Chromaffin Cells: the Peripheral Brain

Total Page:16

File Type:pdf, Size:1020Kb

Chromaffin Cells: the Peripheral Brain Molecular Psychiatry (2012) 17, 354–358 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp PERSPECTIVE Chromaffin cells: the peripheral brain SR Bornstein1, M Ehrhart-Bornstein1, A Androutsellis-Theotokis1,2, G Eisenhofer1, V Vukicevic1, J Licinio3, ML Wong3, P Calissano2, G Nistico` 2, P Preziosi2,* and R Levi-Montalcini2 1Department of Medicine III, University of Dresden, Dresden, Germany; 2European Brain Research Institute Rome, Rome, Italy and 3John-Curtin-Medical-School Canberra, Canberra, Australia Chromaffin cells probably are the most intensively studied of the neural crest derivates. They are closely related to the nervous system, share with neurons some fundamental mechanisms and thus were the ideal model to study the basic mechanisms of neurobiology for many years. The lessons we have learned from chromaffin cell biology as a peripheral model for the brain and brain diseases pertain more than ever to the cutting edge research in neurobiology. Here, we highlight how studying this cell model can help unravel the basic mechanisms of cell renewal and regeneration both in the central nervous system (CNS) and neuroendocrine tissue and also can help in designing new strategies for regenerative therapies of the CNS. Molecular Psychiatry (2012) 17, 354–358; doi:10.1038/mp.2011.176; published online 17 January 2012 Keywords: adrenal medulla; neurobiology; neuronal differentiation; stem cells Chromaffin cells form perhaps the most interesting of the brain. Chromaffin cells served as the model to cellular system in the human body. They are closely identify the basic concept of neurochemical transmis- related to sympathetic neurons and are one of the sion. The first secretory organelles were isolated from most intensively studied of the neural crest derivates. chromaffin cells, and chromaffin vesicles served as As an evolutionary hybrid of both the endocrine and the model neurotransmitter-containing vesicle. Many nervous system they have served as a model to of the major vesicle-associated proteins involved explore the basic mechanisms of neurophysiology, in the process of exocytosis were characterized in regulated secretion and pharmacology. Thus, adrenal chromaffin vesicles.1–5 chromaffin cells can be considered as the peripheral Sharing the same ectodermic (neural crest) origin, brain as they share with neurons some fundamental chromaffin cells are part of the so called Erspamer’s mechanisms: (1) Receive inputs of electrical and triangle (skin, gut and brain), which possess the chemical nature; (2) are able to decode and recognize same neurotransmitters, neuropeptides, transduction these signals; (3) possess the machinery to generate mechanisms.6 Much of today’s understanding of the and elaborate pattern of responses such as the release physiology and pathophysiology of neuropeptide and of catecholamines and other messengers. In conclu- monoamine neurotransmitter systems is owed to sion, the chromaffin cells, such as a neuron can be studies utilizing chromaffin cell model systems. The viewed as a secretory cell that releases its secretion at rat pheochromocytoma (PC12) cell line developed by large distance from cell body where macromolecules Greene and Tischler7 over 35 years ago remains one are synthesized, provide for rapid communication of the most well studied and to this day continues between widely separated parts of the body. In to provide a powerful model for the understanding of addition, the adrenal medulla with its chromaffin neuronal systems. This cell line and other chromaffin cells serves through the release of catecholamines for model systems have been particularly useful for communication with all the most important organs studies of exocytotic mechanisms, including the such as the heart, vascular apparatus, lungs, kidney operation of ion channels, vesicular dynamics and and also the brain. stimulus-secretion coupling. Associated methodolo- More importantly, chromaffin cells located in the gical advances in electrophysiology, from develop- center of an easily accessible peripheral organ have ment of the patch clamp to more sophisticated served for many years as a window into the functions techniques combining electrophysiological and elec- trochemical methods (for example, patch ampero- Correspondence: Dr SR Bornstein, Department of Medicine, metry) have been largely facilitated by the availability University of Dresden, Universita¨tsklinikum Carl Gustav of such model systems. Carus an der TU Dresden, Fetscherstrae 74, Dresden 01307, In cat’s adrenal gland perfused in situ it was clearly Germany. demonstrated by using different receptorial stimuli E-mail: [email protected] *Emeritus Professor Catholic University, Rome, Italy. (acetylcholine, nicotine, dimethylphenylpiperazi- Received 1 November 2011; accepted 2 November 2011; mium and so on) that chromaffin cells posses two published online 17 January 2012 distinct neurosecretory granules (the noradrenergic Chromaffin cells biology SR Bornstein et al 355 and the adrenergic ones), thus ruling out the idea nitric-oxide system of the brain. Thus, the basic that the noradrenergic ones were the precursor mechanisms of the nitric-oxide regulation both for cells in which phenylethanolamine-N-methyl- neurons and endocrine cells have been identified transferase functions to turn them into adrenergic in chromaffin cells.22 Similarly, the pituitary and chromaffin cells. In addition, also at the brain level the adrenal medulla contain the highest amount of D-amphetamine particularly increase the release of vitamin C in the human body, and mechanisms of the noradrenaline.8,9 of role vitamin C uptake and regulation of neurotrans- In addition to improving understanding of neural mitters were identified in chromaffin cells.23 development processes, chromaffin cell systems The broad role of nerve growth factor (NGF) in the have been extremely important for studies of neuro- living organism was first discovered in the adrenal degenerative processes, tumorigenesis and drug medulla.24 Indeed, Unsicker et al.25 at that time at the development. Johns Hopkins University found that immature Furthermore, due to the close relation of chromaffin chromaffin cells obtained from the adrenal medulla cells to catecholaminergic neurons they have even cultured in the presence of NGF acquire the biochem- been used for the treatment of neurodegenerative ical and morphological properties of sympathetic brain disorders such as Parkinson’s disease.10 neurons. Between 1988 and 2001, > 300 Parkinsonian patients Furthermore, experiments carried out in the CNR were treated by autologous adrenal transplants with (Italian Council for Research) laboratory of cell some improvement of the clinical symptoms. How- biology in Rome by Aloe and Levi-Montalcini26 ever, the survival rates of grafted adult chromaffin demonstrated in vivo that application of NGF into cells were only short-term and clinical improvements the rat fetus and continued for 3 weeks after birth disappeared 1–2 years after transplantation.11,12 A induced the differentiation of chromaffin cells into serious limitation in the application of adult adrenal sympathetic neurones within the adrenal gland. This medulla probably was the post-mitotic nature of most clearly established that NGF had a much wider role in cells transplanted. the living organisms than had been supposed so far. At the same time, endocrinologists have explored The central medulla markedly increased in volume the role of several central releasing hormones and as a result of the differentiation of adrenal cells into neuropeptides within the chromaffin cell systems.13 sympathetic neurons, which sprout a large number of Interestingly, the adrenal medulla in the periphery widely branching fibers. expresses a similar set of neuropeptides that occur in Given the outstanding role the chromaffin cell the brain involved in stress regulation, energy homeo- system has had in the past, it would be a mistake stasis, anxiety and pain.14,15 The concept of ectopic not to use the system for the current issues of brain hormone production was among others described and research. refined in these cells. This includes the expression of We have entered a new era of regenerative medicine corticotropin-releasing hormone, adrenocorticotro- also for neurodegenerative diseases of the brain. pin, pro-opiomelanocortin and other neuropeptides Chromaffin cells could again take the lead to explore in the adrenal medulla. The intense crosstalk of some of the mechanisms of regeneration that pertain endocrine cells, the paracrine and neurocrine path- in a similar way to the more complex central nervous ways of endocrine communication, were established system (CNS) disorders. Chromaffin cell lines are now particularly in the adrenal gland.16 Here, again the being used to explore the role of NGF in Alzheimer’s complex but accessible microenvironment of the disease. Indeed, proteins from chromaffin granules adrenal mimics the microenvironment of the brain promote survival of neurons,27 which may be due to with respect to the crosstalk of neuronal structures a number of known or yet unknown neurotrophin with different endocrine cell types.17 Furthermore, factors. Thus, NGF deprivation from differentiated the action of steroids and neurosteroids occurring PC12 cells caused overproduction of amyloid-b pep- in the brain has been widely studied in chromaffin tides, which are the most toxic protein fragments cell systems.18,19 The strict interaction between
Recommended publications
  • Expression Pattern of Delta-Like 1 Homolog in Developing Sympathetic Neurons and Chromaffin Cells
    Published in "Gene Expression Patterns 30: 49–54, 2018" which should be cited to refer to this work. Expression pattern of delta-like 1 homolog in developing sympathetic neurons and chromaffin cells ∗ Tehani El Faitwria,b, Katrin Hubera,c, a Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany b Department of Histology and Anatomy, Faculty of Medicine, Benghazi University, Benghazi, Libya c Department of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland ABSTRACT Keywords: Delta-like 1 homolog (DLK1) is a member of the epidermal growth factor (EGF)-like family and an atypical notch Sympathetic neurons ligand that is widely expressed during early mammalian development with putative functions in the regulation Chromaffin cells of cell differentiation and proliferation. During later stages of development, DLK1 is downregulated and becomes DLK1 increasingly restricted to specific cell types, including several types of endocrine cells. DLK1 has been linked to Adrenal gland various tumors and associated with tumor stem cell features. Sympathoadrenal precursors are neural crest de- Organ of Zuckerkandl rived cells that give rise to either sympathetic neurons of the autonomic nervous system or the endocrine Development ffi Neural crest chroma n cells located in the adrenal medulla or extraadrenal positions. As these cells are the putative cellular Phox2B origin of neuroblastoma, one of the most common malignant tumors in early childhood, their molecular char- acterization is of high clinical importance. In this study we have examined the precise spatiotemporal expression of DLK1 in developing sympathoadrenal cells. We show that DLK1 mRNA is highly expressed in early sympa- thetic neuron progenitors and that its expression depends on the presence of Phox2B.
    [Show full text]
  • Novel Autocrine Feedback Control of Catecholamine Release a Discrete Chromogranin a Fragment Is a Noncompetitive Nicotinic Cholinergic Antagonist Sushil K
    Novel Autocrine Feedback Control of Catecholamine Release A Discrete Chromogranin A Fragment is a Noncompetitive Nicotinic Cholinergic Antagonist Sushil K. Mahata,* Daniel T. O’Connor,* Manjula Mahata,* Seung Hyun Yoo,‡ Laurent Taupenot,* Hongjiang Wu,* Bruce M. Gill,* and Robert J. Parmer* *Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093 and Department of Veterans Affairs Medical Center, San Diego, California 92161, and ‡National Institute of Deafness and Communicative Disorders, National Institutes of Health, Bethesda, Maryland 20892 Abstract completely established, recent evidence implicates chromogra- nin A as a precursor of several small biologically active secre- Catecholamine secretory vesicle core proteins (chromog- tion-inhibitory peptides that may play an autocrine regulatory ranins) contain an activity that inhibits catecholamine re- role in neuroendocrine secretion from a variety of cell types (3, lease, but the identity of the responsible peptide has been 7–10). The primary structure of chromogranin A reveals 8–10 elusive. Size-fractionated chromogranins antagonized nico- conserved pairs of basic amino acids that represent potential tinic cholinergic-stimulated catecholamine secretion; the in- proteolytic cleavage sites for the generation of such peptides hibitor was enriched in processed chromogranin fragments, (11–17), and chromogranin A is a substrate for the prohor- and was liberated from purified chromogranin A. Of 15 syn- mone convertases (18–20). of chromogranin A, one To date, several chromogranin A–derived peptides have %80 ف thetic peptides spanning (bovine chromogranin A344–364 [RSMRLSFRARGYGFRG- been identified that affect the secretory function of the parent PGLQL], or catestatin) was a potent, dose-dependent (IC50 cells.
    [Show full text]
  • Outgrowth and Protein Synthesis by Pc12 Cells As a Function of Substratum and Nerve Growth Factor’
    0270~6474/82/0208-1157$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 2, No. 8, pp. 1157-1175 Printed in U.S.A. August 1982 NEURITE OUTGROWTH AND PROTEIN SYNTHESIS BY PC12 CELLS AS A FUNCTION OF SUBSTRATUM AND NERVE GROWTH FACTOR’ DENNIS K. FUJII, SHARON L. MASSOGLIA, NAPHTALI SAVION, AND DENIS GOSPODAROWICZ’ Cancer Research Institute and the Departments of Medicine and Ophthalmology, University of California Medical Center, San Francisco, California 94143 Received November 16, 1981; Revised March 11, 1982; Accepted March 26, 1982 Abstract Numerous studies have implied that enhanced cell-substratum adhesion plays a role in neurite outgrowth by neuronal cells. Using an extracellular matrix (ECM) produced by cultured corneal endothelial cells, we have investigated attachment and de novo neurite outgrowth by the pheochro- mocytoma cell line, PC12. PC12 cells were found to attach more rapidly and efficiently to the ECM than to plastic or collagen-coated surfaces. An extensive but temporary (5 to lo-day) neurite outgrowth occurred in the absence of nerve growth factor (NGF) when cells were on the ECM. However, long term neurite survival and further elongation required NGF. Our findings are consistent with the hypothesis that protein(s) in the ECM has an important role in neurite outgrowth. Thus, NGF may not so much initiate neurite outgrowth as it stabilizes neurites. ECM and NGF also were found to modulate cellular protein synthesis by PC12 cells. On ECM, a decreased synthesis of many high molecular weight proteins (ikfr > 85,000) was observed in comparison to that of cells on collagen-coated dishes.
    [Show full text]
  • A Novel Method of Neural Differentiation of PC12 Cells by Using Opti-MEM As a Basic Induction Medium
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 195-201, 2018 A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium RENDONG HU1*, QIAOYU CAO2*, ZHONGQING SUN3, JINYING CHEN4, QING ZHENG2 and FEI XIAO1 1Department of Pharmacology, School of Medicine, Jinan University; 2College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632; 3Department of Anesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, SAR; 4Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China Received April 5, 2017; Accepted October 11, 2017 DOI: 10.3892/ijmm.2017.3195 Abstract. The PC12 cell line is a classical neuronal cell model Introduction due to its ability to acquire the sympathetic neurons features when deal with nerve growth factor (NGF). In the present study, The PC12 cell line is traceable to a pheochromocytoma from the authors used a variety of different methods to induce PC12 the rat adrenal medulla (1-4). When exposed to nerve growth cells, such as Opti-MEM medium containing different concen- factor (NGF), PC12 cells present an observable change in trations of fetal bovine serum (FBS) and horse serum compared sympathetic neuron phenotype and properties. Neural differ- with RPMI-1640 medium, and then observed the neurite length, entiation of PC12 has been widely used as a neuron cell model differentiation, adhesion, cell proliferation and action poten- in neuroscience, such as in the nerve injury-induced neuro- tial, as well as the protein levels of axonal growth-associated pathic pain model (5) and nitric oxide-induced neurotoxicity protein 43 (GAP-43) and synaptic protein synapsin-1, among model (6).
    [Show full text]
  • Regulation of Ionic Currents in Pheochromocytoma Cells by Nerve Growth Factor and Dexamethasone
    The Journal of Neuroscience, November 1989, 9(11): 3978-3987 Regulation of Ionic Currents in Pheochromocytoma Cells by Nerve Growth Factor and Dexamethasone Sarah S. Garber, Toshinori Hoshi, and Richard W. Aldrich Department of Neurobiology, Stanford University, Stanford, California 94305 Growth factors and hormones induce differentiation of clonal panied by changesin electrical properties (seeSpitzer, 1985, for pheochromocytoma (PC1 2) cells, which are derived from rat review). Many lines of evidence suggestthat the presenceof adrenal medulla chromaffin cells. On application of nerve nerve growth factor (NGF) and glucocorticoids are important growth factor (NGF), PC1 2 cells extend neurites and express to the differentiation of postnatal adrenal medullary cells.Clonal properties characteristic of autonomic ganglion cells. In con- PC12 cells, derived from rat adrenal chromaffin cells, have been trast, incubation of PC12 cells with a corticosteroid, dexa- usedas a model systemfor the study of neuronal differentiation. methasone (DEX), does not induce neurite formation but Rat adrenal chromaffin cellsand rat pheochromocytomasshow causes an increase in tyrosine hydroxylase activity, sug- similar changesin processoutgrowth, catecholaminecontent, gesting that the cells become chromaffin cell-like. The ability and tyrosine hydroxylase activity when treated with NGF or of NGF and DEX to regulate ionic currents has been less glucocorticoids (Tishler et al., 1982b, 1983). well studied. Therefore, we examined how long-term NGF PC 12cells are normally sphericalin shapeand do not generate and DEX treatments affected voltage-dependent Na, Ca, and action potentials. In the presenceof NGF, however, the cells K currents in PC12 cells. Voltage-dependent Na currents develop long, branching processes.This morphological differ- were observed only in a small fraction of the PC12 cells in entiation is accompaniedby increasedsynthesis and storageof the absence of NGF or DEX.
    [Show full text]
  • Extra-Adrenal Chromaffin Cells of the Zuckerkandl´S Paraganglion: Morphological and Electrophysiological Study
    275 Extra-adrenal chromaffin cells of the Zuckerkandl´s paraganglion: morphological and electrophysiological study. Beatriz Galán-Rodríguez, M. Pilar Ramírez-Ponce, Fadwa El Banoua, Juan A. Flores, Juan Bellido and Emilio Fernández-Espejo. Departamento de Fisiología Médica y Biofísica. Universidad de Sevilla. Spain. Correspondence: Dra. Beatriz Galán Rodríguez or Dr. Emilio Fernández-Espejo, Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009. Sevilla. Spain. Phone: 34-954-556584; Fax: 34-954-551769; Email: [email protected] ; [email protected] Cell Biology of the Chromaffin Cell R. Borges & L. Gandía Eds. Instituto Teófilo Hernando, Spain, 2004 Cell Biology of the Chromaffin Cell 276 Parkinson´s disease is one of the most important neurodegenerative disorders that affects to one out of a hundred of the world population elder than 65. It has been observed in our laboratory, for the first time, that intrabrain transplantation of chromaffin cell aggregates from the Zuckerkandl´s organ, an extraadrenal paraganglion located adjacent to the lower abdominal aorta, induced gradual improvement of functional deficits in animal models of Parkinson´s disease1. This functional regeneration was likely caused by long-survival of grafted cells and chronic trophic action of dopaminotrophic factors, glial cell line-derived 2,3 4,5 factor (GDNF) and transforming growth factor beta1 (TGF-b1) , which are expressed and delivered by long-surviving grafted chromaffin cells. The objective of this study is to discern the morphological and cytological characteristics of extra-adrenal cells of the Zuckerkandl’s organ. On the other hand, long survival of extra-adrenal chromaffin cells could be related to resistance to hypoxia, since it is certainly know that hypoxia is a primary factor involved in cell death after intrabrain grafting.
    [Show full text]
  • Neurons Derived from PC12 Cells Have the Potential to Develop Synapses with Primary Neurons from Rat Cortex
    Acta Neurobiol Exp 2006, 66: 105-112 Neurons derived from PC12 cells have the potential to develop synapses with primary neurons from rat cortex Tao Zhou1,2, Bainan Xu2, Haiping Que1, Qiuxia Lin1, Shuanghong Lv1, and Shaojun Liu1 1Department of Neurobiology, Institute of Basic Medical Sciences, The Academy of Military Medical Sciences, Beijing, 100850, P. R. China; 2Department of Neurosurgery, General Hospital of PLA, Beijing, 100853, P. R. China Abstract. Neuron transplantation is considered to be a promising therapeutic method to replace functions lost due to central nervous system (CNS) damage. However, little is known about the extent to which implanted neuron-like cells can develop into mature neurons and acquire essential properties, and especially formation of synapses with host neurons. In this investigation we seeded PC12 cells labeled with GFP into primary cultured neurons isolated from rat cerebral cortex to build a co-culture system, and then induced the PC12 cells to differentiate into neuron-like cells with NGF. Seven days later, we observed the relationship between the PC12-derived neurons and primary neurons using FM1-43 imaging and immunoelectron microscopy, and found that GFP-labeled neurons could form typical synapses with host primary neurons. These observations showed that immigrant neurons differentiated from PC12 cells could develop into mature neurons and could form intercellular contacts with host neurons. Both the immigrant and host neurons could construct neuronal networks in vitro. The correspondence should be addressed to S. Liu, Key words: neural transplantation, co-culture, PC12 cells, synapse, laser Email: [email protected] scanning confocal microscopy, electron microscopy 106 T.
    [Show full text]
  • Establishment of a Noradrenergic Clonal Line of Rat Adrenal
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 7, pp. 2424-2428, July 1976 Cell Biology Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor (sympathetic neurons/cell culture/catecholamines/differentiation/neurites) LLOYD A. GREENE* AND ARTHUR S. TISCHLERt * Department of Neuropathology, Harvard Medical School, and Department of Neuroscience, Children's Hospital Medical Center, 300 Longwood Avenue, Boston, Massachusetts 02115; and t Department of Pathology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215 Communicated by Stephen W. Kuffler, April 19,1976 ABSTRACT A single cell clonal line which responds re- subjected to three cycles of washing (with phosphate-buffered versibly to nerve growth factor (NGF) has been established from 5 in order to free them a transplantable rat adrenal pheochromocytoma. This line, saline) and pelleting (500 X g for min) designated PC12, has a homogeneous and near-diploid chro- from cell debris, and were resuspended in growth medium and mosome number of 40. By 1 week's exposure to NGF, PC12 cells plated on plastic tissue culture dishes (Falcon Plastics). The cease to multiply and begin to extend branching varicose pro- following day, the lightly-adhering pheochromocytoma cells cesses similar to those produced by sympathetic neurons in were mechanically dislodged from the plates by forceful as- primary cell culture. By several weeks of exposure to NGF, the piration and expulsion of the medium with a pasteur pipette, PC12 processes reach 500-1000 gm in length. Removal of NGF is followed by degeneration of processes within 24 hr and by and replated on culture dishes which were coated with rat tail resumption of cell multiplication within 72 hr.
    [Show full text]
  • The Ras Suppressor, RSU-1, Enhances Nerve Growth Factor-Induced Differentiation of PC12 Cells and Induces P21cip Expression1
    Vol. 10, 555–564, August 1999 Cell Growth & Differentiation 555 The Ras Suppressor, RSU-1, Enhances Nerve Growth Factor-induced Differentiation of PC12 Cells and Induces p21CIP Expression1 L. Masuelli, S. Ettenberg, F. Vasaturo, Introduction 2 3 K. Vestergaard-Sykes, and M. L. Cutler Rsu-1, which was isolated based on its ability to suppress Department of Pathology, Uniformed Services University of the Health Ras transformation, encodes a Mr 33,000 protein that con- Sciences, Bethesda, Maryland 20814 [L. M., S. E., F. V., M. L. C.]; tains a series of leucine-rich amphipathic repeats homolo- Department of Experimental Medicine, First University of Rome, Rome 00161, Italy [L. M.]; and United States Department of Agriculture gous to the leucine repeats found in yeast adenylyl cyclase Laboratories, Beltsville, Maryland 20705 [K. V-S.] (1–3). These repeats are required for the activation of adeny- lyl cyclase by Ras in Saccharomyces cerevisiae (4, 5), and similar repeats are required for a Ras-induced differentiation Abstract pathway in Caenorhabditis elegans (3). Rsu-1 binds to Raf-1 The Rsu-1 Ras suppressor gene was isolated based on in in vitro binding assays, suggesting that Rsu-1 may stabi- its ability to inhibit v-Ras transformation. Using Rsu-1 lize Ras-Raf association and/or inhibit the association of Ras transfectants of the pheochromocytoma cell line PC12, with other effectors. Rsu-1 expression inhibited RasGAP we demonstrated previously that Rsu-1 expression activity, resulting in an increase in Ras-GTP, and inhibited the inhibited Jun kinase activation but enhanced Erk2 activation of Jun kinase by EGF4 (6).
    [Show full text]
  • Glutathione Is Involved in the Granular Storage of Dopamine in Rat PC12 Pheochromocytoma Cells: Implications for the Pathogenesis of Parkinson’S Disease
    The Journal of Neuroscience, October 1, 1996, 16(19):6038–6045 Glutathione Is Involved in the Granular Storage of Dopamine in Rat PC12 Pheochromocytoma Cells: Implications for the Pathogenesis of Parkinson’s Disease Benjamin Drukarch, Cornelis A. M. Jongenelen, Erik Schepens, Cornelis H. Langeveld, and Johannes C. Stoof Department of Neurology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, 1081 BT Amsterdam, The Netherlands Parkinson’s disease (PD) is characterized by degeneration of of DA stores with the tyrosine hydroxylase inhibitor a-methyl- dopamine (DA)-containing nigro-striatal neurons. Loss of the p-tyrosine. In the presence of a-methyl-p-tyrosine, refilling of antioxidant glutathione (GSH) has been implicated in the patho- the DA stores by exogenous DA reduced GSH content back to genesis of PD. Previously, we showed that the oxidant hydro- control level. Lowering of PC12 GSH content, via blockade of gen peroxide inhibits vesicular uptake of DA in nigro-striatal its synthesis with buthionine sulfoximine, however, led to a neurons. Hydrogen peroxide is scavenged by GSH and, there- significantly decreased accumulation of exogenous [3H]DA fore, we investigated a possible link between the process of without affecting uptake of the acetylcholine precursor vesicular storage of DA and GSH metabolism. For this purpose, [14C]choline. These data suggest that GSH is involved in the we used rat pheochromocytoma-derived PC12 cells, a model granular storage of DA in PC12 cells and that, considering the system applied extensively for studying monoamine storage molecular characteristics of the granular transport system, it is mechanisms. We show that depletion of endogenous DA stores likely that GSH is used to protect susceptible parts of this with reserpine was accompanied in PC12 cells by a long- system against (possibly DA-induced) oxidative damage.
    [Show full text]
  • Cell Proliferation
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 1771-1775, March 1994 Neurobiology Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation MORTEN FRODIN* AND STEEN GAMMELTOFT*t Department of Clinical Chemistry, Bispebjerg Hospital, DK 2400 Copenhagen NV, Denmark Communicated by Viktor Mutt, November 29, 1993 (receivedfor review August 26, 1993) ABSTRACT We have investigated the effects of insulin- addition, NGF and bFGF stimulate transdifferentiation of like growth factors (IGFs), basic fibroblast growth factor cultured chromaffin cells into a sympathetic neuron-like (bFGF), and nerve growth factor (NGF) on DNA synthesis in phenotype and increase cell survival and catecholamine cultured chromaffin cells from fetal, neonatal, and adult rats synthesis (8, 9, 13-15). In adult rats, chromaffmi-cell replace- by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for ment decreases after denervation of the adrenal medulla, 24 or 48 h and immunocytochemical staining of cell nuclei. suggesting that neurogenic stimuli can regulate chromaffmi- After 6 days in culture in the absence ofgrowth factors, nuclear cell proliferation (16). BrdUrd incorporation was detected in 30% offetal chromafFin Insulin-like growth factor I and II (IGF-I and IGF-II, cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition respectively) act as neurotrophic factors in various parts of of 10 nM IGF-I or IGF-ll increased the fraction of BrdUrd- the developing and adult nervous system (17). IGF-II mRNA labeled nuclei to 50% offetal, 20% ofneonatal, and 2% ofadult and immunoreactivity have been demonstrated in adult hu- chromaffn cells.
    [Show full text]
  • The Generation of Monoclonal Antibodies That Bind Preferentially to Adrenal Chromaffin Cells and the Cells of Embryonic Sympathetic Ganglia
    The Journal of Neuroscience, November 1991, 7 7(11): 34933506 The Generation of Monoclonal Antibodies that Bind Preferentially to Adrenal Chromaffin Cells and the Cells of Embryonic Sympathetic Ganglia Josette F. Carnahaw and Paul l-i. Patterson Biology Division, California Institute of Technology, Pasadena, California 91125 Adrenal chromaffin ceils, sympathetic neurons, and small technical limitation in this effort is the lack of markers specific intensely fluorescent (SIF) cells are each derived from the for the various stagesof development within a particular lineage. neural crest, produce catecholamines, and share certain Without such markers, cells making key phenotypic decisions morphological features. These cell types are also partially cannot be identified. It has been especially difficult to find mo- interconvertible in cell culture (Doupe et al., 1985a,b; An- lecular labels for committed progenitor cells. Monoclonal an- derson and Axel, 1988). Thus, these cells are said to be tibodies can be used as highly specific markers, and the hybrid- members of the sympathoadrenal (SA) lineage and could oma method can be manipulated so asto enhancethe likelihood share a common progenitor. To investigate the origins of this of obtaining antibodies against rare antigens of interest (Mat- lineage further, we used the cyclophosphamide immuno- thew and Patterson, 1983; Barald and Wessels,1984; Agius and suppression method (Matthew and Patterson, 1983) to gen- Richman, 1986; Barclay and Smith, 1986; Golumbeski and Di- erate five monoclonal antibodies (SAl-5) that bind strongly mond, 1986; Hockfield, 1987; Mahana et al., 1987; Matthew to chromaffin cells, with little or no labeling of sympathetic and Sandrock, 1987; Norton and Benjamini, 1987; Huse et al., neurons or SIF cells in frozen sections from adult rats.
    [Show full text]