Theory of Mechanism Design

Total Page:16

File Type:pdf, Size:1020Kb

Theory of Mechanism Design Theory of Mechanism Design Debasis Mishra1 April 14, 2020 1Economics and Planning Unit, Indian Statistical Institute, 7 Shahid Jit Singh Marg, New Delhi 110016, India, E-mail: dmishra@isid.ac.in 2 Contents 1 Introduction to Mechanism Design7 1.0.1 Private Information and Utility Transfers................8 1.0.2 Examples in Practice........................... 10 1.1 A General Model of Preferences......................... 11 1.2 Social Choice Functions and Mechanisms.................... 14 1.3 Dominant Strategy Incentive Compatibility................... 16 1.4 Bayesian Incentive Compatibility........................ 18 1.4.1 Failure of revelation principle...................... 21 2 Mechanism Design with Transfers and Quasilinearity 23 2.1 A General Model................................. 24 2.1.1 Allocation Rules............................. 24 2.1.2 Payment Functions............................ 26 2.1.3 Incentive Compatibility.......................... 27 2.1.4 An Example................................ 27 2.1.5 Two Properties of Payments....................... 28 2.1.6 Efficient Allocation Rule is Implementable............... 29 2.2 The Vickrey-Clarke-Groves Mechanism..................... 32 2.2.1 Illustration of the VCG (Pivotal) Mechanism.............. 33 2.2.2 The VCG Mechanism in the Combinatorial Auctions......... 35 2.2.3 The Sponsored Search Auctions..................... 37 2.3 Affine Maximizer Allocation Rules are Implementable............. 38 2.3.1 Public Good Provision.......................... 40 2.3.2 Restricted and Unrestricted Type Spaces................ 41 3 3 Mechanism Design for Selling a Single Object 45 3.1 The Single Object Auction Model........................ 45 3.1.1 The Vickrey Auction........................... 45 3.1.2 Facts from Convex Analysis....................... 46 3.1.3 Monotonicity and Revenue Equivalence................. 49 3.1.4 The Efficient Allocation Rule and the Vickrey Auction........ 53 3.1.5 Deterministic Allocations Rules..................... 54 3.1.6 Individual Rationality.......................... 55 3.1.7 Beyond Vickrey auction: examples................... 56 3.1.8 Bayesian incentive compatibility..................... 58 3.1.9 Independence and characterization of BIC............... 59 3.2 The One Agent Problem............................. 62 3.2.1 Monopolist problem........................... 65 3.3 Optimal Auction Design............................. 70 3.4 Correlation and full surplus extraction..................... 79 4 Redistribution mechanisms 85 4.1 A model of redistributing a single object.................... 86 4.2 Characterizations of IC and IR constraints................... 87 4.3 Dissolving a partnership............................. 89 4.3.1 Corollaries of Theorem 13........................ 93 4.4 Dominant strategy redistribution........................ 96 4.5 The dAGV mechanism.............................. 101 5 Multidimensional Mechanism Design 105 5.1 Incentive Compatible Mechanisms........................ 106 5.1.1 An illustration.............................. 106 5.2 The Implementation Problem.......................... 113 5.3 Revenue Equivalence............................... 119 5.4 Optimal Multi-Object Auction.......................... 122 6 Extensions 129 6.1 Classical Preferences............................... 129 4 6.1.1 Type Spaces with Income Effects.................... 130 6.1.2 Mechanisms and Incentive Compatibility................ 133 6.1.3 Vickrey Auction with Income Effect................... 135 6.2 Interdependent valuations............................ 139 6.2.1 Mechanisms and Ex-post Incentive Compatibility........... 140 6.2.2 Efficiency: Impossibility and Possibility................. 141 7 The Strategic Voting Model 147 7.1 The Unrestricted Domain Problem....................... 147 7.1.1 Examples of Social Choice Functions.................. 149 7.1.2 Implications of Properties........................ 150 7.1.3 The Gibbard-Satterthwaite Theorem.................. 153 7.1.4 Proof of the Gibbard-Satterthwaite Theorem.............. 154 7.2 Single Peaked Domain of Preferences...................... 160 7.2.1 Possibility Examples in Single-Peaked Domains............ 163 7.2.2 Median voter social choice function................... 164 7.2.3 Properties of Social Choice Functions.................. 165 7.2.4 Characterization Result......................... 168 7.3 Randomized Social Choice Function....................... 173 7.3.1 Defining Strategy-proof RSCF...................... 173 7.3.2 Randomization over DSCFs....................... 176 7.3.3 The Counterpart of Gibbard-Satterthwaite Theorem.......... 177 8 Matching Theory 181 8.1 Object Assignment Model............................ 182 8.1.1 The fixed priority mechanism...................... 182 8.1.2 Top Trading Cycle Mechanism with Fixed Endowments........ 189 8.1.3 Stable House Allocation with Existing Tenants............. 193 8.1.4 Generalized TTC Mechanisms...................... 197 8.2 The Two-sided Matching Model......................... 199 8.2.1 Stable Matchings in Marriage Market.................. 200 8.2.2 Deferred Acceptance Algorithm..................... 201 5 8.2.3 Stability and Optimality of Deferred Acceptance Algorithm...... 203 8.2.4 Unequal number of men and women.................. 208 8.2.5 Strategic Issues in Deferred Acceptance Algorithm........... 209 8.2.6 College Admission Problem....................... 213 6 Chapter 1 Introduction to Mechanism Design Consider a seller who owns an indivisible object, say a house, and wants to sell it to a set of buyers. Each buyer has a value for the object, which is the utility of the house to the buyer. The seller wants to design a selling procedure, an auction for example, such that he gets the maximum possible price (revenue) by selling the house. If the seller knew the values of the buyers, then he would simply offer the house to the buyer with the highest value and give him a \take-it-or-leave-it" offer at a price equal to that value. Clearly, the (highest value) buyer has no incentive to reject such an offer. Now, consider a situation where the seller does not know the values of the buyers. What selling procedure will give the seller the maximum possible revenue? A clear answer is impossible if the seller knows nothing about the values of the buyer. However, the seller may have some information about the values of the buyers. For example, the possible range of values, the probability of having these values etc. Given these information, is it possible to design a selling procedure that guarantees maximum (expected) revenue to the seller? In this example, the seller had a particular objective in mind - maximizing revenue. Given his objective he wanted to design a selling procedure such that when buyers participate in the selling procedure and try to maximize their own payoffs within the rules of the selling procedure, the seller will maximize his expected revenue over all such selling procedures. The study of mechanism design looks at such issues. A planner (mechanism designer) needs to design a mechanism (a selling procedure in the above example) where strategic agents can interact. The interactions of agents result in some outcome. While there are several possible ways to design the rules of the mechanism, the planner has a particular 7 objective in mind. For example, the objective can be utilitarian (maximization of the total utility of agents) or maximization of his own utility (as was the case in the last example) or some fairness objective. Depending on the objective, the mechanism needs to be designed in a manner such that when strategic agents interact, the resulting outcome gives the desired objective. One can think of mechanism design as the reverse engineering of game theory. In game theory terminology, a mechanism induces a game-form whose equilibrium outcome is the objective that the mechanism designer has set. 1.0.1 Private Information and Utility Transfers The primitives a mechanism design problem are the set of possible outcomes or alternatives and preferences of agents over the set of alternatives. These preferences are not known to the mechanism designer. Mechanism design problems can be classified based on the amount of information asymmetry present between the agents and the mechanism designer. 1. Complete Information: Consider a setting where an accident takes place on the road. Three parties (agents) are involved in the accident. Everyone knows perfectly who is at fault, i.e., who is responsible to what extent for the accident. The traffic police comes to the site but does not know the true information about the accident. The mechanism design problem is to design a set of rules where the traffic police's objective (to punish the true offenders) can be realized. The example given here falls in a broad class of problems where agents perfectly know all the information between themselves, but the mechanism designer does not know this information. This class of problems is usually termed as the implementation problem. It is usually treated separately from mechanism design because of strong requirements in equilib- rium properties in this literature. We will not touch on the implementation problem in this course. 2. Private Information and Interdependence: Consider the sale of a single object. The utility of an agent for the object is his private information. This utility information may be known to him completely, but usually not known to other agents and the mechanism designer. There are instances where the utility information of an agent
Recommended publications
  • Game Theory 2: Extensive-Form Games and Subgame Perfection
    Game Theory 2: Extensive-Form Games and Subgame Perfection 1 / 26 Dynamics in Games How should we think of strategic interactions that occur in sequence? Who moves when? And what can they do at different points in time? How do people react to different histories? 2 / 26 Modeling Games with Dynamics Players Player function I Who moves when Terminal histories I Possible paths through the game Preferences over terminal histories 3 / 26 Strategies A strategy is a complete contingent plan Player i's strategy specifies her action choice at each point at which she could be called on to make a choice 4 / 26 An Example: International Crises Two countries (A and B) are competing over a piece of land that B occupies Country A decides whether to make a demand If Country A makes a demand, B can either acquiesce or fight a war If A does not make a demand, B keeps land (game ends) A's best outcome is Demand followed by Acquiesce, worst outcome is Demand and War B's best outcome is No Demand and worst outcome is Demand and War 5 / 26 An Example: International Crises A can choose: Demand (D) or No Demand (ND) B can choose: Fight a war (W ) or Acquiesce (A) Preferences uA(D; A) = 3 > uA(ND; A) = uA(ND; W ) = 2 > uA(D; W ) = 1 uB(ND; A) = uB(ND; W ) = 3 > uB(D; A) = 2 > uB(D; W ) = 1 How can we represent this scenario as a game (in strategic form)? 6 / 26 International Crisis Game: NE Country B WA D 1; 1 3X; 2X Country A ND 2X; 3X 2; 3X I Is there something funny here? I Is there something funny here? I Specifically, (ND; W )? I Is there something funny here?
    [Show full text]
  • Algorithms and Collusion - Background Note by the Secretariat
    Unclassified DAF/COMP(2017)4 Organisation for Economic Co-operation and Development 9 June 2017 English - Or. English DIRECTORATE FOR FINANCIAL AND ENTERPRISE AFFAIRS COMPETITION COMMITTEE Cancels & replaces the same document of 17 May 2017. Algorithms and Collusion - Background Note by the Secretariat 21-23 June 2017 This document was prepared by the OECD Secretariat to serve as a background note for Item 10 at the 127th Meeting of the Competition Committee on 21-23 June 2017. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Organisation or of the governments of its member countries. More documentation related to this discussion can be found at http://www.oecd.org/daf/competition/algorithms-and-collusion.htm Please contact Mr. Antonio Capobianco if you have any questions about this document [E-mail: Antonio.Capobianco@oecd.org] JT03415748 This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 │ DAF/COMP(2017)4 Algorithms and Collusion Background note by the Secretariat Abstract The combination of big data with technologically advanced tools, such as pricing algorithms, is increasingly diffused in today everyone’s life, and it is changing the competitive landscape in which many companies operate and the way in which they make commercial and strategic decisions. While the size of this phenomenon is to a large extent unknown, there are a growing number of firms using computer algorithms to improve their pricing models, customise services and predict market trends.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H
    University of Baltimore Law ScholarWorks@University of Baltimore School of Law All Faculty Scholarship Faculty Scholarship 2000 The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H. Lande University of Baltimore School of Law, rlande@ubalt.edu Howard P. Marvel Ohio State University, marvel.2@osu.edu Follow this and additional works at: http://scholarworks.law.ubalt.edu/all_fac Part of the Antitrust and Trade Regulation Commons, and the Law and Economics Commons Recommended Citation The Three Types of Collusion: Fixing Prices, Rivals, and Rules, 2000 Wis. L. Rev. 941 (2000) This Article is brought to you for free and open access by the Faculty Scholarship at ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact snolan@ubalt.edu. ARTICLES THE THREE TYPES OF COLLUSION: FIXING PRICES, RIVALS, AND RULES ROBERTH. LANDE * & HOWARDP. MARVEL** Antitrust law has long held collusion to be paramount among the offenses that it is charged with prohibiting. The reason for this prohibition is simple----collusion typically leads to monopoly-like outcomes, including monopoly profits that are shared by the colluding parties. Most collusion cases can be classified into two established general categories.) Classic, or "Type I" collusion involves collective action to raise price directly? Firms can also collude to disadvantage rivals in a manner that causes the rivals' output to diminish or causes their behavior to become chastened. This "Type 11" collusion in turn allows the colluding firms to raise prices.3 Many important collusion cases, however, do not fit into either of these categories.
    [Show full text]
  • Kranton Duke University
    The Devil is in the Details – Implications of Samuel Bowles’ The Moral Economy for economics and policy research October 13 2017 Rachel Kranton Duke University The Moral Economy by Samuel Bowles should be required reading by all graduate students in economics. Indeed, all economists should buy a copy and read it. The book is a stunning, critical discussion of the interplay between economic incentives and preferences. It challenges basic premises of economic theory and questions policy recommendations based on these theories. The book proposes the path forward: designing policy that combines incentives and moral appeals. And, therefore, like such as book should, The Moral Economy leaves us with much work to do. The Moral Economy concerns individual choices and economic policy, particularly microeconomic policies with goals to enhance the collective good. The book takes aim at laws, policies, and business practices that are based on the classic Homo economicus model of individual choice. The book first argues in great detail that policies that follow from the Homo economicus paradigm can backfire. While most economists would now recognize that people are not purely selfish and self-interested, The Moral Economy goes one step further. Incentives can amplify the selfishness of individuals. People might act in more self-interested ways in a system based on incentives and rewards than they would in the absence of such inducements. The Moral Economy warns economists to be especially wary of incentives because social norms, like norms of trust and honesty, are critical to economic activity. The danger is not only of incentives backfiring in a single instance; monetary incentives can generally erode ethical and moral codes and social motivations people can have towards each other.
    [Show full text]
  • Revelation Principles in Multistage Games∗
    Revelation Principles in Multistage Games Takuo Sugaya and Alexander Wolitzky Stanford GSB and MIT September 22, 2017 Abstract We study the revelation principle in multistage games for perfect Bayesian equi- libium and sequential equilibrium. The question of whether or not the revelation principle holds is subtle, as expanding players’ opportunities for communication ex- pands the set of consistent beliefs at off-path information sets. In settings with adverse selection but no moral hazard, Nash, perfect Bayesian, and sequential equilibrium are essentially equivalent, and a virtual-implementation version of the revelation principle holds. In general, we show that the revelation principle holds for weak perfect Bayesian equilibrium and for a stronger notion of perfect Bayesian equilibrium introduced by Myerson (1986). Our main result is that the latter notion of perfect Bayesian equilib- rium is outcome-equivalent to sequential equilibrium when the mediator can tremble; this provides a revelation principle for sequential equilibrium. When the mediator cannot tremble, the revelation principle for sequential equilibrium can fail. Preliminary. Comments Welcome. For helpful comments, we thank Drew Fudenberg, Dino Gerardi, Shengwu Li, Roger Myerson, Alessandro Pavan, Harry Pei, Juuso Toikka, and Bob Wilson. 1 Introduction The revelation principle states that any social choice function that can be implemented by any mechanism can also be implemented by a canonical mechanism where communication between players and the mechanism designer or mediator takes a circumscribed form: players communicate only their private information to the mediator, and the mediator communi- cates only recommended actions to the players. This cornerstone of modern microeconomics was developed by several authors in the 1970s and early 1980s, reaching its most general formulation in the principal-agent model of Myerson (1982), which treats one-shot games with both adverse selection and moral hazard.
    [Show full text]
  • The Revelation Principle for Mechanism Design with Reporting Costs
    The Revelation Principle for Mechanism Design with Reporting Costs ANDREW KEPHART, Duke University VINCENT CONITZER, Duke University The revelation principle is a key tool in mechanism design. It allows the designer to restrict attention to the class of truthful mechanisms, greatly facilitating analysis. This is also borne out in an algorithmic sense, al- lowing certain computational problems in mechanism design to be solved in polynomial time. Unfortunately, when not every type can misreport every other type (the partial verification model), or—more generally— misreporting can be costly, the revelation principle can fail to hold. This also leads to NP-hardness results. The primary contribution of this paper consists of characterizations of conditions under which the revelation principle still holds when misreporting can be costly. (These are generalizations of conditions given earlier for the partial verification case [Green and Laffont 1986; Yu 2011].) We also study associated computational problems. Additional Key Words and Phrases: automated mechanism design, signaling costs, partial verification, rev- elation principle 1. INTRODUCTION Mechanism design concerns making decisions based on the private information of one or more agents, who will not report this information truthfully if they do not see this to be in their interest. The goal is to define a mechanism—a game to be played by the agent(s)—that defines actions for the agents to take and maps these actions to outcomes, such that in equilibrium, the agents’ true types map to outcomes as de- sired. This may, at first, appear to leave us in the unmanageable situation of having to search through all possible games we could define.
    [Show full text]
  • Contemporaneous Perfect Epsilon-Equilibria
    Games and Economic Behavior 53 (2005) 126–140 www.elsevier.com/locate/geb Contemporaneous perfect epsilon-equilibria George J. Mailath a, Andrew Postlewaite a,∗, Larry Samuelson b a University of Pennsylvania b University of Wisconsin Received 8 January 2003 Available online 18 July 2005 Abstract We examine contemporaneous perfect ε-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within ε of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect ε-equilibrium. A strategy profile is a contemporaneous perfect ε-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria. 2005 Elsevier Inc. All rights reserved. JEL classification: C70; C72; C73 Keywords: Epsilon equilibrium; Ex ante payoff; Multistage game; Subgame perfect equilibrium 1. Introduction Analyzing a game begins with the construction of a model specifying the strategies of the players and the resulting payoffs. For many games, one cannot be positive that the specified payoffs are precisely correct. For the model to be useful, one must hope that its equilibria are close to those of the real game whenever the payoff misspecification is small. To ensure that an equilibrium of the model is close to a Nash equilibrium of every possible game with nearly the same payoffs, the appropriate solution concept in the model * Corresponding author. E-mail addresses: gmailath@econ.upenn.edu (G.J. Mailath), apostlew@econ.upenn.edu (A. Postlewaite), larrysam@ssc.wisc.edu (L.
    [Show full text]
  • Truthful Revelation Mechanisms for Simultaneous Common Agency Games† 132 Truthful Revelation Mechanisms for Simultaneous Common A
    American Economic Journal: Microeconomics 2 (May 2010): 132–190 http://www.aeaweb.org/articles.php?doi 10.1257/mic.2.2.132 = Contents Truthful Revelation Mechanisms for Simultaneous Common Agency Games† 132 Truthful Revelation Mechanisms for Simultaneous Common A. Simple Menu-Auction Example 136 Agency Games† I. The Environment 140 II. Simple Revelation Mechanisms 143 By Alessandro Pavan and Giacomo Calzolari* III. Using Revelation Mechanisms in Applications 150 A. Competition in Nonlinear Tariffs 150 B. Menu Auctions 156 We introduce new revelation mechanisms for simultaneous common C. Moral Hazard 159 agency games which, although they do not always permit a complete IV. Enriched Mechanisms 161 equilibrium characterization, do facilitate the characterization of A. Non-Markov Strategies 161 the equilibrium outcomes that are typically of interest in applica- tions. We then show how these mechanisms can be used in applica- B. Mixed Strategies 163 tions such as menu auctions, competition in nonlinear tariffs, and V. Conclusions 166 moral hazard settings. Lastly, we show how one can enrich the rev- Appendix 1: Take-It-or-Leave-It-Offer Equilibria in the Menu-Auction Example in the Introduction elation mechanisms, albeit at a cost of an increase in complexity, 167 to characterize all possible equilibrium outcomes, including those Appendix 2: Omitted Proofs 168 sustained by non-Markov strategies and or mixed-strategy profiles. REFERENCES 189 / JEL C72, D82, D86 ( ) any economic environments can be modelled as common agency games—that M is, games where multiple principals contract simultaneously and noncoopera- tively with the same agent.1 Despite their relevance for applications, the analysis of these games has been made difficult by the fact that one cannot safely assume that the agent selects a contract with each principal by simply reporting his “type” i.e., his ( exogenous payoff-relevant information .
    [Show full text]
  • Lecture 1: Ascending and Ex Post Incentive Compatible Mechanisms
    CS364B: Frontiers in Mechanism Design Lecture #1: Ascending and Ex Post Incentive Compatible Mechanisms∗ Tim Roughgardeny January 8, 2014 1 Introduction These twenty lectures cover advanced topics in mechanism design. They assume familiarity with some of the material covered in the instructor's CS364A course | specifically, lectures 2{4 and 7{9. Recall that mechanism design is the \science of rule-making." The goal is to understand how to design systems with strategic participants | autonomous decision-makers whose objectives are generally different from the the designer's | that have good performance guarantees. For example, a mechanism designer might want to compute a socially efficient allocation of scarce resources or raise significant revenue, while a mechanism participant only cares about its own utility. 2 Course Outline The plan is to cover the following five topics. 1. (6 lectures.) Welfare-maximization in combinatorial auctions: tractable special cases and ascending implementations. 2. (4 lectures.) Welfare-maximization in combinatorial auctions: dominant-strategy ap- proximation mechanisms for NP-hard cases. 3. (3 lectures.) Welfare-maximization in combinatorial auctions: better guarantees for weaker solutions concepts (undominated strategies and Bayes-Nash equilibria). ∗ c 2014, Tim Roughgarden. yDepartment of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305. Email: tim@cs.stanford.edu. 1 4. (4 lectures.) The price of anarchy in simple auctions. 5. (3 lectures.) Revenue-maximization in multi-parameter settings. 3 Review: The k-Vickrey Auction Let's recall a basic example from last quarter. Scenario #1: • k identical items (even k = 1 is interesting); • each bidder is unit demand, meaning it only wants one item; • each bidder has a private valuation vi for a item.
    [Show full text]
  • Levels, Phases and Themes of Coopetition: a Systematic Literature Review and Research Agenda
    European Management Journal xxx (2016) 1e17 Contents lists available at ScienceDirect European Management Journal journal homepage: www.elsevier.com/locate/emj Levels, phases and themes of coopetition: A systematic literature review and research agenda * Stefanie Dorn a, , Bastian Schweiger b, Sascha Albers c a Dept. of Business Policy and Logistics and Institute of Trade Fair Management, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany b Dept. of Business Policy and Logistics, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany c Dept. of Management, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium article info abstract Article history: There is increasing interest among management scholars in “coopetition”, which is simultaneous Received 22 May 2015 cooperation and competition between at least two actors. The research interest in coopetition has grown Received in revised form remarkably in the past few years on a variety of levels of analysis, including the intra-firm level, the inter- 2 February 2016 firm level, and the network level. However, this research has emerged along tracks that are often Accepted 15 February 2016 disconnected, and involves different terminologies, theoretical lenses, and topics. Accordingly, scholars Available online xxx have called for consolidation and synthesis that makes it possible to develop a coherent understanding of the coopetition concept and that reconciles its inherent heterogeneity. In this study, the authors address Keywords: Coopetition this issue by means of a systematic literature review that gathers, analyzes, and synthesizes coopetition Simultaneous cooperation and competition research. Current knowledge on coopetition is consolidated and presented across multiple levels of Systematic literature review analysis along a phase model of coopetition.
    [Show full text]
  • Strategy-Proofness in Experimental Matching Markets
    WINPEC Working Paper Series No.E1913 August 2019 Strategy-proofness in experimental matching markets Pablo Guillen and Robert F. Veszteg Waseda INstitute of Political EConomy Waseda University Tokyo, Japan Strategy-proofness in experimental matching markets Pablo Guillen∗ Robert´ F. Vesztegy The University of Sydney Waseda University September 21, 2019 Abstract We introduce two novel matching mechanisms, Reverse Top Trading Cy- cles (RTTC) and Reverse Deferred Acceptance (RDA), with the purpose of challenging the idea that the theoretical property of strategy-proofness in- duces high rates of truth-telling in economic experiments. RTTC and RDA are identical to the celebrated Top Trading Cycles (TTC) and Deferred Ac- ceptance (DA) mechanisms, respectively, in all their theoretical properties except that their dominant-strategy equilibrium is to report one’s preferences in the order opposite to the way they were induced. With the focal truth- telling strategy being out of equilibrium, we are able to perform a clear mea- surement of how much of the truth-telling reported for strategy-proof mech- anisms is compatible with rational behavior and how much of it is caused by confused decision-makers following a default (very focal) strategy without understanding the structure of the game. In a school-allocation setting, we find that roughly half of the observed truth-telling under TTC and DA is the result of na¨ıve (non-strategic) behavior. Only 13-29% of participants’ ac- tions in RTTC and RDA are compatible with rational behavior. Further than that, by looking at the responses of those seemingly rational participants in control tasks, it becomes clear that even them lack a basic understanding of the game incentives.
    [Show full text]