SNT, a Differentiation-Specific Target of Neurotrophic Factor-Induced Tyrosine Kinase Activity in Neurons and PC12 Cells STUART J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phosphorylation of Chicken Protein Tyrosine Phosphatase 1 by Casein Kinase II in Vitro
EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 29, No 4, 229-233, December 1997 Phosphorylation of chicken protein tyrosine phosphatase 1 by casein kinase II in vitro Eun Joo Jung,1 Kee Ryeon Kang1 and Introduction Yoon-Se Kang1,2 The phosphorylation of protein tyrosine residues is an early event in signal transduction initiated by binding of 1 Department of Biochemistry and Gyeongsang Institute of Cancer growth factors and hormones to their cognate receptors Research, College of Medicine, Gyeongsang National University, and it leads to regulation of cellular activities which include Chinju 660-280, Korea proliferation, differentiation, and also malignant transfor- 2 Corresponding author mation of cells (Hunter, 1989; Ullirich and Schlessinger, Accepted 17 November 1997 1990; Cantley et al., 1991). Under normal conditions, the level of tyrosine phosphorylation within a cell is determined by a balance between the actions of protein tyrosine Abbreviations: CPTP, chicken protein tyrosine phosphatase; HPTP1B, human placenta kinases (PTKs) and protein tyrosine phosphatases (PTPs) protein tyrosine phosphatase 1B; CKII, casein kinase II; MAP kinase, mitogen-activated (Hunter, 1989; Fischer et al., 1991; Trowbridge, 1991). protein kinase; GST, glutathione S-transferase; pNPP, p-nitrophenyl phosphate; EGF, PTPs do not simply reverse the action of tyrosine kinases, epidermal growth factor but rather, PTP itself may play a central role in cellular regulation. PTPs are generally classified as transmem- brane (receptor-type) and nontransmembrane (nonrecep- tor-type) enzymes based on the presence or absence of extracellular and transmembrane portions of their predicted sequence (Fischer et al., 1991). Because the activity of Abstract tyrosine kinase can be controlled by phosphorylation, it has been postulated that PTP activity may be regulated The phosphorylation and dephosphorylation of by phosphorylation as well. -
Mechanism of Insulin Receptor Kinase Inhibition in Non-Insulin- Dependent Diabetes Mellitus Patients
Mechanism of insulin receptor kinase inhibition in non-insulin- dependent diabetes mellitus patients. Phosphorylation of serine 1327 or threonine 1348 is unaltered. M Kellerer, … , K Siddle, H U Häring J Clin Invest. 1995;96(1):6-11. https://doi.org/10.1172/JCI118073. Research Article The tyrosine kinase activity of insulin receptor isolated from the skeletal muscle of NIDDM patients has previously been found to be decreased compared with the activity of receptor from nondiabetic subjects but the mechanism underlying this defect is unknown. Phosphorylation of receptor serine/threonine residues has been proposed to exert an inhibitory influence on receptor tyrosine kinase activity and Ser 1327 and Thr 1348 have been identified as specific sites of phosphorylation in the insulin receptor COOH terminal domain. To address the potential negative regulatory role of phosphorylation of these residues in vivo, we assessed the extent of phosphorylation of each site in insulin receptor isolated from the skeletal muscle of 12 NIDDM patients and 13 nondiabetic, control subjects. Phosphorylation of Ser 1327 and Thr 1348 was determined using antibodies that specifically recognize insulin receptor phosphorylated at these sites. In addition, a phosphotyrosine-specific antibody was used to monitor receptor tyrosine phosphorylation. The extent of insulin-induced tyrosine autophosphorylation was decreased in receptor isolated from diabetic versus nondiabetic muscle, thus confirming earlier reports. In contrast, there was no significant difference in the extent of phosphorylation of either Ser 1327 or Thr 1348 in receptor isolated from diabetic or nondiabetic muscle as assessed by immunoprecipitation (Ser 1327: 5.6 +/- 1.6% diabetics vs. 4.7 +/- 2.0% control; Thr 1348: 3.8 +/- 1.0% diabetics vs. -
Outgrowth and Protein Synthesis by Pc12 Cells As a Function of Substratum and Nerve Growth Factor’
0270~6474/82/0208-1157$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 2, No. 8, pp. 1157-1175 Printed in U.S.A. August 1982 NEURITE OUTGROWTH AND PROTEIN SYNTHESIS BY PC12 CELLS AS A FUNCTION OF SUBSTRATUM AND NERVE GROWTH FACTOR’ DENNIS K. FUJII, SHARON L. MASSOGLIA, NAPHTALI SAVION, AND DENIS GOSPODAROWICZ’ Cancer Research Institute and the Departments of Medicine and Ophthalmology, University of California Medical Center, San Francisco, California 94143 Received November 16, 1981; Revised March 11, 1982; Accepted March 26, 1982 Abstract Numerous studies have implied that enhanced cell-substratum adhesion plays a role in neurite outgrowth by neuronal cells. Using an extracellular matrix (ECM) produced by cultured corneal endothelial cells, we have investigated attachment and de novo neurite outgrowth by the pheochro- mocytoma cell line, PC12. PC12 cells were found to attach more rapidly and efficiently to the ECM than to plastic or collagen-coated surfaces. An extensive but temporary (5 to lo-day) neurite outgrowth occurred in the absence of nerve growth factor (NGF) when cells were on the ECM. However, long term neurite survival and further elongation required NGF. Our findings are consistent with the hypothesis that protein(s) in the ECM has an important role in neurite outgrowth. Thus, NGF may not so much initiate neurite outgrowth as it stabilizes neurites. ECM and NGF also were found to modulate cellular protein synthesis by PC12 cells. On ECM, a decreased synthesis of many high molecular weight proteins (ikfr > 85,000) was observed in comparison to that of cells on collagen-coated dishes. -
A Novel Method of Neural Differentiation of PC12 Cells by Using Opti-MEM As a Basic Induction Medium
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 195-201, 2018 A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium RENDONG HU1*, QIAOYU CAO2*, ZHONGQING SUN3, JINYING CHEN4, QING ZHENG2 and FEI XIAO1 1Department of Pharmacology, School of Medicine, Jinan University; 2College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632; 3Department of Anesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, SAR; 4Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China Received April 5, 2017; Accepted October 11, 2017 DOI: 10.3892/ijmm.2017.3195 Abstract. The PC12 cell line is a classical neuronal cell model Introduction due to its ability to acquire the sympathetic neurons features when deal with nerve growth factor (NGF). In the present study, The PC12 cell line is traceable to a pheochromocytoma from the authors used a variety of different methods to induce PC12 the rat adrenal medulla (1-4). When exposed to nerve growth cells, such as Opti-MEM medium containing different concen- factor (NGF), PC12 cells present an observable change in trations of fetal bovine serum (FBS) and horse serum compared sympathetic neuron phenotype and properties. Neural differ- with RPMI-1640 medium, and then observed the neurite length, entiation of PC12 has been widely used as a neuron cell model differentiation, adhesion, cell proliferation and action poten- in neuroscience, such as in the nerve injury-induced neuro- tial, as well as the protein levels of axonal growth-associated pathic pain model (5) and nitric oxide-induced neurotoxicity protein 43 (GAP-43) and synaptic protein synapsin-1, among model (6). -
Regulation of Ionic Currents in Pheochromocytoma Cells by Nerve Growth Factor and Dexamethasone
The Journal of Neuroscience, November 1989, 9(11): 3978-3987 Regulation of Ionic Currents in Pheochromocytoma Cells by Nerve Growth Factor and Dexamethasone Sarah S. Garber, Toshinori Hoshi, and Richard W. Aldrich Department of Neurobiology, Stanford University, Stanford, California 94305 Growth factors and hormones induce differentiation of clonal panied by changesin electrical properties (seeSpitzer, 1985, for pheochromocytoma (PC1 2) cells, which are derived from rat review). Many lines of evidence suggestthat the presenceof adrenal medulla chromaffin cells. On application of nerve nerve growth factor (NGF) and glucocorticoids are important growth factor (NGF), PC1 2 cells extend neurites and express to the differentiation of postnatal adrenal medullary cells.Clonal properties characteristic of autonomic ganglion cells. In con- PC12 cells, derived from rat adrenal chromaffin cells, have been trast, incubation of PC12 cells with a corticosteroid, dexa- usedas a model systemfor the study of neuronal differentiation. methasone (DEX), does not induce neurite formation but Rat adrenal chromaffin cellsand rat pheochromocytomasshow causes an increase in tyrosine hydroxylase activity, sug- similar changesin processoutgrowth, catecholaminecontent, gesting that the cells become chromaffin cell-like. The ability and tyrosine hydroxylase activity when treated with NGF or of NGF and DEX to regulate ionic currents has been less glucocorticoids (Tishler et al., 1982b, 1983). well studied. Therefore, we examined how long-term NGF PC 12cells are normally sphericalin shapeand do not generate and DEX treatments affected voltage-dependent Na, Ca, and action potentials. In the presenceof NGF, however, the cells K currents in PC12 cells. Voltage-dependent Na currents develop long, branching processes.This morphological differ- were observed only in a small fraction of the PC12 cells in entiation is accompaniedby increasedsynthesis and storageof the absence of NGF or DEX. -
Growth Hormone Enhances Hepatic Epidermal Growth Factor Receptor Concentration in Mice
Growth hormone enhances hepatic epidermal growth factor receptor concentration in mice. J O Jansson, … , W G Beamer, L A Frohman J Clin Invest. 1988;82(6):1871-1876. https://doi.org/10.1172/JCI113804. Research Article The effect of growth hormone (GH) on binding of epidermal growth factor (EGF) to liver membrane preparations was investigated in hypophysectomized mice and partially GH-deficient, genetic mutant "little" (lit/lit) mice. The EGF binding of normal male mice and testosterone-treated females was higher than in normal females. Due to diminished receptor concentration, hepatic EGF binding was decreased in male and female lit/lit mice to a level that was unaffected by gender or androgen treatment. GH replacement therapy by intermittent injections and continuous infusion restored the EGF binding of hypophysectomized mice to normal male and female levels, respectively, suggesting a role for the more pulsatile GH secretion in normal males. In lit/lit mice, however, both continuous and intermittent GH resulted in EGF binding levels comparable to those in normal females. In normal males continuous GH suppressed EGF binding. In conclusion, endogenous GH secretion induces EGF receptors in mice and this effect may be modulated by sex differences in GH secretion. Find the latest version: https://jci.me/113804/pdf Growth Hormone Enhances Hepatic Epidermal Growth Factor Receptor Concentration in Mice John-Olov Jansson,** Staffan Ekberg,t Steven B. Hoath,* Wesley G. Beamer," and Lawrence A. Frohman* Divisions of*Endocrinology and ONeonatology, University of Cincinnati College ofMedicine, Cincinnati, Ohio 45267; "Jackson Laboratory, Bar Harbor, Maine 04609; and tDepartment ofPhysiology, University ofGoteborg, Sweden Abstract (IGF-I), which may function in a paracrine and autocrine as well as endocrine manner (6-8). -
Neurons Derived from PC12 Cells Have the Potential to Develop Synapses with Primary Neurons from Rat Cortex
Acta Neurobiol Exp 2006, 66: 105-112 Neurons derived from PC12 cells have the potential to develop synapses with primary neurons from rat cortex Tao Zhou1,2, Bainan Xu2, Haiping Que1, Qiuxia Lin1, Shuanghong Lv1, and Shaojun Liu1 1Department of Neurobiology, Institute of Basic Medical Sciences, The Academy of Military Medical Sciences, Beijing, 100850, P. R. China; 2Department of Neurosurgery, General Hospital of PLA, Beijing, 100853, P. R. China Abstract. Neuron transplantation is considered to be a promising therapeutic method to replace functions lost due to central nervous system (CNS) damage. However, little is known about the extent to which implanted neuron-like cells can develop into mature neurons and acquire essential properties, and especially formation of synapses with host neurons. In this investigation we seeded PC12 cells labeled with GFP into primary cultured neurons isolated from rat cerebral cortex to build a co-culture system, and then induced the PC12 cells to differentiate into neuron-like cells with NGF. Seven days later, we observed the relationship between the PC12-derived neurons and primary neurons using FM1-43 imaging and immunoelectron microscopy, and found that GFP-labeled neurons could form typical synapses with host primary neurons. These observations showed that immigrant neurons differentiated from PC12 cells could develop into mature neurons and could form intercellular contacts with host neurons. Both the immigrant and host neurons could construct neuronal networks in vitro. The correspondence should be addressed to S. Liu, Key words: neural transplantation, co-culture, PC12 cells, synapse, laser Email: [email protected] scanning confocal microscopy, electron microscopy 106 T. -
Phosphorylation of Protein 4.1 on Tyrosine-418 Modulates Its Function
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 5222-5226, June 1991 Biochemistry Phosphorylation of protein 4.1 on tyrosine-418 modulates its function in vitro (epidermal growth factor receptor/spectrin/actin assembly) GOSUKONDA SUBRAHMANYAM*, PAUL J. BERTICStt, AND RICHARD A. ANDERSON**§ Department of *Pharmacology and tPhysiological Chemistry, and the tCell and Molecular Biology Program, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706 Communicated by Vincent T. Marchesi, March IS, 1991 ABSTRACT Protein 4.1 was initially characterized as a actin/protein 4.1 complex (12). However, phosphorylation of protein that regulates cytoskeletal assembly in erythrocytes. protein 4.1 by protein kinase C also reduces protein 4.1 However, recent studies have shown that protein 4.1 is ubiq- binding to band 3 but not to glycophorin, while phosphory- uitous in mammalian cells. Here, we show that protein 4.1 is lation by cAMP-dependent kinase does not affect membrane phosphorylated on tyrosine by the epidermal growth factor interactions (12). These results suggest that protein 4.1 is receptor (EGFR) tyrosine kinase. The phosphorylation site has phosphorylated at multiple sites by different protein kinases, been localized to the 8-kDa domain, which has one tyrosine, and each phosphorylation event selectively modulates pro- tyrosine-418. The 8-kDa region is required for the assembly of tein 4.1 function. The phosphorylation sites by cAMP- the spectrin/actin complex, and phosphorylation by EGFR dependent protein kinase and protein kinase C are in the reduced the ability ofprotein 4.1 to promote the assembly ofthe 8-kDa and 16-kDa domains (10). -
Establishment of a Noradrenergic Clonal Line of Rat Adrenal
Proc. Natl. Acad. Sci. USA Vol. 73, No. 7, pp. 2424-2428, July 1976 Cell Biology Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor (sympathetic neurons/cell culture/catecholamines/differentiation/neurites) LLOYD A. GREENE* AND ARTHUR S. TISCHLERt * Department of Neuropathology, Harvard Medical School, and Department of Neuroscience, Children's Hospital Medical Center, 300 Longwood Avenue, Boston, Massachusetts 02115; and t Department of Pathology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215 Communicated by Stephen W. Kuffler, April 19,1976 ABSTRACT A single cell clonal line which responds re- subjected to three cycles of washing (with phosphate-buffered versibly to nerve growth factor (NGF) has been established from 5 in order to free them a transplantable rat adrenal pheochromocytoma. This line, saline) and pelleting (500 X g for min) designated PC12, has a homogeneous and near-diploid chro- from cell debris, and were resuspended in growth medium and mosome number of 40. By 1 week's exposure to NGF, PC12 cells plated on plastic tissue culture dishes (Falcon Plastics). The cease to multiply and begin to extend branching varicose pro- following day, the lightly-adhering pheochromocytoma cells cesses similar to those produced by sympathetic neurons in were mechanically dislodged from the plates by forceful as- primary cell culture. By several weeks of exposure to NGF, the piration and expulsion of the medium with a pasteur pipette, PC12 processes reach 500-1000 gm in length. Removal of NGF is followed by degeneration of processes within 24 hr and by and replated on culture dishes which were coated with rat tail resumption of cell multiplication within 72 hr. -
The Endometrial Lymphatic Vasculature: Function and Dysfunction
The Endometrial Lymphatic Vasculature: Function and Dysfunction Jane E. Girling and Peter A.W. Rogers Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria 3052, Australia. Corresponding Author: Dr Jane E Girling Gynaecology Research Centre Department of Obstetrics and Gynaecology The University of Melbourne The Royal Women’s Hospital Cnr Flemington Rd and Grattan St Parkville, VIC 3058, Australia Email: [email protected] Telephone: +61 3 8345 3721 Fax: +61 3 8345 3702 1 Abstract The endometrium has a complex and dynamic blood and lymphatic vasculature which undergoes regular cycles of growth and breakdown. While we now have a detailed picture of the endometrial blood vasculature, our understanding of the lymphatic vasculature in the endometrium is limited. Recent studies have illustrated that the endometrium contains a population of lymphatic vessels with restricted distribution in the functional layer relative to the basal layer. The mechanisms responsible for this restricted distribution and the consequences for endometrial function are not known. This review will summarise our current understanding of endometrial lymphatics, including the mechanisms regulating their growth and function. The potential contribution of lymphatic vessels and lymphangiogenic growth factors to various endometrial disorders will be discussed. Keywords: Blood Vessels, Decidua, Endometrium, Lymphatics, Menstruation, VEGFC, VEGFD 2 1. Introduction The endometrium has a complex and dynamic blood and lymphatic vasculature which undergoes regular cycles of growth and breakdown. These cyclic changes reflect variations in circulating sex steroids and uterine blood flow and result in cyclic patterns in tissue oxygenation, haemostasis, nutrient supply, fluid balance and leukocyte distribution. Appropriate growth and functioning of the vasculature is essential for normal endometrial function, including preparation for potential embryo implantation and subsequent pregnancy. -
The Ras Suppressor, RSU-1, Enhances Nerve Growth Factor-Induced Differentiation of PC12 Cells and Induces P21cip Expression1
Vol. 10, 555–564, August 1999 Cell Growth & Differentiation 555 The Ras Suppressor, RSU-1, Enhances Nerve Growth Factor-induced Differentiation of PC12 Cells and Induces p21CIP Expression1 L. Masuelli, S. Ettenberg, F. Vasaturo, Introduction 2 3 K. Vestergaard-Sykes, and M. L. Cutler Rsu-1, which was isolated based on its ability to suppress Department of Pathology, Uniformed Services University of the Health Ras transformation, encodes a Mr 33,000 protein that con- Sciences, Bethesda, Maryland 20814 [L. M., S. E., F. V., M. L. C.]; tains a series of leucine-rich amphipathic repeats homolo- Department of Experimental Medicine, First University of Rome, Rome 00161, Italy [L. M.]; and United States Department of Agriculture gous to the leucine repeats found in yeast adenylyl cyclase Laboratories, Beltsville, Maryland 20705 [K. V-S.] (1–3). These repeats are required for the activation of adeny- lyl cyclase by Ras in Saccharomyces cerevisiae (4, 5), and similar repeats are required for a Ras-induced differentiation Abstract pathway in Caenorhabditis elegans (3). Rsu-1 binds to Raf-1 The Rsu-1 Ras suppressor gene was isolated based on in in vitro binding assays, suggesting that Rsu-1 may stabi- its ability to inhibit v-Ras transformation. Using Rsu-1 lize Ras-Raf association and/or inhibit the association of Ras transfectants of the pheochromocytoma cell line PC12, with other effectors. Rsu-1 expression inhibited RasGAP we demonstrated previously that Rsu-1 expression activity, resulting in an increase in Ras-GTP, and inhibited the inhibited Jun kinase activation but enhanced Erk2 activation of Jun kinase by EGF4 (6). -
Glutathione Is Involved in the Granular Storage of Dopamine in Rat PC12 Pheochromocytoma Cells: Implications for the Pathogenesis of Parkinson’S Disease
The Journal of Neuroscience, October 1, 1996, 16(19):6038–6045 Glutathione Is Involved in the Granular Storage of Dopamine in Rat PC12 Pheochromocytoma Cells: Implications for the Pathogenesis of Parkinson’s Disease Benjamin Drukarch, Cornelis A. M. Jongenelen, Erik Schepens, Cornelis H. Langeveld, and Johannes C. Stoof Department of Neurology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, 1081 BT Amsterdam, The Netherlands Parkinson’s disease (PD) is characterized by degeneration of of DA stores with the tyrosine hydroxylase inhibitor a-methyl- dopamine (DA)-containing nigro-striatal neurons. Loss of the p-tyrosine. In the presence of a-methyl-p-tyrosine, refilling of antioxidant glutathione (GSH) has been implicated in the patho- the DA stores by exogenous DA reduced GSH content back to genesis of PD. Previously, we showed that the oxidant hydro- control level. Lowering of PC12 GSH content, via blockade of gen peroxide inhibits vesicular uptake of DA in nigro-striatal its synthesis with buthionine sulfoximine, however, led to a neurons. Hydrogen peroxide is scavenged by GSH and, there- significantly decreased accumulation of exogenous [3H]DA fore, we investigated a possible link between the process of without affecting uptake of the acetylcholine precursor vesicular storage of DA and GSH metabolism. For this purpose, [14C]choline. These data suggest that GSH is involved in the we used rat pheochromocytoma-derived PC12 cells, a model granular storage of DA in PC12 cells and that, considering the system applied extensively for studying monoamine storage molecular characteristics of the granular transport system, it is mechanisms. We show that depletion of endogenous DA stores likely that GSH is used to protect susceptible parts of this with reserpine was accompanied in PC12 cells by a long- system against (possibly DA-induced) oxidative damage.