient management. Dr. Jouria is currently authoring an academic textbook on Human Anatomy & Physiology. Abstract Advances in modern medicine have improved limb salvaging in cases of extreme trauma and the potential of patients to have a good quality of life when amputation is a necessary resolution to injury. Without rapid and appropriate interventions, extremity trauma has a high incidence of morbidity. All clinicians have a vital role in the initial treatment, ongoing management, and support of patients with extremity trauma, a role that has a significant impact on each patient’s recovery and rehabilitation. nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 1 Policy Statement This activity has been planned and implemented in accordance with the policies of NurseCe4Less.com and the continuing nursing education requirements of the American Nurses Credentialing Center's Commission on Accreditation for registered nurses. It is the policy of NurseCe4Less.com to ensure objectivity, transparency, and best practice in clinical education for all continuing nursing education (CNE) activities. Continuing Education Credit Designation This educational activity is credited for 3.5 hours. Nurses may only claim credit commensurate with the credit awarded for completion of this course activity. Statement of Learning Need The treatment of individuals with an extremity injury requires that all members of the health team be familiar with all four components of injury and associated risks. The mechanisms of injury to an extremity are important clues as to the immediate and ongoing evaluation and treatment plan. Immobilization and stabilization and the immediate interventions of pain management, as well as evaluation of potentially serious and masked injuries, require that clinicians and emergency treatment teams be knowledgeable to provide patients with safe and appropriate assessment and care of an extremity injury. nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 2 Course Purpose This course will provide advanced learning for clinicians interested in the management of the trauma patient with an extremity injury. Target Audience Advanced Practice Registered Nurses and Registered Nurses (Interdisciplinary Health Team Members, including Vocational Nurses and Medical Assistants may obtain a Certificate of Completion) Course Author & Planning Team Conflict of Interest Disclosures Jassin M. Jouria, MD, William S. Cook, PhD, Douglas Lawrence, MA, Susan DePasquale, MSN, FPMHNP-BC – all have no disclosures Acknowledgement of Commercial Support There is no commercial support for this course. Please take time to complete a self-assessment of knowledge, on page 4, sample questions before reading the article. Opportunity to complete a self-assessment of knowledge learned will be provided at the end of the course. nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 3 1. The most common types of closed injuries include: a. Contusion b. Hematoma c. Crush d. All of the above 2. Which following type of fracture poses the greatest risk of nonunion: a. Wrist (carpus) fractures b. Femur fractures c. Facial fractures d. Spinal fractures 3. Life threatening extremity injuries include: a. Pelvic disruption with massive hemorrhage b. Severe arterial hemorrhage irrespective of mechanism c. Multiple long bone fractures (blood loss into the compartments) d. All of the above 4. True or False. Patients who do not present with any of the hard or soft signs for vascular injury may still have damage that is not yet apparent. a. True b. False 5. Type IIIA fracture classification involves: a. Severe tissue injury with open bone exposed b. Fracture to upper and/or lower extremity limbs c. Low contamination with infection rate less than 2 % d. None of the above nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 4 Introduction Extremity trauma is one of the most common forms of trauma treated in emergency departments throughout the United States. Extremity trauma can be simple or complex, as it may cause injuries in only one of the components of the extremity or all of the four components. The four components of the extremity are the nerves, vessels, bones, and soft tissue. The most severe cases of extremity trauma will involve more than one of the components of the extremity and will be difficult to manage and repair. When a patient experiences injury in three of the four components, he or she has a mangled injury and is at an increased risk of losing the limb.1 Treatment for extremity injuries, especially those that are severe, requires a multifaceted approach that addresses the immediate needs of the patient while preventing long term damage and improving the chance to salvage an extremity. This approach typically requires the involvement of a variety of clinicians, such as trauma surgeons, orthopedic, vascular and plastic surgeons, and rehabilitation specialists among some others. The focus will be on salvaging the limb while repairing the initial damage.2 Without rapid and appropriate intervention, extremity trauma has a high incidence of morbidity. All members of the health team play a vital role in the initial treatment and ongoing management and support of patients with extremity trauma, a role that has a significant impact on each patient’s recovery and rehabilitation. Types Of Extremity Injuries Extremity injuries are common in both military and civilian trauma situations and can be caused by a number of different mechanisms. In military situations, most extremity injuries are the result of penetrating trauma. They are often the result of explosive devices and landmines. In civilian nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 5 trauma, the majority of extremity injuries are caused by blunt trauma. They are often the result of motor vehicle accidents and industrial accidents. However, when penetrating injuries occur in the civilian population, they are typically the result of gunshot wounds and stabbings. In some instances, the damage will be too severe to salvage the extremity. When this occurs, the patient will require an amputation of the extremity. In other instances, the extremity will be amputated as part of the initial injury, and will require treatment and repair to clean up the damaged area.3 While limb salvage is the primary goal, it must not take precedence over the health and safety of the patient. If the injured limb poses a risk to the patient’s survival, it must be amputated as soon as possible. Extremity trauma can range in severity and may be life threatening for the patient. However, advances in modern medicine have improved both physicians’ abilities to salvage limbs in cases of extreme trauma and the patient’s potential to have good quality of life when amputation is a necessary resolution to injury. Open Injuries On open injury is any injury that involves a break in the skin. In all open injuries, the tissue underneath the skin is exposed. Open injuries can range in severity and some may appear as a small break in the skin, while others may be deep and wide. There are different types of open injuries, which are caused by various factors. The most common types of open injuries include those involving abrasions and lacerations, avulsions, punctures, traumatic amputation and crush.4 nursece4less.com nursece4less.com nursece4less.com nursece4less.com nursece4less.com 6 Closed Injuries A closed injury is any injury that occurs underneath the skin, with no open path from the outside to the injured area. Closed injuries are often the result of blunt trauma and will range in severity depending on a number of factors including the cause of the injury, the strength of impact, and the area that is injured. Most closed injuries are not easy to detect and often require diagnostic imaging for confirmation. The most common types of closed injuries include contusion, hematoma and crush injury.4 Blunt Versus Penetrating Injuries Blunt injuries occur as the result of blunt force trauma and can range in severity depending on the mechanism used and the strength of impact. Blunt force trauma is defined as a severe traumatic episode caused to the body or head with the sudden introduction of a blunt instrument used with great force.4 Blunt force trauma can occur as the result of any type of object striking a part of the body with significant force and can cause a range of injuries. However, while blunt force trauma is often significant, many patients will not show signs of blunt injuries. In many instances, the blunt injuries will occur internally and will not be noticeable without the use of diagnostic imaging. Additionally, many blunt injuries will produce few outward symptoms. However, while blunt injuries are not easily detected, they can have severe consequences.5,6 If not detected, a blunt injury can cause death in a patient within a short period of time.
Recommended publications
  • Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P
    LWW/AENJ LWWJ331-02 April 23, 2007 13:50 Char Count= 0 Advanced Emergency Nursing Journal Vol. 29, No. 2, pp. 145–150 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P Abstract Crush syndrome, or traumatic rhabdomyolysis, is an uncommon traumatic injury that can lead to mismanagement or delayed treatment. Although rhabdomyolysis can result from many causes, this article reviews the risk factors, symptoms, and best practice treatments to optimize patient outcomes, as they relate to crush injuries. Key words: crush syndrome, traumatic rhabdomyolysis RUSH SYNDROME, also known as ology, pathophysiology, diagnosis, and early traumatic rhabdomyolysis, was first re- management of crush syndrome. Cported in 1910 by German authors who described symptoms including muscle EPIDEMIOLOGY pain, weakness, and brown-colored urine in soldiers rescued after being buried in struc- Crush injuries may result in permanent dis- tural debris (Gonzalez, 2005). Crush syn- ability or death; therefore, early recognition drome was not well defined until the 1940s and aggressive treatment are necessary to when nephrologists Bywaters and Beal pro- improve outcomes. There are many known vided descriptions of victims trapped by mechanisms inducing rhabdomyolysis includ- their extremities during the London Blitz ing crush injuries, electrocution, burns, com- who presented with shock, swollen extrem- partment syndrome, and any other pathology ities, tea-colored urine, and subsequent re- that results in muscle damage. Victims of nat- nal failure (Better & Stein, 1990; Fernan- ural disasters, including earthquakes, are re- dez, Hung, Bruno, Galea, & Chiang, 2005; ported as having up to a 20% incidence of Gonzalez, 2005; Malinoski, Slater, & Mullins, crush injuries, as do 40% of those surviving to 2004).
    [Show full text]
  • Clinical Excellence Series Volume V an Evidence-Based Approach to Traumatic Emergencies
    Clinical Excellence Series n Volume V An Evidence-Based Approach To Traumatic Emergencies Inside Neck Trauma: Don’t Put Your Neck On The Line Orthopedic Sports Injuries: Off The Sidelines And Into The Emergency Department Blunt Abdominal Trauma: Priorities, Procedures, And Pragmatic Thinking Wrist Injuries: Emergency Imaging And Management Brought to you exclusively by the publisher of: An Evidence-Based Approach To Traumatic Emergencies CEO: Robert Williford President & Publisher: Stephanie Ivy Associate Editor & CME Director: Jennifer Pai • Associate Editor: Dorothy Whisenhunt Director of Member Services: Liz Alvarez • Marketing & Customer Service Coordinator: Robin Williford Direct all questions to EB Medicine: 1-800-249-5770 • Fax: 1-770-500-1316 • Non-U.S. subscribers, call: 1-678-366-7933 EB Medicine • 5550 Triangle Pkwy Ste 150 • Norcross, GA 30092 E-mail: [email protected] • Web Site: www.ebmedicine.net The Emergency Medicine Practice Clinical Excellence Series, Volume V: An Evidence-Based Approach To Traumatic Emergencies is published by EB Practice, LLC, 5550 Triangle Pkwy Ste 150, Norcross, GA 30092. Opinions expressed are not necessarily those of this publication. Mention of products or services does not constitute endorsement. This publication is intended as a general guide and is intended to supplement, rather than substitute, professional judgment. It covers a highly technical and complex subject and should not be used for making specific medical decisions. The materials contained herein are not intended to establish policy, procedure, or standard of care. Emergency Medicine Practice, The Emergency Medicine Practice Clinical Excel- lence Series, and An Evidence-Based Approach to Traumatic Emergencies are trademarks of EB Practice, LLC.
    [Show full text]
  • Broken Bones: Common Pediatric Lower Extremity Fractures—Part III
    10173-06_ON2506-Hart.qxd 11/9/06 3:51 PM Page 390 Broken Bones: Common Pediatric Lower Extremity Fractures—Part III Erin S. Hart ▼ Brenda Luther ▼ Brian E. Grottkau Lower extremity injuries and fractures occur frequently in young usually have pain with hamstring stretching and hip flex- children and adolescents. Nurses are often one of the first ion/abduction). Patients also frequently demonstrate an healthcare providers to assess a child with an injury or fracture. antalgic gait and have pain during their activity or sport. Although basic fracture care and principles can be applied, An anteroposterior radiograph of the pelvis usually reveals nurses caring for these young patients must have a good under- the avulsed fragment. Comparative views of the contralat- standing of normal bone growth and development as well as eral side are often helpful in confirming the diagnosis and avoiding further unnecessary advanced imaging studies. common mechanisms of injury and fracture patterns seen in This injury is usually treated symptomatically and often children. Similar to many of the injuries in the upper extremity, involves rest, application of ice, and relaxation of the in- fractures in the lower extremity in children often can be treated volved tendon (O’Kane, 1999). Conservative treatment of nonoperatively with closed reduction and casting. However, this pelvic avulsion fractures is usually successful. Crutches are article will also review several lower extremity fractures that often needed for several weeks to reduce symptoms and frequently require surgical intervention to obtain a precise rest the extremity involved. Complications following pelvic anatomical reduction. Common mechanisms of injury, fracture avulsion fractures in children are rare, and most patients patterns, and current management techniques will be discussed.
    [Show full text]
  • ISR/PFC Crush Injury Clinical Practice Guideline
    All articles published in the Journal of Special Operations Medicine are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, or otherwise published without the prior written permission of Breakaway Media, LLC. Contact [email protected]. An Ongoing Series Management of Crush Syndrome Under Prolonged Field Care Thomas Walters, PhD; Douglas Powell, MD; Andrew Penny, NREMT-P; Ian Stewart, MD; Kevin Chung, MD; Sean Keenan, MD; Stacy Shackelford, MD Introduction to the Prolonged Field Care beyond the initial evaluation and treatment of casual- Prehospital Clinical Practice Guideline Series ties in a PFC operational environment. This and fu- ture CPGs are aimed at serious clinical problems seen Sean Keenan, MD less frequently (e.g., crush injury, burns) or where fur- ther advanced practice recommendations are required THIS FIRST CLINICAL PRACTICE GUIDELINE (CPG) (e.g., pain and sedation recommendations beyond was produced through a collaboration of the SOMA TCCC recommendations, traumatic brain injury). Prolonged Field Care Working Group (PFCWG) and the Joint Trauma System (JTS) at the U.S. Army Insti- We hope that this collaboration of experienced op- tute of Surgical Research (USAISR) in San Antonio. Of erational practitioners and true subject matter ex- note, this effort is the result from requests for informa- perts, operating under the guidance set forth in past tion and guidance through the PFC website (PFCare.org) JTS CPG editorial standards, will bring practical and and from the Joint Special Operations Medical Training applicable clinical recommendations to the advanced Center instructors located at Fort Bragg, North Carolina. practice first responders and Role 1 providers in the field.
    [Show full text]
  • With Crush Injury Syndrome
    Crush Syndrome Made Simple Malta & McConnelsville Fire Department Division of Emergency Medical Service Objectives Recognize the differences between Crush Injury and Crush Syndrome Understand the interventions performed when treating someone with Crush Syndrome Assessing the Crush Injury victim S&S of crush injuries Treatment of crush injury Malta & McConnelsville Fire Department Division of Emergency Medical Service INJURY SYNDROME • Cell Disruption/ • Systemic effects injury at the point of when muscle is impact. RELEASED from Compression • Occurs < 1 hour • Occurs after cells have been under pressure >4 hours* • Suspect Syndrome with lightening strikes Malta & McConnelsville Fire Department Division of Emergency Medical Service CRUSHING MECHANISM OF INJURY • Building and Structure Collapse • Bomb Concussions • MVAs’ and Farm Accidents • Assault with blunt weapon Malta & McConnelsville Fire Department Division of Emergency Medical Service AKA: COMPRESSION SYNDROME First described by Dr. Minami in 1940 Malta & McConnelsville Fire Department Division of Emergency Medical Service INVOLVED ANATOMY Upper Arms Upper Legs Thorax and Buttocks Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Crush injuries occur when a crushing force is applied to a body area. Sometimes they are associated with internal organ rupture, major fractures, and hemorrhagic shock. Early aggressive treatment of patients suspected of having a crush injury is crucial. Along with the severity of soft tissue damage and fractures, a major concern of a severe crush injury is the duration of the compression/entrapment. Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Prolonged compression of a body region or limb may lead to a dangerous syndrome that can become fatal. Crush Syndrome is difficult to diagnose and treat in the pre-hospital setting because of the many complex variables involved.
    [Show full text]
  • Assessment, Management and Decision Making in the Treatment of Polytrauma Patients with Head Injuries
    Compartment Syndrome Andrew H. Schmidt, M.D. Professor, Dept. of Orthopedic Surgery, Univ. of Minnesota Chief, Department of Orthopaedic Surgery Hennepin County Medical Center April 2016 Disclosure Information Andrew H. Schmidt, M.D. Conflicts of Commitment/ Effort Board of Directors: OTA Critical Issues Committee: AOA Editorial Board: J Knee Surgery, J Orthopaedic Trauma Medical Director, Director Clinical Research: Hennepin County Med Ctr. Disclosure of Financial Relationships Royalties: Thieme, Inc.; Smith & Nephew, Inc. Consultant: Medtronic, Inc.; DGIMed; Acumed; St. Jude Medical (spouse) Stock: Conventus Orthopaedics; Twin Star Medical; Twin Star ECS; Epien; International Spine & Orthopedic Institute, Epix Disclosure of Off-Label and/or investigative Uses I will not discuss off label use and/or investigational use in my presentation. Objectives • Review Pathophysiology of Acute Compartment Syndrome • Review Current Diagnosis and Treatment – Risk Factors – Clinical Findings – Discuss role and technique of compartment pressure monitoring. Pathophysiology of Compartment Syndrome Pressure Inflexible Fascia Injured Muscle Vascular Consequences of Elevated Intracompartment Pressure: A-V Gradient Theory Pa (High) Pv (Low) artery arteriole capillary venule vein Local Blood Pa - Pv Flow = R Matsen, 1980 Increased interstitial pressure Pa (High) Tissue ischemia artery arteriole capillary venule vein Lysis of cell walls Release of osmotically active cellular contents into interstitial fluid Increased interstitial pressure More cellular
    [Show full text]
  • Treatment of Large Avulsion Injury in Perianal, Sacral, and Perineal
    Hu et al. BMC Surgery (2019) 19:65 https://doi.org/10.1186/s12893-019-0529-1 RESEARCH ARTICLE Open Access Treatment of large avulsion injury in perianal, sacral, and perineal regions by island flaps or skin graft combined with vacuum assisted closure Fu Xing Hu1†, Xiao Xuan Hu2†, Xue Lin Yang1, Xing Hai Han1, Yong Bo Xu3, Kun Li3, Li Yan3*† and Hai Bo Chu3*† Abstract Background: Traumatic avulsion injuries to the anus, although uncommon, can result in serious complications and even death. Management of anal avulsion injuries remains controversial and challenging. This study aimed to investigate the clinical effects of treating large skin and subcutaneous tissue avulsion injuries in the perianal, sacral, and perineal regions with island flaps or skin graft combined with vacuum assisted closure. Methods: Island flaps or skin graft combined with vacuum assisted closure, diverting ileostomy, the rectum packed with double-lumen tubes around Vaseline gauze, negative pressure drainage with continuous distal washing, wounds with skin grafting as well as specialized treatment were performed. Results: The injuries healed in all patients. Six cases had incomplete perianal avulsion without wound infection. Wound infection was seen in four cases with annular perianal avulsion and was controlled, and the separated prowl lacuna was closed. The survival rate in 10 patients who underwent skin grafting was higher than 90%. No anal stenosis was observed after surgery, and ileostomy closure was performed at 3 months (six cases) and 6 months (four cases) after surgery, respectively. Conclusions: Covering a wound with an island flap or skin graft combined with vacuum assisted closure is successful in solving technical problems, protects the function of the anus and rapidly seals the wound at the same time.
    [Show full text]
  • Ad Ult T Ra Uma Em E Rgen Cies
    Section SECTION: Adult Trauma Emergencies REVISED: 06/2017 4 ADULT TRAUMA EMERGENCIES TRAUMA ADULT 1. Injury – General Trauma Management Protocol 4 - 1 2. Injury – Abdominal Trauma Protocol 4 - 2 (Abdominal Trauma) 3. Injury – Burns - Thermal Protocol 4 - 3 4. Injury – Crush Syndrome Protocol 4 - 4 5. Injury – Electrical Injuries Protocol 4 - 5 6. Injury – Head Protocol 4 - 6 7. Exposure – Airway/Inhalation Irritants Protocol 4 - 7 8. Injury – Sexual Assault Protocol 4 - 8 9. General – Neglect or Abuse Suspected Protocol 4 - 9 10. Injury – Conducted Electrical Weapons Protocol 4 - 10 (i.e. Taser) 11. Injury - Thoracic Protocol 4 - 11 12. Injury – General Trauma Management Protocol 4 – 12 (Field Trauma Triage Scheme) 13. Spinal Motion Restriction Protocol 4 – 13 14. Hemorrhage Control Protocol 4 – 14 Section 4 Continued This page intentionally left blank. ADULT TRAUMA EMERGENCIES ADULT Protocol SECTION: Adult Trauma Emergencies PROTOCOL TITLE: Injury – General Trauma Management 4-1 REVISED: 06/2015 PATIENT TRAUMA ASSESSMENT OVERVIEW Each year, one out of three Americans sustains a traumatic injury. Trauma is a major cause of disability in the United States. According to the Centers for Disease Control (CDC) in 2008, 118,021 deaths occurred due to trauma. Trauma is the leading cause of death in people under 44 years of age, accounting for half the deaths of children under the age of 4 years, and 80% of deaths in persons 15 to 24 years of age. As a responder, your actions within the first few moments of arriving on the scene of a traumatic injury are crucial to the success of managing the situation.
    [Show full text]
  • Extrusive Luxation and Lateral Luxation
    NDR15 1/3/07 6:23 PM Page 411 15 Extrusive Luxation and Lateral Luxation F. M. Andreasen & J. O. Andreasen Definition Clinical findings Extrusive luxation (peripheral dislocation, Extrusion partial avulsion) Extruded teeth appear elongated and most often with Partial displacement of the tooth out of its socket. (Fig. lingual deviation of the crown, as the tooth is suspended 15.1) only by the palatinal gingiva (Fig. 15.1). There is always bleeding from the periodontal ligament. The percussion sound is dull. Lateral luxation Displacement of the tooth in a direction other than axially. Lateral luxation This is accompanied by comminution or fracture of the The crowns of laterally luxated teeth are in most cases dis- alveolar socket. (Fig. 15.2) placed lingually and are usually associated with fractures of the vestibular part of the socket wall (Fig. 15.2). Displace- Frequency ment of teeth after lateral luxation is normally evident by visual inspection. However, in case of marked inclination of The frequency of extrusive and lateral luxation han been maxillary teeth, it can be difficult to decide whether the found to be 7% and 11% among traumatized permanent trauma has caused minor abnormalities in tooth position. teeth examined at a major trauma center (7). In such cases, occlusion should be checked. Due to the fre- quently locked position of the tooth in the alveolus, clinical findings revealed by percussion and mobility tests are iden- Healing and pathology tical with those found in intruded teeth (see Chapter 13, Table 13.1). In these cases there is a complete rupture of the neurovas- cular supply to the pulp and severance of periodontal liga- Radiographic findings ment fibers leading to extrusion.
    [Show full text]
  • Trauma Surgery
    TRAUMA SURGERY Hyperlactataemia with acute kidney injury following community assault: cause or effect? David Lee Skinner,1 Carolyn Lewis,2 Kim de Vasconcellos,1 John Bruce,3 Grant Laing,3 Damian Clarke,3 David Muckart3 1 Perioperative Research Group: Department of Anaesthetics and Critical Care, University of KwaZulu-Natal 2 Division of Emergency Medicine, University of Witwatersrand, Johannesburg, South Africa 3 Department of Surgery, University of KwaZulu-Natal Corresponding author: David Lee Skinner ([email protected]) Background: Crush injury is a common presenting clinical problem in South African trauma patients, causing acute kidney injury (AKI). It has been theorised previously that the AKI was not due to an anaerobic phenomenon. A previous local study noted the presence of a mild hyperlactataemia among patients with crush syndrome, but the significance and causes of this was not fully explored. This study aimed to examine the incidence of hyperlactataemia in patients with crush syndrome presenting to a busy emergency department (ED) in rural South Africa. Methods: The study was conducted at Edendale Hospital in KwaZulu-Natal province in South Africa from 1 June 2016 to 31 December 2017. All patients from the ED who had sustained a crush injury secondary to a mob assault were included in the study. Patients with GCS on arrival of < 13 or polytrauma were excluded from analysis. The primary outcome of interest was the presence of hyperlactataemia (> 2.0mmol/L) on presentation. The Kidney Disease Improving Global Outcomes (KDIGO) criteria were used to diagnose and stage AKI as a secondary outcome. Results: A total of 84 patients were eligible for analysis.
    [Show full text]
  • (Mangled Extremity Severity Score) Score in Predicting Amputation Or Limb Salvage in Crush Injury at Hasan Sadikin Hospital, Bandung
    Volume 1- Issue 6 : 2017 DOI: 10.26717/BJSTR.2017.01.000515 Romy Deviandri. Biomed J Sci & Tech Res ISSN: 2574-1241 Mini Review Open Access Correlations Between Degree of Limb Ischemia in MESS (Mangled Extremity Severity Score) Score in Predicting Amputation or Limb Salvage in Crush Injury at Hasan Sadikin Hospital, Bandung Deviandri R1* and Ismiarto YD Department of Orthopaedics and Traumatology Faculty of Medicine, Universitas Padjadjaran, Indonesia Received: November 01, 2017; Published: November 10, 2017 *Corresponding author: Romy Deviandri, Department of Orthopaedic and TraumatologyFaculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Jalan Pasteur No.38 Bandung 40161,Indonesia Abstract Background: Crush injuries to the lower extremities have proven to be a profound challenge to the surgeon. Complex decisions inevitably center about whether to attempt heroic efforts aimed at limb salvage or to proceed with primary amputation. There are many guidance score that can be objectively help surgeons with the decisions. One of them is MESS Score. Objective: treatment to Crush lower limb injury patients. The purpose of this study is to find the correlations between degree of limb ischemia in MESS score component in predicting Method: September 2017. The research is a retrospective analytic diagnostic study in 32 patients with 1,7-80,2 range of age (mean=40.95 year old) who suffered from Wesevere reviewed lower limbthe medical injury. Data record was for processed patients basedwith severe on MESS injuries Score. to MESS the lowerincludes leg 4 in points five years of observation, on period whichof January are skeletal& 2014 to soft tissue injury, degree of limb ischemia, shock, and age.
    [Show full text]
  • THE MEDICAL MANAGEMENT of the ENTRAPPED PATIENT with CRUSH SYNDROME REVISED: October 2019
    MEDICAL GUIDANCE NOTE TITLE: THE MEDICAL MANAGEMENT OF THE ENTRAPPED PATIENT WITH CRUSH SYNDROME REVISED: October 2019 INTRODUCTION The following clinical guideline has been developed by the International Search and Rescue Advisory Group (INSARAG), Medical Working Group (MWG), which consists of medical professionals actively involved in the Urban Search and Rescue (USAR) medicine. The MWG is comprised of representatives from multiple countries and organisations drawn from the three INSARAG regional groups. This clinical guideline outlines a recommended approach to the management of crush syndrome in the austere environment of collapse structure response. While this is not intended to be a prescriptive medical protocol, USAR teams are encouraged to develop or review their own crush syndrome protocols within the context of this document. There is a lack of evidence-based research into prehospital treatment of crush syndrome in the collapsed structure environment. This document is to be considered as a consensus statement by members of the MWG based on current medical literature, expertise, and experience. In addition, it must be understood that these guidelines have been developed for application in a specific environment that may be complicated by factors such as: • Hazards to rescuers and patients e.g., secondary collapse; hazardous material; • Limited access to entrapped patient; • Limitations of medical and rescue equipment within the confined space;1 • Prolonged extrication and evacuation of patient; • Delayed access to definitive care. DEFINITIONS & BACKGROUND Crush Injury: Entrapment of parts of the body due to a compressive force that results in physical injury and or ischaemic injury to the muscle of the affected area. If significant muscle mass is involved, it can lead to crush syndrome following release of the compressive force.
    [Show full text]