Nematodes from the Palaeozoic

Total Page:16

File Type:pdf, Size:1020Kb

Nematodes from the Palaeozoic Nematology Monographs & Perspectives, 2011, Vol. 9, 19-25 Nematodes from the Palaeozoic Much continental area was covered by the sea during the Cambrian, which began 542 mya, and marine nematodes were probably wide- spread, feeding on bacteria, fungi and protozoa among decomposing or- ganic matter along the bottom of the sea or in brackish inlets. Predaceous nematodes, as well as those that established symbiotic associations with bottom-dwelling invertebrates, were probably also present. Taking the well known fauna of the Burgess Shale (530 mya) as an example of marine life occurring during that period, possible nematode habitats could have included the following: the gill chambers of the small, snail-like Opabinia regalis Walcott, 1912 or the tiny Marrella splendens Walcott, 1912 or among the body setae of the polychaete worm, Canadia spinosa Walcott, 1911. Nematodes could have even inhabited the burrows of the priapulid worms, Louisella pedunculata Walcott, 1911 and Ottora prolifica Walcott, 1911 (a portion of the gut of O. prolifica shows what could be a coiled nematode) (Whittington, 1985, see Fig. 4.21). Additional habitats could have been in the gut or on the body surface of slow-moving, bottom-feeding detritivores such as trilobites (Fig. 12), the gregarious small crustacean Canadaspis ovalis (Walcott, 1912), or the slug-like Amiskwia sagittiformis Walcott, 1911. Some nematodes may have developed in the egg nests of the above groups. Members of the widespread nematode family Monhysteridae are not only free-living in the sea, but also occur on the gills, under the body plates and in the body cavities of various crustaceans (Poinar et al., 2009). Some forms even appear to burrow into the shell of horseshoe crabs (Leibovitz & Lewbart, 2004), organisms that have a fossil record extending back to the Silurian. The diverse habitats found during the Cambrian (marine, brackish water, freshwater, terrestrial) probably led to nematode diversification and associations were established with other organisms. Certainly by the Ordovician, when the first terrestrial plants appeared, nematodes were exploring the land, and by the Late Silurian, they were forming symbiotic and parasitic associations with the earliest known terrestrial © Koninklijke Brill NV, Leiden, 2011 19 The evolutionary history of nematodes, Poinar Fig. 12. Nematodes could have lived between the segments or in the alimentary tract of Cambrian trilobites similar to these Devonian Phacops megalomanicus (Struve, 1982). invertebrates (arachnids, eurypterids and myriapods) (Jeram et al., 1990). Reproducing populations of Palaeonema phyticum Poinar, Kerp & Hass, 2008 in the stomatal chambers of the land plant, Aglaophyton major (Kidson & Lang, 1920) preserved in the Rhynie Chert are evidence that nematodes had formed trophic associations with plants by the Lower Devonian (396 mya) (Figs 13-16; Plate 1). These early plant parasites reproduced within substomatal cavities, intercellular spaces and cavities containing disrupted cortical tissue, as well as inside the cortex cells of A. major. The nematodes probably entered the stomatal openings much as present-day plant-parasitic nematodes enter the stomata of angiosperms. In order to obtain nourishment, Palaeonema used its buccal teeth to crush cortical plant cells. The environment around Palaeonema was quite harsh with a number of hot springs and geysers. Periodic floods resulted in hot mineral water inundating the minute Aglaophyton plants with their nematode fauna. Aside from these physical conditions, Palaeonema had to contend 20 Nematology Monographs & Perspectives.
Recommended publications
  • Autor: T-I Ij Ii 11 Iil U Li U Titel: H I] Il !J Band: I~ Ii Fj Ii [I S
    ;; ij Il 1I U it li ii H 13 u Autor: t-i ij ii 11 iil u li U Titel: H I] Il !J Band: I~ Ii fj iI [i s. 181 - 201. li 13 U li U It ii I,i Ii U t-i il il ii 11 il 11 li Il il lil U Ii il 1I l~ li Ii vörhanuen 1I 1,1 ti U n u 1I ii It 11 u I1 U li 1.1 it jj u ii u n 11 ii 11 H.l l,I II n il ii li ii ii U Ii U li 11 I] II !l !:! 1'1 I1 6 ?e> O$-15k~w'rl~1i. 180 T.A. Platonova& L. V. Kulangieva: Marine £noplido- ZOOSYST. ROSSICA Val. 3 @ Zoological Institute, Sl.Peter~ 1995 pharynx aod proposal of two new families. Zool. Tchesunov, A. V. 1991. On the slruclure of thc cephaJic Zhurn., 69(8): 5-17. (In Russian), culiclc in frcc-living ncmatodcsof thc famHy Linho- - Tchesunov, A.V. 1990b. Long-hairy Xyalida (Ncma- mocidae (Nemaloda. Chromadoria, Siphonolaimo- loda, Chromadoria, Monhystcrida) in thc Whitc ideaL Zoo!. Zhurn., 70(5): 21-27. (In RussianL The phylogeny and classification ofthe phylum Sca: ncw spccics, new combinations arid s~atusof Ih~ genus Trichotheristus. Zoo!. Zhurn., 69(10): 5-19. Reeei."ed 27 Mo)! /99J (In R!JssianL Cephalorhyncha A.V. Adrianov & V.V. Malakhov Adrianov, A.V. & Malakhoy, V. V. 1995. Thc phylogcny and c1assification of thc phylum Cephalorhyncha. Zoosystematica Rossica, 3(2),' 1994: 181-201. The phylum Ccphalorhyncha is a laxon including headproboscis worms: Priapulida, Loricifera, Kinorhyncha, Nematomorpha.
    [Show full text]
  • Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the Early Cambrian Chengjiang Biota, and the Evolution of Seriation in Ecdysozoa
    Accepted Manuscript Journal of the Geological Society Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota, and the evolution of seriation in Ecdysozoa Xiaomei Shi, Richard J. Howard, Gregory D. Edgecombe, Xianguang Hou & Xiaoya Ma DOI: https://doi.org/10.1144/jgs2021-060 To access the most recent version of this article, please click the DOI URL in the line above. When citing this article please include the above DOI. This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion Received 26 May 2021 Revised 2 August 2021 Accepted 7 August 2021 © 2021 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Supplementary material at https://doi.org/10.6084/m9.figshare.c.5551565 Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required.
    [Show full text]
  • The Palaeoscolecida and the Evolution of the Ecdysozoa Andrey Yu
    The Palaeoscolecida and the evolution of the Ecdysozoa Andrey Yu. Zhuravlev1, José Antonio Gámez Vintaned2 and Eladio Liñán1 1Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain 2Área de Paleontología, Departamento de Geologica, Facultad de Ciencias Biológicas, Univeristat de València, C/ Doctor Moliner, 50, E-46100 Burjassot, Spain Email: [email protected] AbstrAct rÉsUMÉ Palaeoscolecidans are a key group for understanding the ear- Les Paléoscolécides sont un groupe clé pour la compréhen- ly evolution of the Ecdysozoa. The Palaeoscolecida possess sion des débuts de l’évolution des Ecdysozoa. Les Pal- a terminal mouth and an anus, an invertible proboscis with aeoscolecida possèdent une bouche terminale et un anus, pointed scalids, a thick integument of diverse plates, sensory un proboscis inversible aux scalides pointues, un tégument papillae and caudal hooks. These are features that draw a épais de plaques diverses, des papilles sensorielles et des secret out of these worms, indicating palaeoscolecidan af- crochets caudaux. Ceux-ci sont des traits qui tirent un secret finities with the phylum Cephalorhyncha, which embraces de ces vers, ce qui indique des affinités paléoscolecides avec priapulids, kinorhynchs, loriciferans and nematomorphs. At le phylum des Cephalorhyncha qui inclut les priapulides, les the same time, the Palaeoscolecida share a number of char- kinorhynches, les loricifères et les nématomorphes. Cepen- acters with the lobopod-bearing Cambrian ecdysozoans, the dant, les Palaeoscolecida ont aussi quelques-uns des mêmes Xenusia. Xenusians commonly possess a terminal mouth, caractères que les Xenusia, ces écdysozaires cambriens qui a proboscis (although not retractable), and a thick integu- portaient des lobopodes.
    [Show full text]
  • The Early Paleozoic World: Cambrian Period (544-459 MY)
    The Early Paleozoic World: Cambrian Period (544-459 MY) Jarðsaga 1 -Saga Lífs og Lands – Ólafur Ingólfsson The Cambrian Period: Precambrian Super- continent has broken up and life explodes... • Sea level rose throughout the Cambrian – very widespread deposition of marine sediments • Rodina Supercontinent broken up • Skeletal animals appear in the fossil record • Predation becomes a way-of-life • Trilobates appear on the scene, and develop rapidly • A major diversification of large animals • Trilobate mass extinctions towards the end of the period Cambrian key-sites Cambrian sediments occur on all Earths continents Cambrian was named by the 19th-century English geologist Adam Sedgwick, who first studied the great sequence of rocks characteristic of the period near Cambria, Wales. Early Cambrian continental configuration Rodina had broken up by early Cambrian, and Laurentia, Siberia and Baltica were separated from “Proto-Gondwana” Early Cambrian climate Early Cambrian climate was warm, but not too hot, and there is no evidence of any glacial ice at the poles. Transgression of sea onto continental cratons! http://www.scotese.com/ What caused the Cambrian transgression? What can cause globally rising sea-levels? 1. A decrease in ocean basin volume due to: • Formation of new mid-ocean ridges • Increased area of continents (rifting) • Accumulation of sediments on the sea-floor 2. An increase in water volume by melting of glaciers on land What can cause regionally/locally rising sea-levels? 1. Subsidence of land along a passive continental margin 2. Local/regional glacio-isostatic loading The vidence for a global Cambrian transgression 1. Wide-spread marine sediments on all cratons 2.
    [Show full text]
  • New Palaeoscolecidan Worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale
    New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale SIMON CONWAY MORRIS and JOHN S. PEEL Conway Morris, S. and Peel, J.S. 2010. New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale. Acta Palaeontologica Polonica 55 (1): 141–156. Palaeoscolecidan worms are an important component of many Lower Palaeozoic marine assemblages, with notable oc− currences in a number of Burgess Shale−type Fossil−Lagerstätten. In addition to material from the lower Cambrian Kinzers Formation and Latham Shale, we also describe two new palaeoscolecidan taxa from the lower Cambrian Sirius Passet Fossil−Lagerstätte of North Greenland: Chalazoscolex pharkus gen. et sp. nov and Xystoscolex boreogyrus gen. et sp. nov. These palaeoscolecidans appear to be the oldest known (Cambrian Series 2, Stage 3) soft−bodied examples, being somewhat older than the diverse assemblages from the Chengjiang Fossil−Lagerstätte of China. In the Sirius Passet taxa the body is composed of a spinose introvert (or proboscis), trunk with ornamentation that includes regions bearing cuticu− lar ridges and sclerites, and a caudal zone with prominent circles of sclerites. The taxa are evidently quite closely related; generic differentiation is based on degree of trunk ornamentation, details of introvert structure and nature of the caudal re− gion. The worms were probably infaunal or semi−epifaunal; gut contents suggest that at least X. boreogyrus may have preyed on the arthropod Isoxys. Comparison with other palaeoscolecidans is relatively straightforward in terms of compa− rable examples in other Burgess Shale−type occurrences, but is much more tenuous with respect to the important record of isolated sclerites.
    [Show full text]
  • Recent Progress in Reconstructing Lophotrochozoan (Spiralian) Phylogeny
    Organisms Diversity & Evolution (2019) 19:557–566 https://doi.org/10.1007/s13127-019-00412-4 REVIEW Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny Christoph Bleidorn1 Received: 29 March 2019 /Accepted: 11 August 2019 /Published online: 22 August 2019 # Gesellschaft für Biologische Systematik 2019 Abstract Lophotrochozoa (also called Spiralia), the sister taxon of Ecdysozoa, includes animal taxa with disparate body plans such as the segmented annelids, the shell bearing molluscs and brachiopods, the colonial bryozoans, the endoparasitic acanthocephalans and the acoelomate platyhelminths. Phylogenetic relationships within Lophotrochozoa have been notoriously difficult to resolve leading to the point that they are often represented as polytomy. Recent studies focussing on phylogenomics, Hox genes and fossils provided new insights into the evolutionary history of this difficult group. New evidence supporting the inclusion of chaetognaths within gnathiferans, the phylogenetic position of Orthonectida and Dicyemida, as well as the general phylogeny of lophotrochozoans is reviewed. Several taxa formerly erected based on morphological synapomorphies (e.g. Lophophorata, Tetraneuralia, Parenchymia) seem (finally) to get additional support from phylogenomic analyses. Keywords Lophotrochozoa . Chaetognatha . Phylogenomics . Rare genomic changes . Annelida Molecular systematics revolutionized and revitalized the Weigertetal.2014;Andradeetal.2015;Laumeretal. field of animal phylogenetics. The landmark publications 2015a;Strucketal.2015;Struck2019), Platyhelminthes of Halanych et al. (1995) and Aguinaldo et al. (1997) (Egger et al. 2015;Laumeretal.2015b)orMollusca shaped our new view of animal phylogeny by establishing (Kocot et al. 2011; Smith et al. 2011). However, the phy- a system where the vast majority of bilaterian diversity is logeny within Lophotrochozoa is still strongly debated. grouped into Deuterostomia, Ecdysozoa and One of the few phylogenetic hypotheses which unambig- Lophotrochozoa (Halanych 2004).
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • Speciation and Timeâšrelationships of the Nemertines to The
    BULLETIN OF MARINE SCIENCE, 45(2): 531-538, 1989 SPECIATION AND TIME-RELATIONSHIPS OF THE NEMERTINES TO THE ACOELOMATE METAZOAN BILATERIA Nathan W Riser ABSTRACT The discovery of a marine nemertine, lacking a proboscis apparatus, in kelp holdfasts in New Zealand induces a re-evaluation of the phylum Nemertinea and its relationship to the Bilateria, Morphological features, which can be interpreted as primitive, are analyzed and a time frame for changes in the basic morphology is suggested. Soft-bodied invertebrates have a very poor fossil record: Valentine (1987, fig. 2, 7) reports that first records of Nemertinea appear in the Carboniferous and Platyhelminthes and related Gnathostomulida in Recent (Quaternary) times. Schram (1973: 989) concluded that Archisymplectes rhothon Schram from the middle Pennsylvanian ofIllinois " ... shows remarkable similarities to nemertines, and demonstrates the ancient status of that phylum." Conway Morris (1977) considered Amiskwia sagittijormis Walcott, originally placed in Chaetognatha, difficult to place in a phylum although Owre and Bayer (1962) advocated inclusion in Nemertinea. This imprint from the middle Cambrian Burgess Shales of British Columbia, if a nemertinean, would have to be placed in the Tribe, Pelagica. Brasier (1979: 125) noted that the " ... Cambrian radiation event" possibly lasted only 10 million years and that it produced a "variety of body plan" which during the Cambrian " ... may have exceeded that at any other time in earth history." Gibson (1988) in agreement with Stiasny- Wijnhoff (1923), considered the Pelagica to be the most primitive polystiliferous nemertine taxon. However, the tribe is highly specialized for a bathypelagic existence. Amiskwia, if a nemertine, would indicate extensive involvement of the phylum in the Cambrian radiation event.
    [Show full text]
  • Speciation and Timeâšrelationships of the Nemertines to The
    BULLETIN OF MARINE SCIENCE, 45(2): 531-538, 1989 SPECIATION AND TIME-RELATIONSHIPS OF THE NEMERTINES TO THE ACOELOMATE METAZOAN BILATERIA Nathan W Riser ABSTRACT The discovery of a marine nemertine, lacking a proboscis apparatus, in kelp holdfasts in New Zealand induces a re-evaluation of the phylum Nemertinea and its relationship to the Bilateria, Morphological features, which can be interpreted as primitive, are analyzed and a time frame for changes in the basic morphology is suggested. Soft-bodied invertebrates have a very poor fossil record: Valentine (1987, fig. 2, 7) reports that first records of Nemertinea appear in the Carboniferous and Platyhelminthes and related Gnathostomulida in Recent (Quaternary) times. Schram (1973: 989) concluded that Archisymplectes rhothon Schram from the middle Pennsylvanian ofIllinois " ... shows remarkable similarities to nemertines, and demonstrates the ancient status of that phylum." Conway Morris (1977) considered Amiskwia sagittijormis Walcott, originally placed in Chaetognatha, difficult to place in a phylum although Owre and Bayer (1962) advocated inclusion in Nemertinea. This imprint from the middle Cambrian Burgess Shales of British Columbia, if a nemertinean, would have to be placed in the Tribe, Pelagica. Brasier (1979: 125) noted that the " ... Cambrian radiation event" possibly lasted only 10 million years and that it produced a "variety of body plan" which during the Cambrian " ... may have exceeded that at any other time in earth history." Gibson (1988) in agreement with Stiasny- Wijnhoff (1923), considered the Pelagica to be the most primitive polystiliferous nemertine taxon. However, the tribe is highly specialized for a bathypelagic existence. Amiskwia, if a nemertine, would indicate extensive involvement of the phylum in the Cambrian radiation event.
    [Show full text]
  • Paleoecology of the Greater Phyllopod Bed Community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A
    Available online at www.sciencedirect.com Palaeogeography, Palaeoclimatology, Palaeoecology 258 (2008) 222–256 www.elsevier.com/locate/palaeo Paleoecology of the Greater Phyllopod Bed community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A. Jackson Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5 Accepted 3 May 2007 Abstract To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time. The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution).
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS January 9, 1986 Paper 117 MIDDLE CAMBRIAN PRIAPULIDS AND OTHER SOFT-BODIED FOSSILS FROM UTAH AND SPAIN' S. CONWAY MORRIS and R. A. ROBISON Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ and Department of Geology, University of Kansas, Lawrence, Kansas 66045 Abstract—The fossil priapulid worms Ottoia prolifica, Selkirkia willoughbyi n. sp., Selkirkia spencei, and Selkirkia sp. are illustrated from the Middle Cambrian of Utah. New records of O. pro ca from the Spence Shale and Marjum Formation represent notable geographic and stratigraphic extensions of its previously unique occurrence in the Stephen Formation of British Columbia. O. prolifica has a range through much of the Middle Cambrian (?15 Ma), during which time it shows minimal morphological change. New records of S. spencei augment previous finds in the Spence Shale. S. willoughbyi n. sp. occurs in the Marjum Formation and Wheeler Formation. It differs from the type species S. columbia in details of tube size and degree of tapering, although the poorly known soft parts appear to be broadly similar. These occurrences extend significantly the stratigraphie range of Selkirkia, and are augmented by the discovery of Selkirkia sp. in the Wheeler Formation. A unique specimen of the possible annelid worm Palaeoscolex, P. cf. P. ratcliffei, is described from the Middle Cambrian of Spain, thereby extending the geographic range from previously known occurrences in England, Utah, and South Australia. Papillate ornamentation of various species of Palaeoscolex is compared, and the new class Palaeoscolecida is erected. These descrip- tions of soft-bodied organisms provide further information on the diversity of Cambrian life.
    [Show full text]
  • Are Palaeoscolecids Ancestral Ecdysozoans?
    EVOLUTION & DEVELOPMENT 12:2, 177–200 (2010) DOI: 10.1111/j.1525-142X.2010.00403.x Are palaeoscolecids ancestral ecdysozoans? Thomas H. P. Harvey,a,1,* Xiping Dong,b and Philip C. J. Donoghuea,* aDepartment of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK bSchool of Earth and Space Sciences, Peking University, Beijing, 100871, P.R. China ÃAuthors for correspondence (email: [email protected], [email protected]) 1Present address: Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK. SUMMARY The reconstruction of ancestors is a central aim scalidophoran worms, but not with panarthropods. of comparative anatomy and evolutionary developmental Considered within a formal cladistic context, these biology, not least in attempts to understand the relationship characters provide most overall support for a stem-priapulid between developmental and organismal evolution. Inferences affinity, meaning that palaeoscolecids are far-removed from based on living taxa can and should be tested against the the ecdysozoan ancestor. We conclude that previous fossil record, which provides an independent and direct view interpretations in which palaeoscolecids occupy a deeper onto historical character combinations. Here, we consider the position in the ecdysozoan tree lack particular morphological nature of the last common ancestor of living ecdysozoans support and rely instead on a paucity of preserved characters. through a detailed analysis of palaeoscolecids, an early and This bears out a more general point that fossil taxa may extinct group of introvert-bearing worms that have been appear plesiomorphic merely because they preserve only proposed to be ancestral ecdysozoans.
    [Show full text]