IMS Trident Propulsion and Power Systems Group

Total Page:16

File Type:pdf, Size:1020Kb

IMS Trident Propulsion and Power Systems Group SD2905 HUMAN SPACEFLIGHT, MARCH, 2017 0 IMS Trident Propulsion and Power Systems group Agne Paskeviciute ([email protected]) Atsushi Shirahama ([email protected]) Connor Starkman ([email protected]) Federico Rorro ([email protected]) KTH Royal Institute of Technology, Stockholm, SE-100 44. IMS TRIDENT. PROPULSION AND POWER SYSTEMS SD2905 HUMAN SPACEFLIGHT, MARCH, 2017 Abstract—The red planet has interested humanity as an V Risk Assessment 6 interplanetary habitat for a long time, therefore is considered for V-A Political Considerations . .6 colonization purposes in 2030s. In order to make such journey V-B Reliability of Technology . .6 possible, one of the most important sub-systems needed for the spacecraft are propulsion and power systems. In this paper, V-C Crew Safety . .6 different existing and currently under-development technologies are taken into account, considering their development status and VI Cost Analysis 6 operational capabilities. In the first phase of the study, suitable electric, chemical and VII Conclusions 6 nuclear thermal propulsion systems are explained and compared in terms of mass. Nuclear Thermal Propulsion system powered References 7 by liquid hydrogen is chosen as the best candidate. Two clusters of five engines in each, are used as the main propulsion source for the Trident spacecraft. Regarding the attitude control, nine I. INTRODUCTION small thrusters powered by methane are used. It is assumed that NASA has identified Mars as an important interplanetary propellant can be manufactured on Mars, therefore propellant needed one-way only is taken for the trip. destination due to its proximity and small technology com- Regarding the power generation systems, different generator plexity required to establish human life on Mars (compared to cycles are considered. Brayton cycle due to its simplicity and other planets in Solar system). National Space Policy of The reliability when operating at high power levels is chosen. For United States [1] states that by mid-2030s, the humans shall redundancy, solar arrays are also used, which provide the be sent to Mars and safely returned to Earth. Both long and necessary 150 kW of power for spacecraft cooling system. Power short term stay at Mars options are being considered for such management and distribution system will ensure the power reaches necessary sub-systems such as life support, communi- mission, as stated in NASA’s DRA 5.0 study [2], however due cations and spacecraft cooling. to risks discussed by IMS Trident Operations and Logistics The total weight of power and propulsion systems is ap- team [3], short term stay at Mars options will be considered proximately 1,032.5 tonnes, from which 710 tonnes are needed in this report. The short term stay trajectory to Mars is called for propulsion systems, and 322.5 tonnes for power generation ”Opposition Class Trajectory”, which is showed in Figure 1. and management systems. The spacecraft weight excluding such systems is 1,200 tonnes. The final cost of the propulsion system is estimated to be roughly 392 million USD, excluding research and testing costs. Index Terms—Human Spaceflight, Mars Exploration, Space Propulsion, Power Systems. CONTENTS I Introduction 1 II Main Propulsion System Choice 2 II-A Comparison of Propulsion Systems . .2 II-A1 Chemical Propulsion . .2 II-A2 Electrical Propulsion . .2 II-A3 Nuclear Thermal Propulsion2 II-B Methodology and Assumptions Used for Estimating Mass of Each Propulsion System . .3 Figure 1. Opposition Class Trajectory [3] II-B1 Propellant Mass . .3 Total trip time break-down (Table I, [3]) is presented in the II-B2 Nuclear Reactor Mass . .3 following table. The total travel to Mars and back is shown II-B3 Power Generator Mass . .3 to be 540 days, where 220 days are needed to reach Mars, II-B4 Engine & Propellant Tanks and 290 days to come back. A 30-day long stay in Mars is Mass . .3 included in the total time of the trip. II-C Results and Discussion . .3 II-D Final Propulsion System Choice . .4 Table I MISSION TO MARS TIME DISTRIBUTION [3] III Attitude Control 4 Trajectory Time IV Power Generation & Cooling Systems 4 Earth-Mars travel 220 days Staying on Mars 30 days IV-A Power Generation . .4 Mars-Earth travel 290 days IV-B Cooling Systems . .5 Total travel time 540 days Launch window 2 years and 2 months IV-C Solar Panels . .5 1 IMS TRIDENT. PROPULSION AND POWER SYSTEMS SD2905 HUMAN SPACEFLIGHT, MARCH, 2017 A critical part of any space mission is the total payload A. Comparison of Propulsion Systems that can be taken. Therefore, one of the most important tasks of such mission design is to maximize the payload versus Below will be presented a comparison of the different the spacecraft mass ratio. Since typically around 80% of propulsion systems considered in this paper. They must all total spacecraft mass is propulsion (including propellant) and met the different requirements mentioned previously in this power systems [4], this report will analyze different propulsion report. and power systems options which will not only contribute to 1) Chemical Propulsion: This kind of propulsion system mission success, but will also concern minimizing the mass provides thrust by a chemical reaction in which propellant is and thus the cost of such spacecraft. burned. The following types of chemical propulsion systems The task of designing propulsion and power systems for were considered: solid, liquid and hybrid. Solid and hybrid such spacecraft considered the following initial requirements: propulsion systems were ruled out first. Solid propulsion motors cannot be shut down once started, and typically would ‚ Power and propulsion systems must be safe and reliable. be used for lift-off missions only. Hybrid engines are usually ‚ Propulsion system must be able to reach ∆V of 2.36 km/s more complex than liquid one, and require more space than one way and 5.69 km/s return trip [3]. the latter. However, liquid propulsion systems showed high ‚ Propulsion system must prove the spacecraft to be able to potential to be used for our spacecraft for 2032 mission reach Mars within 220 days and return within 540 days to Mars. Liquid propulsion systems are well developed and from the start of the trip [3]. tested, thus the risk factor is low. However, great mass of ‚ Propulsion system must be able to transport payload of propellant is needed which is the biggest contribution to initial 1,200 kg mass [9]. spacecraft’s weight. Moreover, propellant mass also greatly ‚ Power and propulsion systems must be built for more influences the size of propellant tanks, which should be strong than few return trips. enough adding even more weight. ‚ Power systems must be able to provide enough power for 2) Electrical Propulsion: This type of propulsion system crew and passengers communication within the spaceship provides thrust by accelerating propellant creating an electric and with Earth. and/or magnetic field in which charged particles are acceler- ‚ Power and propulsion systems must be ready by the year ated. The following systems were compared: resistojet, arcjet, of 2032. solid pulsed inductive thruster (PIT), variable ISP magneto- It is assumed that several missions to Mars have already plasma rocket (VASIMR), hall thruster, ion engine, magneto- been performed. It is also assumed that on Mars there is basic plasma dynamic thruster (MPDT). Since journey time is one of infrastructure to host the whole crew and provide the necessary the main criteria, only propulsion systems with ISP above 2000 food and energy. In all scenarios discussed in this report, s were considered, because they require less fuel for the whole a key idea is to use local resources from Mars to produce mission. Thus, some of them were ruled out: resistojet (ă 350 propellant for the trip back. Since it is not the first trip to s), arcjet (ă 1000 s). PIT also did not match the criteria due to Mars, the infrastructure for propellant production is assumed low operational time [5][6]. Another important parameter for to be already existing there. For instance, it is possible to use electrical propulsion system was ability to process hundreds of carbon dioxide extracted from Mars to produce methane and megawatts of power at reasonably high efficiencies [6]. Hall oxygen, which both are good propellants. Hydrogen, which is thrusters have been operating at power levels of up to 150 also a good propellant, can be extracted from Martian surface kW, which yields thrust level to low for a human mission. too [5]. Due to electrostatic nature of ion propulsion, increased power This spacecraft will only act as a Mars Transportation and thrust require corresponding increases in thruster size. Vehicle (MTV), going between Earth’s orbit and Mars’ orbit. For example, requiring only 177 kW of power thruster with Therefore, a descent capsule must be available on Mars to size of 1,5 m, which is considerably too large and too heavy bring the crew and passengers to and from the Mars’ surface. compared to other options. The two electric propulsion devices Also, a launch vehicle to launch the crew and passengers from that are capable at operating at megawatts power level with Earth surface to and from MTV. a single or very few thrusters are VASIMR and MPDT. The main drawback of electrical propulsion systems are the very high mass of power generation system required to make the II. MAIN PROPULSION SYSTEM CHOICE engine running. Also they would generate level of thrust which In order to choose the most suitable propulsion system, are usually too low for this human mission to Mars. many existing and under development systems were compared. 3) Nuclear Thermal Propulsion: This system works by The criteria was to reach Technology Readiness Level (TRL) heating the propellant to very high temperatures and simply 9 by 2032 was applied to all systems.
Recommended publications
  • MULTIPHYSICS DESIGN and SIMULATION of a TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET a Thesis by BRAD APPEL Submitted to the Office O
    MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2012 Major Subject: Nuclear Engineering Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket Copyright 2012 Brad Appel ii MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Karen Vierow Committee Members, Shannon Bragg-Sitton Paul Cizmas Head of Department, Yassin Hassan August 2012 Major Subject: Nuclear Engineering iii iii ABSTRACT Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket. (August 2012) Brad Appel, B.S., Purdue University Chair of Advisory Committee: Dr. Karen Vierow The goal of this research is to apply modern methods of analysis to the design of a tungsten-cermet Nuclear Thermal Rocket (NTR) core. An NTR is one of the most viable propulsion options for enabling piloted deep-space exploration. Concerns over fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels in the core. First, the best CFD practices available from the commercial package Star-CCM+ are determined by comparing different modeling options with a hot-hydrogen flow experiment.
    [Show full text]
  • IMPLEMENTATION of TRIDENT: a DISCOVERY-CLASS MISSION to TRITON. K. L. Mitchell1 , L. M. Prockter2, W. E. Frazier1, W. D. Smythe1, B
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 3200.pdf IMPLEMENTATION OF TRIDENT: A DISCOVERY-CLASS MISSION TO TRITON. K. L. Mitchell1 , L. M. Prockter2, W. E. Frazier1, W. D. Smythe1, B. M. Sutin1, D. A. Bearden1, and the Trident Team. 1Jet Propulsion Laboratory ([email protected]), Pasadena, CA 91109-8099, United States, 2Lunar and Planetary Insti- tute/USRA, Houston, TX, United States. Overview: Trident is an exciting mission concept to Why Now?: By launching during 2026, Trident investigate Neptune’s large moon Triton, an exotic can- takes advantage of a rare, efficient gravity-assist align- didate ocean world at 30 AU (Prockter et al., this meet- ment, to capitalize on a narrow – but closing – observa- ing). The concept is responsive to recommendations of tional window that enables assessment of changes in the recent NASA Roadmap to Ocean Worlds study Triton’s plume activity and surface characteristics since (Hendrix et al., 2019), and to the 2013 Planetary Deca- Voyager 2’s encounter one Neptune-Triton season ago. dal Survey’s habitability and workings themes (Squyres Conclusion: This mission design allows Trident to et al., 2011). A rare, low Δv trajectory (Fig. 1) enables accomplish a scientifically rich yet radically cost-effec- an MMRTG-powered spacecraft fitting under the Dis- tive investigation of an unusual icy world, dramatically covery cost cap. The spacecraft has a robust design and expanding the horizons of NASA’s Discovery Program. uses high heritage instruments (table 1) with minimal References: [1] Prockter L. M. et al. (2019) LPS L, development costs.
    [Show full text]
  • Operating Segments
    OPERATING SEGMENTS Commercial Aircraft OEM Defense $ 399.6 M $ 183.6 M Commercial Business Aircraft Jets Aftermarket $ 38.6 M $ 113.1 M Military Military Aircraft Space Aircraft Aftermarket $ 182.5 M OEM $ 199.6 M $ 312.8 M FY 2016 SALES FY 2016 SALES $1,063.7 M $366.1 M AIRCRAFT CONTROLS SPACE AND DEFENSE • State-of-the-art technology in flight controls, engine controls, door drive controls, active • Multi-tier provider capable of components, systems and prime level integration vibration controls and engineered components • Thrust vector control actuation systems, avionics, propulsion controls and structures for • Complete flight control system design and integration capability missiles and launch vehicles • World-class manufacturing facilities and skilled, experienced, team-based workforce • Liquid rocket engines, tanks, chemical and electric propulsion systems, subsystems • Focused, highly-responsive global aftermarket support organization and components for spacecraft and launch vehicles • Satellite integrated avionics, solar array drives, antenna pointing mechanisms and Military Aircraft: vibration isolation systems • F-35, F-15, F/A-18E/F, EA-18G, F-16, KC-46, A400M, Korea T-50, C-27J, C-295, • Fin actuation systems, divert and attitude control components for missiles and CN-235, Eurofighter-Typhoon, JAS 39, India LCA, Japan XC-2, XP-1, Hawk AJT, M346 interceptors Commercial Airplanes: • Weapon Stores Management Systems (SMS) for the deployment of missiles, guns and rockets • Boeing 737, 747, 767, 777, 787 • Motion control systems
    [Show full text]
  • OPAG Fall 2020 Meeting Opening Remarks
    OPAG Fall 2020 Meeting Opening Remarks Linda Spilker (JPL) & Jeff Moore (NASA ARC) OPAG Co-Chairs ? Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Co-Chair OPAG Co-Chair Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick Kathleen Mandt University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Morgan Cable Britney Schmidt* Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =Rolling off Tom Spilker Abigail Rymer Consultant Applied Physics Lab OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter* Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab * =Rolling off Jeff Bowman* Terry Hurford Carol Paty Scripps Oceanography Inst. Goddard Space Flight Center University of Oregon A Big Thanks To Curt Niebur! • Curt has been our Headquarters Rep since OPAG’s inception in 2006. • Curt is taking on new tasks at HQ, but we’ll still see him at OPAG meetings in his role of Program Scientist to Europa Clipper, New Frontiers Program, Europa Clipper mission, Jupiter Icy Moons Explorer mission, & Outer Planets and Ocean Worlds A Big Welcome To KC Hansen! • KC has been running the CDAP program.
    [Show full text]
  • Nuclear Propulsion
    16 Nuclear Propulsion Claudio Bruno DIMA, University of Rome (La Sapienza), Roma Italy 1. Introduction Nuclear propulsion (NP) concepts go back to the very end of WW II. Scientists informed about the effects of the US atomic bomb thought of exploiting its energy release for applications like commercial electric power generation, but also rockets and space flight [Shepherd and Cleaver, 1948, 1949; Bussard and DeLauer, 1958]. However, space flight was still considered science fiction, and the military had to deal with more concrete things, like the Cold War. Thus, besides power generation, second stages of ICBM, submarine propulsion, long range and long duration airplanes and missiles became the focus of nuclear energy applications. It was the second-stage and airplane application that drove R&D in nuclear propulsion. With the advent of reliable ICBM (the Atlas missile) and lighter fission and thermonuclear warheads, a nuclear-powered second stage became no longer necessary. Airplane applications were found impractical: the Convair NB-36 required such a heavy lead shield for the crew that testing and operation were much restricted. Nuclear-powered missiles were easier to design, e.g., project PLUTO, but still far more complicated compared to conventional. The Soviets investigated airplanes and rockets powered by nuclear power as well, and discarded them too. The history of NP can be found in [Czysz and Bruno, 2009, Chapter 7; Lawrence, 2008; Lawrence et al, 1995; Gunn and Ehresman, 2003; Dewar, 2004] and will not be reported here. Basic technology is also discussed in the references above, in particular reactor design is in [Lawrence et al, 1995].
    [Show full text]
  • PAC March 9 10 2020 Report
    NASA ADVISORY COUNCIL PLANETARY SCIENCE ADVISORY COMMITTEE March 9-10, 2020 NASA Headquarters Washington, DC MEETING REPORT _____________________________________________________________ Anne Verbiscer, Chair ____________________________________________________________ Stephen Rinehart, Executive Secretary Table of Contents Opening and Announcements, Introductions 3 PSD Update and Status 3 PSD R&A Status 5 Planetary Protection 7 Discussion 8 Mars Exploration Program 8 Lunar Exploration Program 9 PDCO 11 Planetary Data System 12 PDS at Headquarters 13 Findings and Discussion 13 General Comments 13 Exoplanets in Our Backyard 14 AP Assets for Solar System Observations 15 Solar System Science with JWST 16 Mercury Group 17 VEXAG 17 SBAG 18 OPAG 19 MEPAG 19 MAPSIT 20 LEAG 21 CAPTEM 21 Discussion 22 Findings and Recommendations Discussion 23 Appendix A- Attendees Appendix B- Membership roster Appendix C- Agenda Appendix D- Presentations Prepared by Joan M. Zimmermann Zantech, Inc. 2 Opening, Announcements, Around the Table Identification Executive Secretary of the Planetary Science Advisory Committee (PAC), Dr. Stephen Rinehart, opened the meeting and made administrative announcements. PAC Chair, Dr. Anne Verbiscer, welcomed everyone to the virtual meeting. Announcements were made around the table and on Webex. PSD Status Report Dr. Lori Glaze, Director of the Planetary Science Division, gave a status report. First addressing the President’s Budget Request (PBR) for Fiscal Year 2021 (FY21) for the Science Mission Directorate (SMD), Dr. Glaze noted that it was one of the strongest science budgets in NASA history, representing a 12% increase over the enacted FY20 budget. The total PBR keeps NASA on track to land on the Moon by 2024; and to help prepare for human exploration at Mars.
    [Show full text]
  • TRIDENT Radio Science Objectives and Expected Performance
    EPSC Abstracts Vol. 14, EPSC2020-1042, 2020, updated on 30 Sep 2021 https://doi.org/10.5194/epsc2020-1042 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. TRIDENT Radio Science Objectives and Expected Performance Paolo Tortora1, Kamal Oudrhiri2, Adrien Bourgoin1, Luis Antonio Gomez Casajus1, Marco Zannoni1, Dustin Buccino2, Yohai Kaspi3, Eli Galanti3, William Frazier2, Louise Prockter4, Karl Mitchell2, and Carly Howett5 1University of Bologna, DIN - Aerospace Division, Forlì, Italy ([email protected]) 2Jet Propulsion Laboratory, Pasadena, CA 91109-8099, USA 3Weizmann Institute of Science, Rehovot 76100, Israel 4Lunar and Planetary Institute/USRA, Houston, TX, USA 5Southwest Research Institute, Boulder, CO, USA Introduction and Background Trident is a mission concept to investigate Neptune’s large moon Triton, an exotic candidate ocean world at 30 AU (Prockter et al., 2019, Mitchell et al. 2019). The concept is responsive to recommendations of the recent NASA Roadmap to Ocean Worlds study (Hendrix et al., 2019), and to the 2013 Planetary Decadal Survey’s habitability and workings themes (Squyres et al., 2011). The concept was chosen (Ref. 5) from proposals submitted in 2019, under NASA’s Discovery Program, and is currently in its Phase A, competing for selection with three other mission concepts. Voyager 2 showed that Triton has active resurfacing with the potential for erupting plumes and an atmosphere. Coupled with an ionosphere that can create organic snow and the potential for a subsurface ocean, Triton is an exciting exploration target to understand how habitable worlds may develop in our Solar System and beyond.
    [Show full text]
  • ABSTRACTS §§Il
    TR0700270 13™ INTERNATIONAL CONFERENCE ON EMERGING NUCLEAR ENERGY SYSTEMS June 03 - 08, 2007 İstanbul, Türkiye ABSTRACTS HOST ORGANIZATIONS Gazi University, Ankara Bahçeşehir University, Istanbul MAJOR SPONSORS I S T C §§il iililSl M H T Permission is granted for single photocopies of single articles may be made for personal use to reproduce or distribute an individual abstract for educational purposes only. No commercial use or sale is permitted and on this purpose no part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. ISBN-978-975-01805-0-7 The copyright to the full work naturally remains with the editor or other current copyright holder. Any copyright questions regarding this publication work therefore should be addressed to the publisher. All other questions also relating to copyright and permissions should be addressed to: Prof. Dr.-Ing. Sümer ŞAHİN Gazi Üniversitesi Teknik Eğitim Fakültesi Makina Bölümü Enerji Anabilim Dalı Teknikokullar-ANKARA 06503-TÜRKİYE Tel. + Fax: +90-312-212 43 04 E-mail: [email protected] Printed in TÜRKİYE ICENES 2007 13»T1H" INTERNATIONAL CONFERENCE ON EMERGING NUCLEAR ENERGY SYSTEMS ABSTRACTS June 03 - 08, 2007 Istanbul, Türkiye 13th International Conference on Emerging Nuclear Energy Systems June 03-08,2007, Istanbul, Türkiye INTRODUCTION AND WELCOME to ICENES2007 The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology, for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems.
    [Show full text]
  • Architecture for Going to the Outer Solar System
    ARGOSY ARGOSY: ARchitecture for Going to the Outer solar SYstem Ralph L. McNutt Jr. ll solar system objects are, in principle, targets for human in situ exploration. ARGOSY (ARchitecture for Going to the Outer solar SYstem) addresses anew the problem of human exploration to the outer planets. The ARGOSY architecture approach is scalable in size and power so that increasingly distant destinations—the systems of Jupiter, Saturn, Uranus, and Neptune—can be reached with the same crew size and time require- ments. To enable such missions, achievable technologies with appropriate margins must be used to construct a viable technical approach at the systems level. ARGOSY thus takes the step past Mars in addressing the most difficult part of the Vision for Space AExploration: To extend human presence across the solar system. INTRODUCTION The Vision for Space Exploration “The reasonable man adapts himself to the world: the unreason- 2. Extend human presence across the solar system, start- able one persists in trying to adapt the world to himself. Therefore ing with a return to the Moon by the year 2020, in 1 all progress depends on the unreasonable man.” preparation for human exploration of Mars and other G. B. Shaw destinations 3. Develop the innovative technologies, knowledge, On 14 January 2004, President Bush proposed a new and infrastructures to explore and support decisions four-point Vision for Space Exploration for NASA.2 about destinations for human exploration 1. Implement a sustained and affordable human and 4. Promote international and commercial participation robotic program to explore the solar system and in exploration to further U.S.
    [Show full text]
  • The European English Messenger, 23.1 (2014)
    The European English Messenger, 23.1 (2014) WILLIAM SHAKESPEARE (1564-1616) Henri VI and the Piccola Familia Isabelle Schwartz-Gastine University of Caen, France In France the main event of this Shakespeare anniversary year is a marathon staging of the three plays of Henry VI by a very young cast, La Piccola Familia, a company created by Thomas Jolly (now aged 32) and some of his friends after they graduated from Rennes Drama School in 2006.1 The project started in 2010 with six or seven actors playing the first two Acts of 1Henry VI, a performance lasting two hours, so already a lengthy enterprise for a short text. Their ultimate aim was to perform the whole of the trilogy in a few years - the idea of adding Richard III was soon abandoned. So they were ready to embark on a completely oversized theatrical “saga”, as they call it2. They won the support of the National Theatre of Cherbourg, in Normandy (Le Trident, www.trident-sn.com), and thus “Cycle 1”, premiered in Cherbourg on January 17th 2012, then toured in Normandy and Brittany, sometimes playing in very small venues, or at best in regional theatres, where they received unanimous acclaim. Due to favourable reviewing in the local and then the national press, and the “likes” of many Facebook Friends (the number growing by the day), the play has now reached the Parisian stage with equally great success. For the time being, “Cycle 1” is staged split into episodes 1 and 2. Each episode is in fact a full play of over three hours with an interval, the average norm in France for a performance.
    [Show full text]
  • Dr James Mulroy (Lockheed Martin ATC)
    Lockheed Martin in California and Harwell December 4, 2014 Dr. Jim Mulroy Director, Space Science and Instrumentation, Advanced Technology Center Space Systems Company © 2014 Lockheed Martin Corporation. All Rights Reserved. Space Systems Company Portfolio Strategic & Missile Defense Civil Space Adv Programs Strategic Missiles Missile Defense NASA Human Planetary Weather & Exploration Exploration Environment Military Space Special Programs Protected Narrowband Navigation Weather Early Space Comms Comms Warning Protection Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments © 2014 Lockheed Martin Corporation, All Rights Reserved Civil Space Expanding the frontiers of space exploration and Earth observation • Human space exploration • Robotic deep space exploration Image courtesy of NASA • Mars orbiters and landers • Weather and environmental sensing • Advanced Programs – exploring new frontiers © 2014 Lockheed Martin Corporation, All Rights Reserved Civil Space Scope Space Science Human Space Flight & Exploration Orion Space Launch System elements Spitzer NIRCam Hubble Exploration Missions OSIRIS-REx InSight Dream Chaser MAVEN Juno MRO Regenerative Energy Storage GOES-R/S/T/U Entry Responsive Lift Systems Cryogenic Storage Structural Sample GOES Instruments Composite Joint Handling Technology & Transfer Solar Electric Weather & Earth Observing Propulsion Enabling Technologies © 2014 Lockheed Martin
    [Show full text]
  • NASA) Transition Briefing Document Prepared by NASA for the Incoming Biden Administration 2020
    Description of document: National Aeronautics and Space Administration (NASA) transition briefing document prepared by NASA for the incoming Biden Administration 2020 Requested date: 01-January-2021 Release date: 04-January-2021 Posted date: 22-February-2021 Source of document: FOIA Request NASA Headquarters 300 E Street, SW Room 5Q16 Washington, DC 20546 Fax: (202) 358-4332 Email: [email protected] Online FOIA submission form The governmentattic.org web site (“the site”) is a First Amendment free speech web site and is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. National Aeronautics and Space Administration Headquarters Washington, DC 20546-0001 January 4, 2021 Reply to attn.of Office of Communications Re: FOIA Tracking Number 21-HQ-F-00169 This responds to your Freedom oflnformation Act (FOIA) request to the National Aeronautics and Space Administration (NASA), dated January 1, 2021, and received in this office on January 4, 2021.
    [Show full text]