Perfect Numbers Today Are Defined in Terms of the Restricted Divisor Function, S(N), Which Is Inherently Defined by the Divisor Function, Σ(N)

Total Page:16

File Type:pdf, Size:1020Kb

Perfect Numbers Today Are Defined in Terms of the Restricted Divisor Function, S(N), Which Is Inherently Defined by the Divisor Function, Σ(N) Is there an odd one, and are there are infinitely many? M. Alex W.-Higgins & Jin Cho Fullerton College Mentor and editor: Dr. Dana Clahane Definition of a Perfect Number A positive integer such that the sum of its proper divisors (divisors not including the integer itself) equals the integer. For example: Let us consider whether 6 is a perfect number Its proper divisors are 1, 2, and 3 (excluding 6), and 1+2+3=6 The sum of the divisors equal the integer, thus 6 is a perfect number (the smallest, in fact)! Perfect numbers today are defined in terms of the restricted divisor function, s(n), which is inherently defined by the divisor function, σ(n). For a perfect number n, note that by definition, n=s(n) In terms of the divisor function we find: n=s(n)=σ(n)-n or, equivocally σ(n)=2n For example: Let n=6. Note that : σ(6)=1+2+3+6=12=2n Thus (we have proved once again that) 6 is a perfect number! This form is useful for defining perfect numbers, and is used for demonstrating perfect numbers’ relationship to Mersenne primes Perfect numbers were thought to have significance in ancient societies, particularly Greece Pythagoras and his followers thought they had mystical properties Later, perfect numbers were investigated thoroughly by Euclid Specifically examined in detail around 300 BCE in Euclid’s Elements Euclid discovered that multiplying, for each prime p, the quantities 2p and 2p – 1, the second of which he notes is always prime when p is prime, yields a perfect number, at least for the first few primes. Euclid discovered the first four perfect numbers this way and generated the following function: 2p−1(2p − 1) is a perfect number for some p > 1 and if (2p − 1) is prime for p = 2: 21(22 − 1) = 6 for p = 3: 22(23 − 1) = 28 for p = 5: 24(25 − 1) = 496 for p = 7: 26(27 − 1) = 8128 Note: the form 2p − 1 relates to the Mersenne primes Around 100 CE Nicomachus of Gerasa claimed that the following statements regarding perfect numbers in his work Introductio Arethmetica, hold: I. The nth perfect number always has n digits** II. All perfect numbers are even III. All perfect numbers alternate 6 and 8 as their final digit** IV. 2p−1(2p − 1) is perfect for p is prime and 2p − 1 is prime (Euclid) V. There are infinitely many perfect numbers ** Indicates that the given statement has since then been disproved Hudalrichus Regius determined the fifth perfect number in 1536 (33550336), thus disproving Nicomachus’ first point, since this number has 8 digits, not 5. In 1603 Pietro Cataldi determined the sixth perfect number (8589869056), invalidating Nicomachus’ third claim of alternating final digits Later, in the seventeenth century, Descartes speculated the possibility of odd perfect numbers and believed that Euclid’s formula yields all possible even perfect numbers The is a close relationship between perfect numbers and Mersenne primes (it has neither been proven nor disproven that there infinitely many of these). Mersenne primes take the following form: M = 2n − 1 where M and n are both prime (otherwise M is simply called a Mersenne number) It was discovered that each Mersenne prime corresponds to exactly one perfect number, but not necessarily vice-versa There are thought to be infinitely many Mersenne primes, the first five being: 3, 7, 31, 127, 8191 The first 39 even perfect numbers, given by the form 2p−1(2p − 1), where p can be any of the following primes: p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 By 1911 mathematicians had determined the first 10 perfect numbers by hand Today there are 46 known perfect numbers, the latest and largest being discovered in 2008 There remain no known odd perfect numbers, nor is it know if one such number exists! Are there infinitely many even perfect numbers? Can we determine a more effective method of determining primes, and in turn, perfect numbers? Are there any odd perfect numbers? (oldest unanswered mathematics question in existence today) What is the relationship between perfect numbers and Mersenne primes, and how can this relationship be used to locate larger perfect numbers? 1. Greathouse, Charles and Weisstein, Eric W. “Odd Perfect Number.” From MathWolrd—A Wolfram Web Resource http://mathworld.wolfram.com/OddPerfectNumber.html 2. O’Conner, J.J. and Robertson, E.F. “Perfect Numbers.” University of St. Andrews. www.history.mcs.st- andrews.ac.uk/HistTopics/Perfect_numbers.html 3. Weisstein, Eric W. “Mersenne Prime.” From MathWolrd—A Wolfram Web Resource http://mathworld.wolfram.com/MersennePrime.html 4. Weisstein, Eric W. “Perfect Number.” From MathWolrd—A Wolfram Web Resource http://mathworld.wolfram.com/PerfectNumber.html Picture Credits: http://www.squarecirclez.com/blog/wp-content/uploads/2010/12/euclid.jpg http://www.whoguides.com/wp-content/uploads/2009/10/Pythagoras.jpg http://bhlspectrum.wikispaces.com/file/view/descartes_003.jpg/33543801/descartes_003.jpg .
Recommended publications
  • Prime Divisors in the Rationality Condition for Odd Perfect Numbers
    Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied.
    [Show full text]
  • MORE-ON-SEMIPRIMES.Pdf
    MORE ON FACTORING SEMI-PRIMES In the last few years I have spent some time examining prime numbers and their properties. Among some of my new results are the a Prime Number Function F(N) and the concept of Number Fraction f(N). We can define these quantities as – (N ) N 1 f (N 2 ) 1 f (N ) and F(N ) N Nf (N 3 ) Here (N) is the divisor function of number theory. The interesting property of these functions is that when N is a prime then f(N)=0 and F(N)=1. For composite numbers f(N) is a positive fraction and F(N) will be less than one. One of the problems of major practical interest in number theory is how to rapidly factor large semi-primes N=pq, where p and q are prime numbers. This interest stems from the fact that encoded messages using public keys are vulnerable to decoding by adversaries if they can factor large semi-primes when they have a digit length of the order of 100. We want here to show how one might attempt to factor such large primes by a brute force approach using the above f(N) function. Our starting point is to consider a large semi-prime given by- N=pq with p<sqrt(N)<q By the basic definition of f(N) we get- p q p2 N f (N ) f ( pq) N pN This may be written as a quadratic in p which reads- p2 pNf (N ) N 0 It has the solution- p K K 2 N , with p N Here K=Nf(N)/2={(N)-N-1}/2.
    [Show full text]
  • On Arithmetic Functions of Balancing and Lucas-Balancing Numbers 1
    MATHEMATICAL COMMUNICATIONS 77 Math. Commun. 24(2019), 77–81 On arithmetic functions of balancing and Lucas-balancing numbers Utkal Keshari Dutta and Prasanta Kumar Ray∗ Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla 768 019, Sambalpur, Odisha, India Received January 12, 2018; accepted June 21, 2018 Abstract. For any integers n ≥ 1 and k ≥ 0, let φ(n) and σk(n) denote the Euler phi function and the sum of the k-th powers of the divisors of n, respectively. In this article, the solutions to some Diophantine equations about these functions of balancing and Lucas- balancing numbers are discussed. AMS subject classifications: 11B37, 11B39, 11B83 Key words: Euler phi function, divisor function, balancing numbers, Lucas-balancing numbers 1. Introduction A balancing number n and a balancer r are the solutions to a simple Diophantine equation 1+2+ + (n 1)=(n +1)+(n +2)+ + (n + r) [1]. The sequence ··· − ··· of balancing numbers Bn satisfies the recurrence relation Bn = 6Bn Bn− , { } +1 − 1 n 1 with initials (B ,B ) = (0, 1). The companion of Bn is the sequence of ≥ 0 1 { } Lucas-balancing numbers Cn that satisfies the same recurrence relation as that { } of balancing numbers but with different initials (C0, C1) = (1, 3) [4]. Further, the closed forms known as Binet formulas for both of these sequences are given by n n n n λ1 λ2 λ1 + λ2 Bn = − , Cn = , λ λ 2 1 − 2 2 where λ1 =3+2√2 and λ2 =3 2√2 are the roots of the equation x 6x +1=0. Some more recent developments− of balancing and Lucas-balancing numbers− can be seen in [2, 3, 6, 8].
    [Show full text]
  • Newsletter 115, 2017
    Cumann Oid´ıMatamaitice na hEireann´ N e w s l e t t e r Irish Mathematics Teachers' Association 2017 Number 115 Maths Development Team Important update From September 1st 2017, the Maths Development Team(MDT) will form part of the Professional Development Service for Teachers. We will continue to provide professional development to post-primary teachers of Mathematics through the following supports: ◦ The effective use of Lesson Study: All new participants are asked to sign up at (https://goo.gl/forms/GJRS7GLuHdehVZqz1) for one of our three-day Induction Programmes, which will be held in Dublin, Carrick-on-Shannon and Limerick on September 27th , 28th and 29th , 2017. Closing date for receipt of applications: Monday 11th September 2017. ◦ A series of six Lesson Study meetings to be held from October 2017 to February 2018. These meetings will be conducted in over 50 locations nationally. Contact Administrator Gráinne Haughney: email [email protected] Phone: 01- 8576422 for venues. ◦ Ongoing participation in Lesson Study for all mathematics teachers. ◦ On-line support and resources available at www.projectmaths.ie ◦ Half-day school visits to support the on-going professional development of teachers. The primary focus will be on teaching and learning using reflective approaches with particular emphasis on: i. Algebra through the Lens of Functions, ii. Geometry through the Lens of Enquiry, iii. School-identified needs. Please note that substitution will not be provided for teachers availing of these school visits. If you wish to apply for a member of the team to visit your Mathematics Department during the 2017-2018 school year, please contact [email protected] or [email protected] for an application form.
    [Show full text]
  • MASON V(Irtual) Mid-Atlantic Seminar on Numbers March 27–28, 2021
    MASON V(irtual) Mid-Atlantic Seminar On Numbers March 27{28, 2021 Abstracts Amod Agashe, Florida State University A generalization of Kronecker's first limit formula with application to zeta functions of number fields The classical Kronecker's first limit formula gives the polar and constant term in the Laurent expansion of a certain two variable Eisenstein series, which in turn gives the polar and constant term in the Laurent expansion of the zeta function of a quadratic imaginary field. We will recall this formula and give its generalization to more general Eisenstein series and to zeta functions of arbitrary number fields. Max Alekseyev, George Washington University Enumeration of Payphone Permutations People's desire for privacy drives many aspects of their social behavior. One such aspect can be seen at rows of payphones, where people often pick an available payphone most distant from already occupied ones.Assuming that there are n payphones in a row and that n people pick payphones one after another as privately as possible, the resulting assignment of people to payphones defines a permutation, which we will refer to as a payphone permutation. It can be easily seen that not every permutation can be obtained this way. In the present study, we consider different variations of payphone permutations and enumerate them. Kisan Bhoi, Sambalpur University Narayana numbers as sum of two repdigits Repdigits are natural numbers formed by the repetition of a single digit. Diophantine equations involving repdigits and the terms of linear recurrence sequences have been well studied in literature. In this talk we consider Narayana's cows sequence which is a third order liner recurrence sequence originated from a herd of cows and calves problem.
    [Show full text]
  • Arxiv:2008.10398V1 [Math.NT] 24 Aug 2020 Children He Has
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0894-0347(XX)0000-0 RECURSIVELY ABUNDANT AND RECURSIVELY PERFECT NUMBERS THOMAS FINK London Institute for Mathematical Sciences, 35a South St, London W1K 2XF, UK Centre National de la Recherche Scientifique, Paris, France The divisor function σ(n) sums the divisors of n. We call n abundant when σ(n) − n > n and perfect when σ(n) − n = n. I recently introduced the recursive divisor function a(n), the recursive analog of the divisor function. It measures the extent to which a number is highly divisible into parts, such that the parts are highly divisible into subparts, so on. Just as the divisor function motivates the abundant and perfect numbers, the recursive divisor function motivates their recursive analogs, which I introduce here. A number is recursively abundant, or ample, if a(n) > n and recursively perfect, or pristine, if a(n) = n. There are striking parallels between abundant and perfect numbers and their recursive counterparts. The product of two ample numbers is ample, and ample numbers are either abundant or odd perfect numbers. Odd ample numbers exist but are rare, and I conjecture that there are such numbers not divisible by the first k primes|which is known to be true for the abundant numbers. There are infinitely many pristine numbers, but that they cannot be odd, apart from 1. Pristine numbers are the product of a power of two and odd prime solutions to certain Diophantine equations, reminiscent of how perfect numbers are the product of a power of two and a Mersenne prime.
    [Show full text]
  • Some Problems of Erdős on the Sum-Of-Divisors Function
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, SERIES B Volume 3, Pages 1–26 (April 5, 2016) http://dx.doi.org/10.1090/btran/10 SOME PROBLEMS OF ERDOS˝ ON THE SUM-OF-DIVISORS FUNCTION PAUL POLLACK AND CARL POMERANCE For Richard Guy on his 99th birthday. May his sequence be unbounded. Abstract. Let σ(n) denote the sum of all of the positive divisors of n,and let s(n)=σ(n) − n denote the sum of the proper divisors of n. The functions σ(·)ands(·) were favorite subjects of investigation by the late Paul Erd˝os. Here we revisit three themes from Erd˝os’s work on these functions. First, we improve the upper and lower bounds for the counting function of numbers n with n deficient but s(n) abundant, or vice versa. Second, we describe a heuristic argument suggesting the precise asymptotic density of n not in the range of the function s(·); these are the so-called nonaliquot numbers. Finally, we prove new results on the distribution of friendly k-sets, where a friendly σ(n) k-set is a collection of k distinct integers which share the same value of n . 1. Introduction Let σ(n) be the sum of the natural number divisors of n,sothatσ(n)= d|n d. Let s(n) be the sum of only the proper divisors of n,sothats(n)=σ(n) − n. Interest in these functions dates back to the ancient Greeks, who classified numbers as deficient, perfect,orabundant according to whether s(n) <n, s(n)=n,or s(n) >n, respectively.
    [Show full text]
  • EQUIDISTRIBUTION ESTIMATES for the K-FOLD DIVISOR FUNCTION to LARGE MODULI
    EQUIDISTRIBUTION ESTIMATES FOR THE k-FOLD DIVISOR FUNCTION TO LARGE MODULI DAVID T. NGUYEN Abstract. For each positive integer k, let τk(n) denote the k-fold divisor function, the coefficient −s k of n in the Dirichlet series for ζ(s) . For instance τ2(n) is the usual divisor function τ(n). The distribution of τk(n) in arithmetic progression is closely related to distribution of the primes. Aside from the trivial case k = 1 their distributions are only fairly well understood for k = 2 (Selberg, Linnik, Hooley) and k = 3 (Friedlander and Iwaniec; Heath-Brown; Fouvry, Kowalski, and Michel). In this note I'll survey and present some new distribution estimates for τk(n) in arithmetic progression to special moduli applicable for any k ≥ 4. This work is a refinement of the recent result of F. Wei, B. Xue, and Y. Zhang in 2016, in particular, leads to some effective estimates with power saving error terms. 1. Introduction and survey of known results Let n ≥ 1 and k ≥ 1 be integers. Let τk(n) denote the k-fold divisor function X τk(n) = 1; n1n2···nk=n where the sum runs over ordered k-tuples (n1; n2; : : : ; nk) of positive integers for which n1n2 ··· nk = −s n. Thus τk(n) is the coefficient of n in the Dirichlet series 1 k X −s ζ(s) = τk(n)n : n=1 This note is concerned with the distribution of τk(n) in arithmetic progressions to moduli d that exceed the square-root of length of the sum, in particular, provides a sharpening of the result in [53].
    [Show full text]
  • A Dedekind Psi Function Inequality N
    A Dedekind Psi Function Inequality N. A. Carella, December, 2011. Abstract: This note shows that the arithmetic function !(N) / N = ! p | N (1+1/ p) , called the Dedekind psi v1 v2 vk function, achieves its extreme values on the subset of primorial integers N = 2 ⋅3 pk , where pi is the kth −2 γ prime, and vi ≥ 1. In particular, the inequality ψ (N)/ N > 6π e loglog N holds for all large squarefree primorial integers N = 2⋅3⋅5⋅⋅⋅pk unconditionally. Mathematics Subject Classifications: 11A25, 11A41, 11Y35. Keywords: Psi function, Divisor function, Totient function, Squarefree Integers, Prime numbers, Riemann hypothesis. 1 Introduction The psi function !(N) = N! p | N (1+1/ p) and its normalized counterpart !(N) / N = ! p | N (1+1/ p) arise in various mathematic, and physic problems. Moreover, this function is entangled with other arithmetic functions. The values of the normalized psi function coincide with the squarefree kernel µ 2 (d) ! (1) d|N d of the sum of divisor function ! (N) = !d | N d . In particular, !(N) / N = ! p | N (1+1/ p) = " (N) / N on the subset of square-free integers. This note proposes a new lower estimate of the Dedekind function. 2 Theorem 1. Let N ∈ ℕ be an integer, then ψ (N)/ N > 6π − eγ loglog N holds unconditionally for all sufficiently large primorial integer N = 2⋅3⋅5⋅⋅⋅pk, where pk is the kth prime. An intuitive and clear-cut relationship between the Riemann hypothesis and the Dedekind psi function is established in Theorem 4 by means of the prime number theorem.
    [Show full text]
  • Exact Formulas for the Generalized Sum-Of-Divisors Functions)
    Exact Formulas for the Generalized Sum-of-Divisors Functions Maxie D. Schmidt School of Mathematics Georgia Institute of Technology Atlanta, GA 30332 USA [email protected] [email protected] Abstract We prove new exact formulas for the generalized sum-of-divisors functions, σα(x) := dα. The formulas for σ (x) when α C is fixed and x 1 involves a finite sum d x α ∈ ≥ over| all of the prime factors n x and terms involving the r-order harmonic number P ≤ sequences and the Ramanujan sums cd(x). The generalized harmonic number sequences correspond to the partial sums of the Riemann zeta function when r > 1 and are related to the generalized Bernoulli numbers when r 0 is integer-valued. ≤ A key part of our new expansions of the Lambert series generating functions for the generalized divisor functions is formed by taking logarithmic derivatives of the cyclotomic polynomials, Φ (q), which completely factorize the Lambert series terms (1 qn) 1 into n − − irreducible polynomials in q. We focus on the computational aspects of these exact ex- pressions, including their interplay with experimental mathematics, and comparisons of the new formulas for σα(n) and the summatory functions n x σα(n). ≤ 2010 Mathematics Subject Classification: Primary 30B50; SecondaryP 11N64, 11B83. Keywords: Divisor function; sum-of-divisors function; Lambert series; cyclotomic polynomial. Revised: April 23, 2019 arXiv:1705.03488v5 [math.NT] 19 Apr 2019 1 Introduction 1.1 Lambert series generating functions We begin our search for interesting formulas for the generalized sum-of-divisors functions, σα(n) for α C, by expanding the partial sums of the Lambert series which generate these functions in the∈ form of [5, 17.10] [13, 27.7] § § nαqn L (q) := = σ (m)qm, q < 1.
    [Show full text]
  • Robin Inequality for 7−Free Integers
    1 Robin inequality for 7−free integers Patrick Sole´ Michel Planat Abstract Recall that an integer is t−free iff it is not divisible by pt for some prime p. We give a method to check Robin γ inequality σ(n) <e n log log n, for t−free integers n and apply it for t =6, 7. We introduce Ψt, a generalization of Dedekind Ψ function defined for any integer t ≥ 2 by t−1 Ψt(n) := n (1+1/p + ··· +1/p ). Yp|n If n is t−free then the sum of divisor function σ(n) is ≤ Ψt(n). We characterize the champions for x 7→ Ψt(x)/x, Ψt(n) as primorial numbers. Define the ratio Rt(n) := n log log n . We prove that, for all t, there exists an integer n1(t), γ n such that we have Rt(Nn) <e for n ≥ n1, where Nn = k=1 pk. Further, by combinatorial arguments, this can γ be extended to Rt(N) ≤ e for all N ≥ Nn, such that n ≥Qn1(t). This yields Robin inequality for t =6, 7. For γ t varying slowly with N, we also derive Rt(N) <e . Keywords: Dedekind Ψ function, Robin inequality, Riemann Hypothesis, Primorial numbers I. INTRODUCTION The Riemann Hypothesis (RH), which describes the non trivial zeroes of Riemann ζ function has been deemed the Holy Grail of Mathematics by several authors [1], [7]. There exist many equivalent formulations in the literature [5]. The one of concern here is that of Robin [12], which is given in terms of σ(n) the sum of divisor function σ(n) < eγn log log n, for n ≥ 5041.
    [Show full text]
  • On Near 3−Perfect Numbers -.:: Natural Sciences Publishing
    Sohag J. Math. 4, No. 1, 1-5 (2017) 1 Sohag Journal of Mathematics An International Journal http://dx.doi.org/10.18576/sjm/040101 On Near 3−Perfect Numbers Bhabesh Das1,∗ and Helen K. Saikia2 1 Department of Mathematics, B.P.C.College, Assam, 781127, India 2 Department of Mathematics, Gauhati University, Assam, 781014, India Received: 10 Jan. 2016, Revised: 18 Sep. 2016, Accepted: 20 Sep. 2016 Published online: 1 Jan. 2017 Abstract: We call a positive integer n be a near 3−perfect number if σ(n) = 3n + d, where σ(n) is the divisor function and d is a α t proper divisor of n. In this paper, we have derived all near 3−perfects of the form 2 p1 p2, where p1 and p2 are distinct odd primes with p1 < p2 and α ≥ 1, 1 ≤ t ≤ 2. There are only ten such numbers. Moreover, we have also obtained some examples of even near 3−perfect numbers with four distinct prime factors. Keywords: Multi perfect number, Hyperperfect number, Near perfect number 1 Introduction The abudancy index I(n) for any positive integers n is associated with the divisor function σ(n) and is defined as σ(n) I(n)= n . Since k−perfect numbers are solutions of the Well known divisor function σ(n) is the sum of all positive equation σ(n)= kn, so I(n)= k. For abundant numbers, divisors of n including 1 and n itself. For any integer k > 1, I(n) > 2 and for deficient numbers, I(n) < 2. a positive integer n is called a k−perfect or multi perfect For any positive integer k > 1, we call a number n be number [3,7], if σ(n)= kn.
    [Show full text]