A Primary Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

A Primary Astronomy . *% V *> v- ^ V* "> ^ c ' -0' w X i5 u «K A^' '^A * <£ %. '" '/ ft \v SIXINCHACHROMATIG TELESCOPE MADEBYMR.HENRYFITZ OFTHE CITY OF NEW YORK, AND MOUNTED EQUATORIALLY BY MESSRS. GREGG fy RUPP OF THE SAME CITY. IT IS 8 FEET IN LENGTH,^ T HE TOTAL COST OF THE INSTRUMENT ABQUT$IOOO. IT SHOW< HE MOON ^PLANETS WITH GREAT SHARPNESS.THE 5TH. £6TH. STARS IN THE TRAPEZIUMvOF 9, ORIONIS.& SEPARATES E, ARIETIS, 36ANDR0MEDAE, AND OTHER CLOSf STARS OF THE SAME CLASS. IT IS NOW EJECTED IN THE OBSERVATORY OF LEWIS M. RUTHERFORD, ESQ. INTHE CITY OF NEW YORK. H&cfli. cJ^jAix-ty^ i-L.(?n PRIMARY ASTRONOMY, FOR SCHOOLS AND FAMILIES: ADAPTED TO THE CAPACITY OF YOUTH, AND ILLUSTRATED BY NEARLY TWO HUNDRED ENGRAVINGS. BY HIRAM MATTISON, PROFESSOR OF NATURAL PHILOSOPHY AND ASTRONOMY IN THE FALLEY SEMINARY I AUTHOR OF THE ELEMENTARY ASTRONOMY, ASTRONOMICAL MAPS, ETC. ETC. ^ NEW YORK: HUNTINGTON AND SAVAGE, MASON AND LAW, 23 PARK ROW, (Opposite the Astor House.) 1851. zL * & Entered according to Act of Congress, in the year 185 1, By HIRAM MATTISON, In the Clerk's Office of the District Court for the Southern District of New York. 0* Vy L Stereotyi)ed by RICHARD C. VALENTINE, 45 Gold-st., New York. k CONTENTS. PART FIRST. PRELIMINARY OBSERVATIONS AND DEFINITIONS. PAGE I. History of Astronomy 5 II. The Modern, or Copernican System 9 IIL Geometrical Definitions 14 IV. Of Lines and Angles 18 V. Of the Circle and the Ellipse 20 VL The Terrestrial and Celestial Spheres 24 PART SECOND. OF THE SOLAR SYSTEM. VII. Bodies that compose the System 31 VIII. Names of the Planets, Signs, <fec. 33 IX. Distances of the Planets from the Sun 38 X. Light and Heat of the several Planets 40 XI. Magnitude, Density, and Gravitation of the Planets 42 XII. Revolution of the Planets around the Sun 46 XIII. Aspects, Sidereal and Synodic Revolutions, &c 50 XIV. Direct and Retrograde Motions, Planets Stationary, &c... 53 XV. Diurnal Revolutions of the Planets, Time, &c 51 XVL The Ecliptic, Zodiac, Signs, Longitude, &c 63 XVII. Form and Position of the Planetary Orbits, Nodes, &c. ... 69 XVIII. Of Transits 73 XIX. The Sun's apparent Motions, the Seasons, <fec 76 XX. Seasons of the different Planets, Telescopic Views, &c 82 XXI. Telescopic Views of the Planets continued 87 XXII. Of the Secondary Planets. 93 XXIIL Revolution of the Moon around the Earth 96 XXIV. The Moon's Changes 101 XXV. Day and Night, Seasons, <fec, of the Moon 106 XXVL Eclipses of the Sun 113 XXVII. Eclipses of the Moon 120 XXVIII. Satellites of Jupiter, Eclipses, <fec 123 XXIX. Satellites of Saturn, Herschel, and Neptune 128 XXX. Of the Tides 131 XXXI. Of Spring and Neap Tides 135 SUGGESTIONS TO TEACHERS, ETC. XXXII Of Comets 138 XXXIII. Of the Sun 145 XXXIV. General Remarks upon the Solar System.... 152 PART THIRD. OF THE SIDEREAL HEAVENS. XXXV. The Fixed Stars—their Number, Distances, &o 155 XXXVI. Double, Variable, and Temporary Stars 159 XXXVII. Clusters of Stars and Nebulae 161 XXXVIII. Of the Atmosphere, Winds, Clouds, Storms, &c 165 SUGGESTIONS TO TEACHERS AID STUDENTS. 1. The coarse print should generally be committed to memory, as an answer to the questions. 2. The fine print and the cuts should be carefully studied ; and the student should be prepared, if called upon, to make drawings similar to those found in the lesson upon the blackboard. 3. In studying the illustrations, the pupil should generally imagine himself to be looking South—the top of the book being North ; the bottom South ; the left hand East ; and the right hand West. 4. The teacher should call upon the several members of the class, in succession, to sketch the diagrams as they occur in the lesson, and to show how they illustrate the point under considera- tion—this explanation being in all cases extemporaneous. 5. The Pronunciation, Definition, and Derivation of terms should receive special attention ; and to facilitate such inquiries, important words are not only pronounced and defined, but are traced to their original source. 6. Finally, whenever practicable, let the objects or phenomena described in the lessons be looked up and observed as they really appear in nature. This will invest the subject with new interest, and will excite in the mind of the student a desire to know more of this most wonderful and most sublime of all human studies. New York, January, 1851. — PRIMARY ASTRONOMY, PART I. PRELIMINARY OBSERVATIONS AND DEFINITIONS. LESSON I. HISTORY OF ASTRONOMY. 1. Question.— What is Astronomy ? Answer.—It is the science of the Heavenly Bodies the Sun, Moon, Planets, Comets, and Stars. 2. What does it teach respecting these bodies ? Their names, distances, magnitudes, and motions, and the causes of Day and Night, the Seasons, Eclipses, Tides, and various other phenomena.* 3. Was Astronomy known to the ancients? It was; and was taught in Egypt, Chaldea, India, China, and Greece long before the birth of Christ. 4. What was the occupation of the first Astronomers ? They were shepherds and herdsmen. 5. By what were they led to this study? By observing the movements of the sun, moon, and stars, while watching their flocks from year to year in the open fields, f * Phe-nom'-e-na, appearances ; things presented to the eye, or events seen to take place. The singular of this term is Phe-nom-e-non. f Norton's Elementary Treatise, page 2. 1* PRIMARY ASTRONOMY. ANCIENT ASTRONOMERS OBSERVING THE HEAVENS. 6. Where do modern Astronomers make their observations 1 In what are called Observatories. the heavens. The [An observatory is a place erected for the purpose of observing Mitchel on Mount most celebrated in this country is the one erected by Professor Philadelphia, Adams, Cincinnati. Besides this, there is one at Washington, one at to erect one on one at Cambridge, Mass., &c. An effort is now being made (1850) M. Brooklyn Hights, Long Island. A good private observatory, owned by Lewis Rutherford, Esq., may be seen in the rear of his residence, corner of Second Avenue and Eleventh street, New York City.] BR. DICK'S OBSERVATORY, NEAR DUNDEE, SCOTLAND. 7, What other advantage have modern Astronomers ? They are assisted by many useful instruments, the most important of which is the Telescope* * From the Greek tele, at a distance, and skopeo, to see. PRIMARY ASTROXOMY. [This is a picture of the Great Refracting MODERN ASTRONOMERS USING Telescope of the Cincinnati Observatory. It is A TELESCOPE. reduced and copied from a cut in the first num- ber of the Sidereal Messenger* July, 1846. The original (which is an enlargement of a daguerre- otype) is exceedingly accurate and beautiful, and our artist has given us an exact miniature of it in the page before you. This Telescope has an object-glass (placed in the top of the tube toward the objects to be seen) which is twelve inches in diameter. The tube, which is seventeen feet long, and the Telescope, alone cost $9,437. It was made at Munich, in Germany.] §. What did the ancients think of the form of the earth ? Instead of a globe inhabited on all sides, they believed it to be a plane, inhabited on one side only. 9. What did they think of her motions, and those of the heavenly bodies ? They believed the earth to be at rest in the center of the universe, and that the sun, moon, and stars actually revolved around her, from east to west, as they appear to do, every twenty-four hours. [It is by no means strange that the ancients were thus deceived by appearances. Seeing but a small portion of the earth at any one time, they were easily misled in re- gard to its form ; and having no idea of its revolution, it was natural to suppose that the apparent daily revolution of the heavenly bodies westward was real. In the same manner persons often attribute their own motions to bodies that are at rest, especially when carried swiftly forward without any apparent cause (as when one travels in a steamboat or railway car), and when for a time they forget their own motions.] 10. What other notions had the ancients in respect to the figure of the earth ? That it was longest from east to west. [They observed that traveling east or west had no effect upon the apparent position of the stars, while going north and south did. Hence the conclusion that the earth was narrowest north and south. This erroneous idea was the origin of our modern terms, latitude and longitude, the last of which means length, and the former I breadth.'] 11. What was the ancient system of Astronomy called, and why? 8 PRIMARY ASTRONOMY. The Ptolemaic* Theory, from Ptolemy,f an Egyptian philosopher, who nourished in the second century of the Christian era. [1. The word Ptolemy was a common name for the successive Egyptian princes, as Pharaoh:): was for the kings of Egypt in the days of Moses. PTOLEMAIC THEORY OF THE STRUCTURE OF THE UNIVERSE. 2. The ancients supposed the earth to be surrounded by eight crystalline arches or spheres, one within the other, in which the sun, moon, and stars were set. In this way they accounted for their not falling down upon the earth, while the light of the most distant of the stars could pass through the transparent crystal till it reached the earth. The moon was supposed to be in the first sphere, the sun in the fourth, and the fixed stars in the eighth or highest sphere. The cut is intended to illustrate all these particulars.
Recommended publications
  • Chemical Similarities Between Galactic Bulge and Local Thick Disk Red Giants: O, Na, Mg, Al, Si, Ca, and Ti
    A&A 513, A35 (2010) Astronomy DOI: 10.1051/0004-6361/200913444 & c ESO 2010 Astrophysics Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti A. Alves-Brito1,2, J. Meléndez3, M. Asplund4, I. Ramírez4, and D. Yong5 1 Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil e-mail: [email protected] 2 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 3 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 4 Max Planck Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 5 Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia Received 9 October 2009 / Accepted 13 January 2010 ABSTRACT Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemen- tal abundance analysis of α- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade’s window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (−1.5 < [Fe/H] < +0.5).
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Morphology and Dynamics of the Venus Atmosphere at the Cloud Top Level As Observed by the Venus Monitoring Camera
    Morphology and dynamics of the Venus atmosphere at the cloud top level as observed by the Venus Monitoring Camera Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Richard Moissl aus Grünstadt Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Dr. Horst-Uwe Keller eingereicht am: 24. April 2008 mündliche Prüfung (Disputation) am: 9. Juli 2008 ISBN 978-3-936586-86-2 Copernicus Publications, Katlenburg-Lindau Druck: Schaltungsdienst Lange, Berlin Printed in Germany Contents Summary 7 1 Introduction 9 1.1 Historical observations of Venus . .9 1.2 The atmosphere and climate of Venus . .9 1.2.1 Basic composition and structure of the Venus atmosphere . .9 1.2.2 The clouds of Venus . 11 1.2.3 Atmospheric dynamics at the cloud level . 12 1.3 Venus Express . 16 1.4 Goals and structure of the thesis . 19 2 The Venus Monitoring Camera experiment 21 2.1 Scientific objectives of the VMC in the context of this thesis . 21 2.1.1 UV Channel . 21 2.1.1.1 Morphology of the unknown UV absorber . 21 2.1.1.2 Atmospheric dynamics of the cloud tops . 21 2.1.2 The two IR channels . 22 2.1.2.1 Water vapor abundance and cloud opacity . 22 2.1.2.2 Surface and lower atmosphere .
    [Show full text]
  • Dsc Pub Edited
    Deep Space Chronicle: Foreword Foreword From the 1950s to the present, to some and asteroids, have been visited. We have Americans, space has represented prestige placed spacecraft in orbit around our Moon and a positive image for the United States on and the planets Venus, Mars, and Jupiter; we the world stage. To others, it has signified have landed on Venus, Mars, and our Moon. the quest for national security. Some view it NASA’s stunning missions to explore the as a place to station telecommunications outer Solar System have yielded a treasure of satellites and little else. To still others, space knowledge about our universe, how it origi- is, or should be, about gaining greater knowl- nated, and how it works. NASA’s exploration edge of the universe. It represents, for them, of Mars—coupled with the efforts of the pure science and the exploration of the Soviet Union/Russia—has powerfully shown unknown. Even so, the history of space sci- the prospect of past life on the Red Planet. ence and technology is one of the largely neg- Missions to Venus (including some that lected aspects in the history of the space landed on it) and Mercury have increased our program. This important monograph by Asif understanding of the inner planets. Lunar A. Siddiqi chronicles the many space probes exploration has exponentially advanced that have been sent from Earth to explore human knowledge about the origins and evo- other bodies of the solar system. It provides lution of the solar system. Most importantly, a chronological discussion of all space we have learned that, like Goldilocks and the probes, both those developed by the United three bears, Earth is a place in which every- States and those developed by the Soviet thing necessary to sustain life is “just right,” Union/Russia and other nations; basic data while all the other planets of our system about them; their findings; and their status seem exceptionally hostile.
    [Show full text]
  • The Science Return from Venus Express the Science Return From
    The Science Return from Venus Express Venus Express Science Håkan Svedhem & Olivier Witasse Research and Scientific Support Department, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Dmitri V. Titov Max Planck Institute for Solar System Studies, Katlenburg-Lindau, Germany (on leave from IKI, Moscow) ince the beginning of the space era, Venus has been an attractive target for Splanetary scientists. Our nearest planetary neighbour and, in size at least, the Earth’s twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called ‘morning star’ remains a mysterious world! Introduction All of these earlier studies of Venus have given us a basic knowledge of the conditions prevailing on the planet, but have generated many more questions than they have answered concerning its atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and plasma environment. It is now high time that we proceed from the discovery phase to a thorough
    [Show full text]
  • The Ultimate Guide to the Solar System
    FOCUS MAGAZINE Collection VOL.12 THE ULTIMATE GUIDE TO THE SOLAR SYSTEM How the Solar System The most mysterious How humans will began and how it will end objects in space colonise Mars Mission into the Sun Back to the Moon Dodging an asteroid The ice volcanoes The new gold rush: Searching for life in of Saturn’s moon Titan mining Mercury Europa’s oceans a big impact in any room Spectacular wall art from astro photographer Chris Baker. See the exciting new pricing and images! Available as frameless acrylic or framed and backlit up to 1.2 metres wide. All limited editions. www.galaxyonglass.com | [email protected] Or call Chris now on 07814 181647 EDITORIAL Editor Daniel Bennett Neighbourhood watch Managing editor Alice Lipscombe-Southwell Production editor Jheni Osman Commissioning editor Jason Goodyer How well do you know your neighbours? They Staff writer James Lloyd might only be next door, a little further down the Editorial assistant Helen Glenny street or just around the corner; you might see Additional editing Rob Banino Additional editing Iain Todd them passing by most days, you may even pop in for a cuppa and a chat now and then. But however ART & PICTURES familiar your neighbours may be, there’s probably Art editor Joe Eden Deputy art editor Steve Boswell still a lot you don’t know about them – enough Designer Jenny Price that they can still surprise you from time to time. Additional design Dean Purnell Picture editor James Cutmore The same can be said for our celestial neighbours spinning around the Solar System.
    [Show full text]
  • Lecture 21: Venus
    Lecture 21: Venus 1 Venus Terrestrial Planets Animation Venus •The orbit of Venus is almost circular, with eccentricity e = 0.0068 •The average Sun-Venus distance is 0.72 AU (108,491,000 km) •Like Mercury, Venus always appears close to the Sun in the sky Venus 0.72 AU 47o 1 AU Sun Earth 2 Venus •Venus is visible for no more than about three hours •The Earth rotates 360o in 24 hours, or o o 360 = 15 24 hr hr •Since the maximum elongation of Venus is 47o, the maximum time for the Sun to rise after Venus is 47o ∆ t = ≈ 3 hours 15o / hr Venus •The albedo of an object is the fraction of the incident light that is reflected Albedo = 0.1 for Mercury Albedo = 0.1 for Moon Albedo = 0.4 for Earth Albedo = 0.7 for Venus •Venus is the third brightest object in the sky (Sun, Moon, Venus) •It is very bright because it is Close to the Sun Fairly large (about Earth size) Highly reflective (large albedo) Venus •Where in its orbit does Venus appears brightest as viewed from Earth? •There are two competing effects: Venus appears larger when closer The phase of Venus changes along its orbit •Maximum brightness occurs at elongation angle 39o 3 Venus •Since Venus is closer to the Sun than the Earth is, it’s apparent motion can be retrograde •Transits occur when Venus passes in front of the solar disk as viewed from Earth •This happens about once every 100 years (next one is in 2004) Venus (2 hour increments) Orbit of Venus •The semi-major axis of the orbit of Venus is a = 0.72 AU Venus Sun a •Kepler’s third law relates the semi-major axis to the orbital period
    [Show full text]
  • Towards the 2012 Transit of Venus Report on a Talk by Darren Bellingham, Section Director ASV Solar Section
    Towards the 2012 Transit of Venus Report on a Talk by Darren Bellingham, Section Director ASV Solar Section A Venus Transit, we call when we can see the planet Venus passing directly in front of the Sun. That is, when the Sun, Venus and Earth are exactly in line. This is similar to when the Moon passes in front of the Sun on a solar eclipse. But unlike the Moon, which covers most of the Sun, Venus does not eclipse the Sun because it is so much further away. It appears only as a small dot, slowly crossing the face of the Sun. A transit (sometime called a passage) can only occur with the inner planets – Mercury and Venus – because they are the only planets that during their orbits can pass between the Earth and Sun. The astronomical term for it is ‘inferior conjunction’. Transits of Venus are amongst the rarest of solar-system alignments, a rare, once in a life time event. Only seven have occurred since Galileo first pointed his telescope towards the heaven. Because the orbit of Venus is tilted 4.3 degrees with respect to the Ecliptic (Earth’s orbit), alignment occurs only when both meet at the nodes (the up and down crossing points) of the two orbits. Usually the alignment lasts for two successive meets at that point, 8 years apart. The current 2004 - 2012 pair occurs at the descending node. The previous Venus transit (pair) occurred at the upward node 129.5 years ago in 1874 and 1882. The next pair will start 113.5 years from now, in 2117 and 2125, again at the ascending node.
    [Show full text]
  • Terrestrial Planets
    Lecture 11 Terrestrial Planets Jiong Qiu, MSU Physics Department Guiding Questions 1. What makes Mercury a difficult planet to see? 2. Why Venus is a bright morning and evening star? 3. What are special about orbital and rotation motions of Mercury? 4. What are special about orbital and rotation motions of Venus? 5. How and why atmosphere of Venus is drastically different from Earth’s? 6. What effect does it have on the planet’s temperature? 7. How do surface features and geological activities compare in terrestrial planets and the Moon? 11.1 Overview the terrestrial (inner) planet • Terrestrial planets Mercury has a Moon-like surface but Earth-like interior. It also has its own unique properties. elliptical orbit coupled spin-orbit dense, magnetic field dry, airless, heavily cratered Mercury is small and closest to the Sun. Venus might be thought as the twin sister of the Earth with many similarities, yet differences abound. slow retrograde rotation highly reflective extreme temperatures throttling air Venus has a very thick atmosphere and is hotter than should. • observation of terrestrial planets: their positions in the sky and their phases. • orbital and rotation motions Kepler s third law: a3=P2 ’ role of gravitation spin-rotation coupling • atmospheres and energy balance greenhouse and icehouse effects • surface, interior, geological activity, and magnetism Gravity and distance to the Sun account for many important properties. 7.2 Position in the sky Mercury and Venus are inferior planets with smaller orbits than Earth’s. They are always on the same side with the Sun and only seen in the daytime.
    [Show full text]
  • 78. Don't Miss the Transit of Venus in 2012: It's Your Last Chance Until
    © 2011, Astronomical Society of the Pacific No. 78 • Fall 2011 www.astrosociety.org/uitc 390 Ashton Avenue, San Francisco, CA 94112 Don’t Miss the Transit of Venus in 2012: It’s Your Last Chance Until 2117 by Chuck Bueter (www.transitofvenus.org) The Travails of Le Gentil Imagine your country is sending you on a quest to resolve one of the era’s biggest questions in science. At this moment in history, the solution, the technology, and the alignment of planets have come together. For your part of the mission, all you have to do is record the instant when the edge of one small circle touches the edge of a second larger circle. Such were the fortunate circumstances of Guilliame Hyacinthe Jean Baptiste Le Gentil. The French astronomer eagerly set sail for India to witness the 1761 transit of Venus, a rare celestial alignment in which the silhouette of Venus appears to pass directly across the sun. A fleet of astronomers spread out across the globe in response to Edmund Halley’s call to time the event from diverse locations, from which the distance to the sun—the highly valuable Astronomical Unit—could be mathematically derived. Expeditions were sent around the world to observe the transit of Venus. Image courtesy of Chuck Bueter Upon Le Gentil’s arrival, the intended destination was occupied by hostile English troops, so his ship turned Johannes Kepler showed the relationship between a planet’s back to sea, where he could not effectively use a telescope. orbital period and its distance from the sun.
    [Show full text]
  • A Treatise on Astronomy Theoretical and Practical by Robert
    NAPOLI Digitized by Google Digitized Google A TREATISE ov ASTRONOMY THEORETICAL and PRACTICAL. BY ROBERT WOODHOUSE, A M. F.R.S. FELLOW OF GONVILLK AND CAIUS COLLEGE, AND PLUMIAN PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF CAMBRIDGE. Part II. Vol. I. CONTAINING THE THEORIES OF THE SUN, PLANETS, AND MOON. CAMBRIDGE: PRINTED BY 3 . SMITH, PRINTER TO THE UNIVERSITY ; FOR J. DEIGHTON & SONS, AND O. & W. B. WHITTAKER, LONDON. 1823 Digitized by Google Digitized by Google : ; —; CHAP. XVII. ON THE SOLAR THEORY Inequable Motions of the Sun in Right Ascension and Longi- tude.— The Obliquity of the Ecliptic determined from Ob- servations made near to the Solstices . — The Reduction of Zenith Distances near to the Solstices, to the Solstitial Zenith Distance.—Formula of such Reduction.—Its Application . Investigation of the Form of the Solar Orbit. — Kepler’s Discoveries.— The Computation of the relative Values of the Sun’s Distances and of the Angles described round the Earth.— The Solar Orbit an Ellipse. — The Objects of the Elliptical Theory. In giving a denomination to the preceding part of this Volume, we have stated it to contain the Theories of the fixed Stars such theories are, indeed, its essential subjects ; but they are not exclusively so. In several parts we have been obliged to encroach on, or to borrow from, the Solar Theory and, in so doing, have been obliged to establish certain points in that theory, or to act as if they had been established. To go no farther than the terms Right Ascension, Latitude, and Longitude. The right ascension of a star is measured from the first point of Aries, which is the technical denomination of the intersection of the equator and ecliptic, the latter term de- signating the plane of the Sun’s orbit the latitude of a star is its angular distance from the last mentioned plane ; and the longitude of a star is its distance from the first point of Aries measured along the ecliptic.
    [Show full text]
  • Venus Express: Highlights of the Nominal Mission1 D
    ISSN 0038-0946, Solar System Research, 2009, Vol. 43, No. 3, pp. 185–209. © Pleiades Publishing, Inc., 2009. Original Russian Text © D.V. Titov, H. Svedhem, F.W. Taylor, S. Barabash, J.-L. Bertaux, P. Drossart, V. Formisano, B. Häusler, O. Korablev, W.J. Markiewicz, D. Nevejans, M. Pätzold, G. Piccioni, J.-A. Sauvaud, T.L. Zhang, O. Witasse, J.-C. Gerard, A. Fedorov, A. Sanchez-Lavega, J. Helbert, R. Hoofs, 2009, published in Astronomicheskii Vestnik, 2009, Vol. 43, No. 3, pp. 195–217. Venus Express: Highlights of the Nominal Mission1 D. V. Titova,b, H. Svedhemc, F. W. Taylord, S. Barabashe, J.-L. Bertauxf, P. Drossartg, V. Formisanoh, B. Häusleri, O. Korablevb, W. J. Markiewicza, D. Nevejansj, M. Pätzoldk, G. Piccionil, J.-A. Sauvaudm, T. L. Zhangn, O. Witassec, J.-C. Gerardo, A. Fedorovp, A. Sanchez-Lavegaq, J. Helbertr, and R. Hoofss a Max-Planck Institute for Solar System Research, Katlenburg-Lindau, Germany b Space Research Institute (IKI), Moscow, Russia c ESA/ESTEC, Noordwijk, The Netherlands d Oxford University, UK e IRF, Kiruna, Sweden f Service d’Aeronomie, CNRS, France g LESIA, Observatoire de Paris, Meudon, France h IFSI/INAF, Rome, Italy i Universitute der Bundeswehr, München, Germany j Institute for Space Aeronomy, Belgium k Rheinean Institute for Environmental research, Universitute zu Küln, Cologne, Germany l IASF/CNR, Rome, Italy m Centre d’Etude Spatiale des Rayonnements, Tolouse, France n Space Research Institute, Graz, Austria o LPAP, Universite de Liege, Belgium p CESR, Toulouse, France q Universidad del Pais Vasco, Bilbao, Spain r Institute for Planetary Research, DLR, Berlin, Germany s ESA/ESAC, Villanueva de la Canada, Madrid, Spain e-mail: [email protected] Received October 7, 2008 Abstract—Venus Express is the first European (ESA) mission to the planet Venus.
    [Show full text]