Astrophysical Properties of Red Giants in Three Open Clusters Older Than the Hyades*

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysical Properties of Red Giants in Three Open Clusters Older Than the Hyades* J. Astrophys. Astr. (1983) 4, 117-134 Astrophysical Properties of Red Giants in Three Open Clusters Older than the Hyades* J. J. Clariá**and Ε. Lapasset** Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, 5000 Córdoba, Argentina Received 1983 March 31; accepted 1983 May 20 Abstract. Results from CMT1T2 1T2 broad-band and DDO intermediate-band photometry are presented for G and Κ giants in the old open clusters NGC. 2482, NGC 3680, and IC 4651. Two independent photometric criteria have been used to separate red field stars from the physical members of the clusters. Recent calibrations of the DDO and CMT1T2 systems have been used to derive reddening, distance moduli, metallicities, effective tempe- ratures, and surface gravities. Rough estimates of masses have also been made. The giants of NGC 2482 and IC 4651 have CN strengths nearly identical to the Hyades giants, while those of NGC 3680 are slightly richer in CN than the nearby Κ giants. CMT1T2 abundance analysis in NGC 2482 and NGC 3680 yield [Fe/H]MT = – 0.1 ± 0.1 as derived from the iron lines, while abundances derived from the CNO –. contaminated (C – Μ) index are 0.4 dex higher. Both CMT1T2 and DDO data support the conclusion that 1C 4651, with [Fe/H] = + 0.2 ± 0.1, is on the metal- rich side of the distribution of intermediate and old open clusters. Finally, the mass results suggest that the clump stars in NGC 3680 and. IC 4651 could have undergone mass loss before reaching their helium core burning phase of evolution. Key words: clusters, open – photometry, CMT1T2/DDO – stars, abun- dances – stars, late-type I. Introduction The role of G and Κ giants for photometric abundance studies in stellar clusters is well known. In particular, globular clusters and open clusters older than the Hyades are im- portant as indicators of the evolution of the chemical composition of the galactic disk (Sandage & Eggen 1969) and of variations in metal content with position in the galaxy. In a recent paper, Janes (1979a) has used UBV and DDO photometry of distant field Κ giants and 41 open clusters to estimate the variation of metallicity across the galactic * Supported in part by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) of Ar- gentina. ** Visiting astronomer of Cerro Tololo Inter-American Observatory supported by the National Science Foundation under contract No. AST 74-04128. 118 J. J. Clariá and Ε. Lapasset disk. The metallicity gradient of d[Fe/H]/dR = – 0.05 found by Janes in the solar vi- cinity is somewhat lower than that of ~ – 0.1 found by Clariá (1980) from a prelimin- ary UBV-DDO study of G and Κ giants in several open clusters. There is, however, some contradictory information concerning the real nature of this abundance grad- ient. In fact, while some authors have found that the heavy-element abundance in the galactic disk decreases with increasing distance from the galactic centre (D’Odorico, Peimbert & Sabbadin 1976; Mayer 1976 Janes 1979a; Clariá 1980) others have not obtained the same results (Clegg & Bell 1973; Heifer & Jennens 1975). There are rea- sons for suspecting that the apparently contradictory results might perhaps be reflect- ing the existence of a more pronounced gradient in the CNO elements than in the heavier ones. Since the DDO abundance parameters for G and Κ stars are affected by the presence of CN and CH features, it is clear that such parameters depend on the ra- tio [Fe/CNO], which in turn may be a function of position and/or age in the galaxy. On the observational side, therefore, it should, be interesting to use any observati- onal technique capable of separating the effects of blanketing by the molecular CN and CH bands from those of the metallic lines in the ultraviolet. Such a separation can be carried out by using the CMT1T2 system, usually known as the CMT1T2 Washing- ton system. This relatively new broad-band system was designed by G. Wallerstein and developed by Canterna (1976). The system employs a RCA C31034 Ga-As tube whose high quantum efficiency in the near-infrared enables observations of stars ap- proximately 1.5 mag fainter than those for which (R – I) measurements can be taken with an S-l phototube on the same telescope. Although the Washington system was primarily designed for G and Κ gaints, its applicability to other stars and/or stellar groups has been described by Canterna (1976) and Canterna & Harris (1979). We present in this paper CMT1T2 observations of G and Κ giants in three open clusters older than the Hyades: NGC 2482 (C 0752-241), NGC 3680 (C1123-429), and 1C 4651 (C1720-499). The broadband observations in the first two clusters were supplemented by observations in the DDO intermediate-band photometric system. Existing DDO data of 1C 4651 (Smith 1982) have been used. The primary purpose of this paper is to use both CMT1T2 and DDO data as well as published UBV values in or- der to determine some of the main astrophysical properties of these three clusters. Some preliminary results have been previously published by Clariá & Lapasset (1982). In Section 2 of this paper the photoelectric observations are presented. Two photo- metric criteria for evaluating cluster membership as well as the procedures and cali- brations used to derive the astrophysical properties are described in Section 3; in Sec- tion 4 the results on individual clusters and interpretation of them are presented. Fi- nally, the main conclusions are summarized in Section 5. 2. Photoelectric observations of the cluster stars Photoelectric photometry in the CMT1T2 system was obtained on three nights in April 1980 with the 41-cm reflector of the Cerro Tololo Inter-American Observatory (CTIO). Measurements were done for three giants in NGC 2482, nine giants in NGC 3680, and thirteen giants in 1C 4651. The CMT1T2 filters recommended by Canterna were used together with a Ga-As RCA C31034 photomultiplier cooled by dry ice. Pulse counting electronics was used for all measurements. Mean extinction coeffi- cients at CTIO were employed. Standard stars (Canterna 1976) were observed each night for conversion to the original Washington system. The colour transformation Red giants in open clusters 119 120 J. J. Clariá and E. Lapasset slopes agree well with those found by Canterna for CTIO, and the internal mean er- rors of a single observation are ± 0.009, ± 0.008, ± 0.012 for the colours (C – M), (M – T1), (T1 – T2), respectively, and ± 0.015 for the T1 magnitude. These errors are practically independent of the Τ1 magnitude. The data for the programme stars are given in Table 1. Columns (l) – (5) give the star names and UBV data. The observed CMT1T2 colours and T1 magnitudes together with their mean errors are listed in columns (7) – (10). For single measurements, the standard error is estimated for the appropriate T1 level. Columns (6) and (11) give the numbers n1 and n2 of UBV and CMTlT2 observations, respectively. The sources for the star identifications as well as for the UBV data are given in the footnotes. DDO photometry of giants in NGC 2482 and NGC 3680 was also obtained with the aim of determining additional information about their abundance properties. The DDO observations were made with the CTIO 91-cm telescope and an S-20 photo- multiplier. Only the four primary DDO filters were used. Transformation to the DDO standard system was done by nightly observing equatorial standards from the list of McClure (1976). Mean DDO extinction coefficients were used. The uncorrected DDO colour indices of the observed stars in NGC 2482 and NG C 3680 are listed in columns (3) – (5) of Table 2 together with their mean errors. Column (6) lists the number of nights on which each star was observed. The average values of the mean errors obtained from the internal consistency of the multiple ob- servations of each star are ± 0.008, ± 0.010 and ± 0.012, respectively, for the three co- lour indices in Table 2. A comparison of the present DDO photometry for NGC 3680 with that of McClure (1972) indicates them to be nearly identical. For the nine stars observed in common with McClure, the mean residuals (McClure minus present stu- dy) are ΔC(45 – 48) = 0.002 ± 0.008 (s.d.), ΔC(42 – 45) = 0.003 ± 0.009 (s.d.), and ΔC(41 – 42) = 0.001 ± 0.010 (s.d.). 3. Analysis of the data 3.1 Membership Criteria Although the positions of the programme stars in the colour-magnitude (c-m) and [(U – B), (B – V)] diagrams are consistent with cluster membership, it is well known that the UBV criteria alone are insufficient evidence of their physical connection with the cluster. The best method for separating red field stars from the physical members Table 2. DDO data for NGC 2482 and NGC 3680. Red giants in open clusters 121 of the clusters is probably on the basis of proper motions and/or radial velocities, but these data are not available for the clusters of the present study. We have found that cluster membership of red evolved stars can be assigned with fair certainty using only BV and DDO photometry. Firstly, the probability of mem- bership can be estimated from how closely the computed reddening of a given star agrees with that obtained from the main sequence stars. Assuming Whitford’s (1958) reddening curve to be valid, McClure & Racine (1969) have derived the relation (1) where A1 = – 2.380, A2 = – 1.420, A3 = 2.175, A4 = 1.841 and all the photometric in- dices involved are the observed (reddened) ones.
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Instruction Manual Meade Instruments Corporation
    Instruction Manual 7" LX200 Maksutov-Cassegrain Telescope 8", 10", and 12" LX200 Schmidt-Cassegrain Telescopes Meade Instruments Corporation NOTE: Instructions for the use of optional accessories are not included in this manual. For details in this regard, see the Meade General Catalog. (2) (1) (1) (2) Ray (2) 1/2° Ray (1) 8.218" (2) 8.016" (1) 8.0" Secondary 8.0" Mirror Focal Plane Secondary Primary Baffle Tube Baffle Field Stops Correcting Primary Mirror Plate The Meade Schmidt-Cassegrain Optical System (Diagram not to scale) In the Schmidt-Cassegrain design of the Meade 8", 10", and 12" models, light enters from the right, passes through a thin lens with 2-sided aspheric correction (“correcting plate”), proceeds to a spherical primary mirror, and then to a convex aspheric secondary mirror. The convex secondary mirror multiplies the effective focal length of the primary mirror and results in a focus at the focal plane, with light passing through a central perforation in the primary mirror. The 8", 10", and 12" models include oversize 8.25", 10.375" and 12.375" primary mirrors, respectively, yielding fully illuminated fields- of-view significantly wider than is possible with standard-size primary mirrors. Note that light ray (2) in the figure would be lost entirely, except for the oversize primary. It is this phenomenon which results in Meade 8", 10", and 12" Schmidt-Cassegrains having off-axis field illuminations 10% greater, aperture-for-aperture, than other Schmidt-Cassegrains utilizing standard-size primary mirrors. The optical design of the 4" Model 2045D is almost identical but does not include an oversize primary, since the effect in this case is small.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Open Clusters Under the Microscope 6
    to a well-defined observational limit and In a letter of February 20,1074 to the [10] A more msive descrlptlon Is in the specifying main characteristics such as Dimtot General of ESO, Holmberg mlnutes af the Instr. Comm, of March Hubble type and apparent magnitude? wrote fhat, since November 1973, the 1964, In FHA. Many considerations pointed to an- work had hngoing full force hy Andris [ll] Mltlons du Cenh Natlonal de Re- mheScieniiffque, Paris 1990, p. 404. swering w,including the important hub-, and a flrst batch of 20 plates [I21 Ses ESO Annual Reports 1964-1866 side effect of ensuring uniformity in the were under survey. A comp~nslve and mhutes Cw Meetlngs 1965 and identification numbers to be used in the description of the project was published 1966, In FHA. future. in 1974 by Holmberg, Laurn, Schus- 113'j FHA-Cou minutes Dec. 1968, p. 4. Since the task would be far beyond ter and west 1251. 1141 l-teckmann Stems, p. 21 6 and 321 -322. what might be done by the ESO staff [15] In a letter of January 10, 1990, Prof. U. Haug of Hamburg Observatory points M,collaboration with an astronomical Acknowledgement Institute, preferably in one of the ESO out to me, that In the a of the Hm- cwntrie, would be the solution and this Iam indebted to Ors. R B. Mulbr and burg Schmidt, whereas Strewindti was responalMe for the mechanical Wlgn of R. M. West helpful on a led the ESO Directomte to approach in for comments the mounting, the combination optlcs- the spring of 1973 the Director of Upp- draft of this article.
    [Show full text]
  • ESO Image: Sibling Stars 19 August 2015
    ESO image: Sibling stars 19 August 2015 was discovered by Solon Bailey], who pioneered the establishment of observatories in the high dry sites of the Andes, and it was catalogued in 1896 by the Danish-Irish astronomer John Louis Emil Dreyer. The Milky Way is known to contain over a thousand of these open clusters, with more thought to exist, and many have been studied in great depth. Observations of star clusters like these have furthered our knowledge of the formation and evolution of the Milky Way and the individual stars within it. They also allow astronomers to test their models of how stars evolve. The stars in IC 4651 all formed around the same time out of the same cloud of gas. These sibling stars are only bound together very loosely by their attraction to one another and also by the gas between them. As the stars within the cluster interact with other clusters and clouds of gas in the galaxy around them, and as the gas between the This rich view of a tapestry of colorful stars was captured stars is either used up to form new stars or blown by the Wide Field Imager (WFI) camera, on the away from the cluster, the cluster's structure begins MPG/ESO 2.2-meter telescope at ESO's La Silla to change. Eventually, the remaining mass in the Observatory in Chile. It shows a open cluster of stars cluster becomes small enough that even the stars known as IC 4651, a stellar grouping that lies at in the can escape.
    [Show full text]
  • On the Fine Structure of the Cepheid Metallicity Gradient
    A&A 566, A37 (2014) Astronomy DOI: 10.1051/0004-6361/201323198 & c ESO 2014 Astrophysics On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk, K. Genovali1, B. Lemasle2,G.Bono1,3, M. Romaniello4, M. Fabrizio5, I. Ferraro3,G.Iannicola3,C.D.Laney6,7, M. Nonino8, M. Bergemann9,10, R. Buonanno1,5, P. François11,12, L. Inno1,4, R.-P. Kudritzki13,14,9, N. Matsunaga15, S. Pedicelli1, F. Primas4, and F. Thévenin16 1 Dipartimento di Fisica, Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy e-mail: [email protected] 2 Astronomical Institute Anton Pannekoek, Science Park 904, PO Box 94249, 1090 GE Amsterdam, The Netherlands 3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, Rome, Italy 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany 5 INAF – Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy 6 Department of Physics and Astronomy, N283 ESC, Brigham Young University, Provo, UT 84601, USA 7 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 8 INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 40131 Trieste, Italy 9 Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany 10 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge, UK 11 GEPI – Observatoire de Paris, 64 avenue de l’Observatoire, 75014 Paris, France 12 UPJV – Université de Picardie Jules Verne, 80000 Amiens, France 13 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822, USA 14 University Observatory Munich, Scheinerstr.
    [Show full text]
  • Critical Tests of Stellar Evolution in Open Clusters
    A&A 386, 187–203 (2002) Astronomy DOI: 10.1051/0004-6361:20020183 & c ESO 2002 Astrophysics Critical tests of stellar evolution in open clusters III. Stellar population and dynamical evolution of IC 4651?,?? S. Meibom1,2, J. Andersen1, and B. Nordstr¨om1,3 1 Astronomical Observatory, Niels Bohr Institute for Astronomy, Physics, and Geophysics, Juliane Maries Vej 30, 2100 Copenhagen, Denmark e-mail: [email protected] 2 Astronomy Department, University of Wisconsin, Madison, WI 53706, USA 3 Lund Observatory, PO Box 43, 221 00 Lund, Sweden e-mail: [email protected] Received 28 November 2001 / Accepted 30 January 2002 Abstract. We present multiple-epoch radial-velocity observations for 104 stars in a 100 × 100 field of the intermediate-age open cluster IC 4651 to V ∼ 14.5. Only 13 stars (13%) of the full sample are field stars. From the 44 single member stars we find a mean radial velocity of −30.76 0.20 km s−1, and the 12 single red-giant members yield a true radial-velocity dispersion of 0.74 km s−1. Of the 19 giant members, 7 (37%) are spectro- scopic binaries with periods up to 5000 days, while 35 (52%) of the 67 main-sequence and turnoff members are binaries with periods less than ∼1000 days. Combined with our deep, accurate CCD Str¨omgren photometry in a ∼210 × 210 field of IC 4651 (Meibom 2000), these data substantially improve the definition of the cluster locus in the colour-magnitude diagram and the spatial structure of the cluster, although the photometry shows that IC 4651 contains at least twice as many stars on the upper main sequence as was believed when the radial- velocity survey was initiated.
    [Show full text]
  • Detailed Chemical Composition of the Open Cluster IC 4651: the Iron Peak, Α Elements, and Li
    A&A 424, 951–963 (2004) Astronomy DOI: 10.1051/0004-6361:20040240 & c ESO 2004 Astrophysics Detailed chemical composition of the open cluster IC 4651: The iron peak, α elements, and Li L. Pasquini1, S. Randich2, M. Zoccali1,V.Hill3, C. Charbonnel4,5, and B. Nordström6,7 1 European Southern Observatory, 85748 Garching bei München, Germany e-mail: [email protected] 2 INAF - Osservatorio di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy 3 GEPI (URA8111), Observatoire de Paris-Meudon, 92195 Meudon, France 4 Observatoire de Genève, 1290 Sauverny, Switzerland 5 LATT, OMP, CNRS UMR 5572, 14, av. E. Belin, 31400 Toulouse, France 6 Niels Bohr Institute for Astronomy, Physics & Geophysics, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 7 Lund Observatory, Box 43, 221 00 Lund, Sweden Received 10 February 2004 / Accepted 28 May 2004 Abstract. We present a detailed chemical analysis of 22 stars along the colour–magnitude sequence of the intermediate-age (1.7 Gyr) open cluster IC 4651, based on high-resolution, high S/N ratio spectra from UVES/VLT. IC 4651 thus becomes one of the few open clusters for which a detailed composition analysis exists for stars spanning 3.5 mag, from solar-type main- sequence stars to giants above the RGB clump. In a strict comparison with the Sun, we find for the cluster a well-defined Fe abundance of [Fe/H] = 0.10 ± 0.03 (internal errors), with a reddening E(b − y) = 0.091. We also derive abundances for the α elements Mg, Si, Ti, and Ca and find a moderate enhancement of the three former elements, in excellent agreement with the results for field stars of similar Fe abundance.
    [Show full text]
  • Annual Report 2007 ESO
    ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2007 ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2007 presented to the Council by the Director General Prof. Tim de Zeeuw ESO is the pre-eminent intergovernmental science and technology organisation in the field of ground-based astronomy. It is supported by 13 countries: Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Further coun- tries have expressed interest in member- ship. Created in 1962, ESO provides state-of- the-art research facilities to European as- tronomers. In pursuit of this task, ESO’s activities cover a wide spectrum including the design and construction of world- class ground-based observational facili- ties for the member-state scientists, large telescope projects, design of inno- vative scientific instruments, developing new and advanced technologies, further- La Silla. ing European cooperation and carrying out European educational programmes. One of the most exciting features of the In 2007, about 1900 proposals were VLT is the possibility to use it as a giant made for the use of ESO telescopes and ESO operates the La Silla Paranal Ob- optical interferometer (VLT Interferometer more than 700 peer-reviewed papers servatory at several sites in the Atacama or VLTI). This is done by combining the based on data from ESO telescopes were Desert region of Chile. The first site is light from several of the telescopes, al- published. La Silla, a 2 400 m high mountain 600 km lowing astronomers to observe up to north of Santiago de Chile.
    [Show full text]
  • Incidence of Planet Candidates in Open Clusters and a Planet Confirmation
    A&A 620, A139 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833123 & © ESO 2018 Astrophysics Incidence of planet candidates in open clusters and a planet confirmation?,?? I. C. Leão1, B. L. Canto Martins1,2, S. Alves3, G. Pereira de Oliveira1, C. Cortés4,5, A. Brucalassi6, C. H. F. Melo7, D. B. de Freitas8, L. Pasquini6, and J. R. de Medeiros1 1 Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil e-mail: [email protected] 2 Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Universidade Federal do Recôncavo da Bahia, Centro de Ciências Exatas e Tecnológicas, Av. Rui Barbosa, 710, Cruz das Almas, BA, 44380-000, Brazil 4 Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de la Educación, Av. José Pedro Alessandri 774, 7760197 Nuñoa, Santiago, Chile 5 Millennium Institute of Astrophysics, Santiago, Chile 6 European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching bei München, Germany 7 ESO, Casilla 19001, Santiago 19, Chile 8 Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil Received 28 March 2018 / Accepted 7 July 2018 ABSTRACT Context. Detecting exoplanets in clusters of different ages is a powerful tool for understanding a number of open questions, such as how the occurrence rate of planets depends on stellar metallicity, on mass, or on stellar environment. Aims. We present the first results of our HARPS long-term radial velocity (RV) survey which aims to discover exoplanets around intermediate-mass (between 2 and 6 M ) evolved stars in open clusters.
    [Show full text]