Thesis Rests with Its Author
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytopythium: Molecular Phylogeny and Systematics
Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses. -
Activation of Defense Mechanisms Against Pathogens in Mosses and Flowering Plants
Int. J. Mol. Sci. 2013, 14, 3178-3200; doi:10.3390/ijms14023178 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants Inés Ponce de León 1,* and Marcos Montesano 2 1 Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay 2 Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Mataojo 2055, CP 11400, Montevideo, Uruguay; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +598-24872605; Fax: +598-24875548. Received: 4 January 2013; in revised form: 23 January 2013 / Accepted: 23 January 2013 / Published: 4 February 2013 Abstract: During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. -
Powdery Mildew – a New Disease of Carrots
SEPTEMBER 2009 PRIMEFACT 616 SECOND EDITION Powdery mildew – a new disease of carrots Andrew Watson management strategies for carrot powdery mildew”. The project is due to finish in 2011. Plant Pathologist, Plant Health Sciences, Yanco Agricultural Institute The project is based in the three states that have recorded the disease i.e.. New South Wales, Powdery mildew has been found on a carrot crops Tasmania and South Australia. The collaborators in in three states of Australia. The first finding of the Tasmania include Hoong Pung (Peracto Pty Ltd.) disease was in the Murrumbidgee Irrigation Area and in South Australia , Barbara Hall (Sardi). (MIA) of New South Wales in 2007. It has This project is looking at the spread of powdery subsequently been found in Tasmania and South mildew on carrots and best methods of managing Australia in 2008. While the organism causing the the disease using fungicides, varietal resistance disease is commonly found in parsnip crops, (where available) and softer alternatives. powdery mildew has not previously been recorded on carrots in Australia. Fungicide options. Cause Fungicide trials in New South Wales and Tasmania have shown that applications of sulphur The causal agent is Erysiphe heraclei, the same successfully controls the disease as do Amistar and fungus that affects parsnips and other members of Folicur. The latter products have a permit for the Apiaceae family. Preliminary information has powdery mildew control. Sulphur has a general indicated that this form of E. heraclei does not infect vegetable registration. However alternative products parsnip or parsley, indicating that it may be specific need to be investigated as resistance to fungicides to carrots. -
Culturing and Direct DNA Extraction Find Different Fungi From
Research CulturingBlackwell Publishing Ltd. and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots Tamara R. Allen1, Tony Millar1, Shannon M. Berch2 and Mary L. Berbee1 1Department of Botany, The University of British Columbia, Vancouver BC, V6T 1Z4, Canada; 2Ministry of Forestry, Research Branch Laboratory, 4300 North Road, Victoria, BC V8Z 5J3, Canada Summary Author for correspondence: • This study compares DNA and culture-based detection of fungi from 15 ericoid Mary L. Berbee mycorrhizal roots of salal (Gaultheria shallon), from Vancouver Island, BC Canada. Tel: (604) 822 2019 •From the 15 roots, we PCR amplified fungal DNAs and analyzed 156 clones that Fax: (604) 822 6809 Email: [email protected] included the internal transcribed spacer two (ITS2). From 150 different subsections of the same roots, we cultured fungi and analyzed their ITS2 DNAs by RFLP patterns Received: 28 March 2003 or sequencing. We mapped the original position of each root section and recorded Accepted: 3 June 2003 fungi detected in each. doi: 10.1046/j.1469-8137.2003.00885.x • Phylogenetically, most cloned DNAs clustered among Sebacina spp. (Sebaci- naceae, Basidiomycota). Capronia sp. and Hymenoscyphus erica (Ascomycota) pre- dominated among the cultured fungi and formed intracellular hyphal coils in resynthesis experiments with salal. •We illustrate patterns of fungal diversity at the scale of individual roots and com- pare cloned and cultured fungi from each root. Indicating a systematic culturing detection bias, Sebacina DNAs predominated in 10 of the 15 roots yet Sebacina spp. never grew from cultures from the same roots or from among the > 200 ericoid mycorrhizal fungi previously cultured from different roots from the same site. -
U.S. EPA, Pesticides, Label, V-10161 4 SC, 4/20/2011
--- -..:.--~--- ~- ~- >- --=---==-- -"--====- c· ott! 2£lll C '" . zo( UNITED STATES ENVI~ONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFElY AND POLLUTION PREVENTION APR 2 0 20H Robert Hamilton Valent USA Corporation Registration & Regulatory Affairs 1101 14th Street, N.W., Suite 1050 Washington, DC 20005 SUBJECT: Label Amendment V-101614SC EPA Reg. No. 59639-140; Decisions 409896; 420444; 9F7617 (D420455) Submissions Dated April 30, 2009; September 16, 2009 Dear Mr. Hamilton: The revised master and supplemental labels (your version 3/15/2011) referred to above, submi~ed in connection with registration under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA), as amended, to add carrot, potato, and sugarbeet which, with existing crops allows listing of the entire "Root and Tuber Vegetables-Crop Group 1"; and which adds "Brassica, Leafy Greens Subgroup 5B" which, with existing crops allows listing the entire "Bras sica (Cole) Leafy Vegetables, Crop Group 5", all of this in detail as per final rule published 4/20/2011, are acceptable provided the following label changes and conditional data are satisfied ' by specified due dates: 1. At the top of page 1 delete the right and left parentheses from "(Fungicide)" because the rest of this label does the same and we understand the primary brand name to be the "V-10161 4SC Fungicide"; also add a comma after "(Except Brassica Vegetables)," and on page 2 in the First Aid section in the subheading "If on skin or Clothing", make the "C" in "Clothing" lower case and add a period at the end of the last bullet. 2. On page 3 in the Agricultural Use Requirements box, first line; add "(WPS)" after "Worker Protection Standard". -
Pythium Species Associated with Rooibos, and the Influence of Management Practices on Disease Development
PYTHIUM SPECIES ASSOCIATED WITH ROOIBOS, AND THE INFLUENCE OF MANAGEMENT PRACTICES ON DISEASE DEVELOPMENT By AMIRHOSSEIN BAHRAMISHARIF Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriSciences at the University of Stellenbosch Supervisor: Dr. Adéle McLeod Co-supervisor: Dr. Sandra C. Lamprecht March 2012 Stellenbosch University http://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Amirhossein Bahramisharif Date:……………………….. Copyright © 2012 Stellenbosch University All rights reserved Stellenbosch University http://scholar.sun.ac.za PYTHIUM SPECIES ASSOCIATED WITH ROOIBOS, AND THE INFLUENCE OF MANAGEMENT PRACTICES ON DISEASE DEVELOPMENT SUMMARY Damping-off of rooibos (Aspalathus linearis), which is an important indigenous crop in South Africa, causes serious losses in rooibos nurseries and is caused by a complex of pathogens of which oomycetes, mainly Pythium, are an important component. The management of damping-off in organic rooibos nurseries is problematic, since phenylamide fungicides may not be used. Therefore, alternative management strategies such as rotation crops, compost and biological control agents, must be investigated. The management of damping-off requires knowledge, which currently is lacking, of the Pythium species involved, and their pathogenicity towards rooibos and two nursery rotation crops (lupin and oats). Pythium species identification can be difficult since the genus is complex and consists of more than 120 species. -
Nisan 2013-2.Cdr
Ekim(2013)4(2)35-45 11.06.2013 21.10.2013 The powdery mildews of Kıbrıs Village Valley (Ankara, Turkey) Tuğba EKİCİ1 , Makbule ERDOĞDU2, Zeki AYTAÇ1 , Zekiye SULUDERE1 1Gazi University,Faculty of Science , Department of Biology, Teknikokullar, Ankara-TURKEY 2Ahi Evran University,Faculty of Science and Literature , Department of Biology, Kırsehir-TURKEY Abstract:A search for powdery mildews present in Kıbrıs Village Valley (Ankara,Turkey) was carried out during the period 2009-2010. A total of ten fungal taxa of powdery mildews was observed: Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam., E. buhrii U. Braun , E. heraclei DC. , E. lycopsidisR.Y. Zheng & G.Q. Chen , E. pisi DC. var . pisi, E. pisi DC. var. cruchetiana (S. Blumer) U. Braun, E. polygoni DC., Leveillula taurica (Lév.) G. Arnaud , Phyllactinia guttata (Wallr.) Lév. and P. mali (Duby) U. Braun. They were determined as the causal agents of powdery mildew on 13 host plant species.Rubus sanctus Schreber. for Phyllactinia mali (Duby) U. Braun is reported as new host plant. Microscopic data obtained by light and scanning electron microscopy of identified fungi are presented. Key words: Erysiphales, NTew host, axonomy, Turkey Kıbrıs Köyü Vadisi' nin (Ankara, Türkiye) Külleme Mantarları Özet:Kıbrıs Köyü Vadisi' nde (Ankara, Türkiye) bulunan külleme mantarlarının araştırılması 2009-2010 yıllarında yapılmıştır. Külleme mantarlarına ait toplam 10taxa tespit edilmiştir: Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam., E. buhrii U. Braun , E. heraclei DC. , E. lycopsidis R.Y. Zheng & G.Q. Chen, E. pisi DC. var . pisi, E. pisi DC. var. cruchetiana (S. Blumer) U. Braun , E. polygoniDC ., Leveillula taurica (Lév.) G. -
Table 33: Common and Scientific Vegetable Pest Names
Table 33: Common and Scientific Vegetable Pest Names The names in this table represent the common and scientific (Latin) names of all the pests represented in this guide. The names are provided to help users interpret information presented in pesticide labels and other sources. Insects Insects Common Name Scientific Name Order Common Name Scientific Name Order armyworm Mythimna (Pseudaletia) Lepidoptera purplebacked Evergestis pallidata Lepidoptera unipuncta cabbageworm asparagus aphid Brachycorynella asparagi Hemiptera rhubarb curculio Lixus concavus Coleoptera asparagus beetle Crioceris asparagi Coleoptera saltmarsh caterpillar Estigmene acrea Lepidoptera asparagus miner Ophiomyia simplex Diptera seedcorn maggot Delia platura Diptera aster leafhopper Macrosteles quadrilineatus Hemiptera serpentine leafminer Liriomyza brassicae Diptera bandedwinged whitefly Trialeurodes abutiloneus Hemiptera soybean thrips Neohydatothrips variabilis Thysanoptera bean aphid Aphis fabae Hemiptera spinach flea beetle Disonycha xanthomelas Coleoptera bean leaf beetle Cerotoma trifurcata Coleoptera spinach leafminer Pegomya hyoscyami Diptera bean seed maggot Delia florilega Diptera spotted asparagus Crioceris duodecimpunctata Coleoptera beet armyworm Spodoptera exigua Lepidoptera beetle black cutworm Agrotis ipsilon Lepidoptera spotted cucumber Diabrotica undecimpunctata Coleoptera brown marmorated Halymorpha halys Hemiptera beetle howardi stink bug southern corn brown stink bug Euschistus servus Hemiptera rootworm cabbage aphid Brevicoryne brassicae Hemiptera -
Herbs and Spices
10 Herbs and spices Figures 10.2 to 10.15 Fungal diseases 10.1 Canker of hop 10.2 Downy mildew of hop 10.3 Leaf scorch of parsley 10.4 Leaf spots of parsley Alternaria leaf spot Phoma leaf spot Septoria leaf spot 10.5 Powdery mildew of hop, mint, sage and parsley 10.6 Pythium root rot of parsley 10.7 Rust of mint 10.8 Sooty mold of hop 10.9 Verticillium wilt of mint and hop 10.10 Other fungal diseases of herbs Viral and viral-like diseases 10.11 Aster yellows 10.12 Miscellaneous viral diseases Broad bean wilt Carrot motley dwarf Celery mosaic Cucumber mosaic Hop mosaic 10.12 Miscellaneous viral diseases (cont.) Hop nettle head Tomato spotted wilt Insect pests 10.13 Aphids Carrot-willow aphid Green peach aphid Hop aphid Potato aphid Other aphids 10.14 Flea beetles Hop flea beetle Horseradish flea beetle Other crucifer-feeding flea beetles 10.15 Other insect pests Black swallowtails Carrot rust fly European earwig Other pests 10.16 Mites and slugs Additional references FUNGAL DISEASES 10.1 Canker of hop Fusarium sambucinum Fuckel (teleomorph Gibberella pulicaris (Fr.:Fr.) Sacc.) Infection just above the crown can result in girdling and sudden wilting of hop vines. The presence of an obvious canker and the sudden death of the plant differentiates this disease from verticillium wilt, in which the symptoms appear gradually, starting with the lower leaves. Canker has been a minor problem on commercial hop. Prompt removal of infected vines is reported to reduce Fusarium inoculum and subsequent infections. -
Erysiphaceae) from Europe with Special Emphasis on Switzerland
Österr. Z. Pilzk. 28 („2019“ 2021) – Austrian J. Mycol. 28 („2019“ 2021) 131 New species, new records and first sequence data of powdery mildews (Erysiphaceae) from Europe with special emphasis on Switzerland ADRIEN BOLAY PHILIPPE CLERC 7, ch. de Bonmont Conservatoire et Jardin botaniques CH-1260 Nyon, Switzerland de la Ville de Genève E-mail: [email protected] CP. 71 CH-1292 Chambéry, Switzerland E-mail: [email protected] UWE BRAUN MONIKA GÖTZ Martin-Luther-Universität, Institut für Biologie Institut für Pflanzenschutz in Gartenbau Bereich Geobotanik und Botanischer Garten Her- und Forst, Julius Kühn-Institut (JKI) barium, Neuwerk 21 Bundesforschungsinstitut für Kultur- 06099 Halle (Saale), Germany Pflanzen E-mail: [email protected] Messeweg 11/12 38104 Braunschweig, Germany E-mail: [email protected] SUSUMU TAKAMATSU Graduate School of Bioresources Mie University 1577 Kurima-machiya Tsu Mie 514–8507, Japan E-mail: [email protected] Accepted 9. March 2021. © Austrian Mycological Society, published online 10. March 2021 BOLAY, A., CLERC, P., BRAUN, U., GÖTZ, M., TAKAMATSU, S., (“2019”) 2021: New species, new records and first sequence data of powdery mildews (Erysiphaceae) from Europe with special emphasis on Switzerland. – Österr. Z. Pilzk. 28: 131–160. Key words: Ascomycota, Helotiales, Erysiphe abeliana, Phyllactinia cruchetii, sp. nov., taxonomy, new records. – Swiss mycota. – 2 new species, 1 epitype. Abstract: New records of powdery mildews (Erysiphaceae) from Switzerland and adjacent countries are listed and annotated, including first records of multiple host plants worldwide. The collections con- cerned are described, illustrated, discussed, and some identifications have been confirmed by results of sequencing (ITS + 28S rDNA). -
Powdery Mildew Caused by Erysiphe Heraclei: a Novel Field Disease of Carrot (Daucus Carota) in Brazil
Editor-in-Chief: Alison E. Robertson Published by The American Phytopathological Society August 2017, Volume 101, Number 8 Page 1544 https://doi.org/10.1094/PDIS-01-17-0145-PDN DISEASE NOTES Diseases Caused by Bacteria and Phytoplasmas Powdery Mildew Caused by Erysiphe heraclei: A Novel Field Disease of Carrot (Daucus carota) in Brazil L. S. Boiteux, A. Reis, M. E. N. Fonseca, V. Lourenço Jr., and A. F. Costa, CNPH/Embrapa Hortaliças, Brasília-DF, Brazil; and A. G. Melo and R. C. F. Borges, Departamento de Fitopatologia, Universidade de Brasília, Brasília-DF, Brazil. Open Access. Carrot is a major vegetable crop in Brazil, being cultivated year-round in all regions. Carrot powdery mildew was first detected in seed production fields of the cultivar Brasília in Brasília-DF in 2008. White cottony growth was observed on leaves, petioles, and floral stalks. In 2014 to 2016, powdery mildew outbreaks were observed (100% incidence) in carrot fields in Brasília-DF, São Gotardo-MG, São Miguel Arcanjo-SP, and Cristalina- GO, affecting all available hybrids. Morphological analyses of the conidiophores (n = 50) revealed straight and hyaline (25 to 63 μm × 7 to 10 μm) with cylindrical foot cells. Singly borne, hyaline conidia (n = 50) displayed barrel to cylindrical shape (24 to 42 μm × 14 to 19 μm). Germ tubes were produced in apical portion of the conidia. Appressoria were lobed. The perfect stage was not found. Pathogenicity assays were performed under greenhouse by inoculating via leaf-to-leaf contact seedlings of the carrot cv. Fortonantes and parsley [Petroselinum crispum (Mill.)] cv. Portuguesa. Symptoms and fungal morphology identical to those observed under field conditions were induced on carrot seedlings 10 to 15 days after inoculation, but not in parsley. -
Heracleum Mantegazzianum) This Page Intentionally Left Blank ECOLOGY and MANAGEMENT of GIANT HOGWEED (Heracleum Mantegazzianum
ECOLOGY AND MANAGEMENT OF GIANT HOGWEED (Heracleum mantegazzianum) This page intentionally left blank ECOLOGY AND MANAGEMENT OF GIANT HOGWEED (Heracleum mantegazzianum) Edited by P. Pys˘ek Academy of Sciences of the Czech Republic Institute of Botany, Pru˚honice, Czech Republic M.J.W. Cock CABI Switzerland Centre Delémont, Switzerland W. Nentwig Community Ecology, University of Bern Bern, Switzerland H.P. Ravn Forest and Landscape, The Royal Veterinary and Agricultural University, Hørsholm, Denmark CABI is a trading name of CAB International CAB International Head Office CABI North American Office Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CABI 2007. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. A catalogue record for this book is available from the Library of Congress, Washington, DC. ISBN-13: 978 1 84593 206 0 Typeset by MRM Graphics Ltd, Winslow, Bucks. Printed and bound in the UK by Athenaeum Press, Gateshead. Contents Contributors ix Acknowledgement xiii Preface: All You Ever Wanted to Know About Hogweed, but xv Were Afraid to Ask! David M. Richardson 1 Taxonomy, Identification, Genetic Relationships and 1 Distribution of Large Heracleum Species in Europe S˘árka Jahodová, Lars Fröberg, Petr Pys˘ek, Dmitry Geltman, Sviatlana Trybush and Angela Karp 2 Heracleum mantegazzianum in its Primary Distribution 20 Range of the Western Greater Caucasus Annette Otte, R.