Environmental Impact Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact Assessment Federal Institute for Geosciences and Natural Resources Stilleweg 2 D-30655 Hannover Germany International Seabed Authority The Secretary-General 14 - 20 Port Royal Street Kingston Jamaica West Indies Environmental Impact Assessment for the testing of a pre-protoype manganese nodule collector vehicle in the Eastern German license area (Clarion-Clipperton Zone) in the framework of the European JPI-O MiningImpact 2 research project Table of contents Executive summary ................................................................................................................................ 7 1. Introduction ........................................................................................................................................ 9 1.1 Background and rationale ......................................................................................................... 9 1.2 Project proponent and history: German license area .............................................................11 1.3 Objectives and structure of the proposed project ...................................................................12 1.3.1 Biodiversity, connectivity, resilience (WP1) .................................................................13 1.3.2 Fate and toxicity of the sediment plume (WP2) ...........................................................13 1.3.3 Biogeochemistry and ecosystem functioning (WP3) ...................................................14 1.3.4 Data and sample management (WP4) ........................................................................14 1.3.5 Project dissemination and coordination (WP5) ............................................................15 1.3.6 Plume monitoring and habitat/disturbance characterisation (CCT1) ...........................15 1.3.7 Disturbance effects in time and space (CCT2) ............................................................15 1.3.8 Environmental risk assessment and policy recommendations (CCT3) .......................16 1.4 This report ...............................................................................................................................16 2. Policy, legal and administrative context .......................................................................................18 2.1 Applicable mining and environmental legislation, agreements and policies ...........................18 2.2 Relevant international and regional agreements ....................................................................19 2.3 National agreements ...............................................................................................................19 3. Project description ..........................................................................................................................20 3.1 Purpose of the proposed project .............................................................................................20 3.2 Location ...................................................................................................................................20 3.3 Mineral resource estimation ....................................................................................................24 3.4 Description of the pre-prototype collector and testing design .................................................26 3.4.1 General remarks and background ...............................................................................26 3.4.2 Description of the Patania II collector vehicle ..............................................................27 3.4.2.1 Mineral collection technique ........................................................................................... 27 3.4.2.2 Depth of penetration into the seabed ............................................................................. 32 3.4.2.3 Running gear which contacts the seabed ...................................................................... 33 3.4.2.4 Methods for separation of the mineral resource and the sediment ................................ 33 3.4.2.5 Mineral crushing and processing methods at the seabed .............................................. 33 3.4.2.6 Transport of material to the surface ............................................................................... 33 3.4.2.7 Mineral resource separation and processing on the surface vessel ............................... 33 3.4.3 Collector test design ....................................................................................................33 3.4.3.1 Probable duration of the test .......................................................................................... 33 3.4.3.2 Test plan ........................................................................................................................ 33 3.4.3.3 Spatial scale and test design ......................................................................................... 34 4 Table of contents 3.5 Events that could cause suspension or modification of the planned activities ...................... 39 4. Description of the existing physico-chemical environment ...................................................... 40 4.1 Regional overview .................................................................................................................. 40 4.2 Physico-chemical environment in and around the Eastern German license area ................. 43 4.2.1 Geological setting ....................................................................................................... 43 4.2.2 Meteorology ................................................................................................................ 47 4.2.3 Physico-chemical oceanographic setting.................................................................... 50 4.2.3.1 Water column characteristics ......................................................................................... 50 4.2.3.2 Chemical composition of bottom water .......................................................................... 53 4.2.3.3 Upper ocean currents ..................................................................................................... 55 4.2.3.4 The current regime close to the seafloor ........................................................................ 59 4.2.3.5 Controlling factors on abyssal currents and the significant influence of eddies on the abyssal current regime ....................................................................................... 65 4.2.4 Seabed substrate characteristics ................................................................................ 70 4.2.4.1 Dry bulk densities; shear strengths; grain-size analyses ................................................ 70 4.2.4.2 Particle sinking velocities and aggregation .................................................................... 75 4.2.4.3 Pore water and sediment geochemistry ......................................................................... 77 4.2.4.4 Sedimentation rates ....................................................................................................... 82 4.2.5 Natural hazards ........................................................................................................... 82 4.2.6 Noise ........................................................................................................................... 83 5. Description of the existing biological environment .................................................................... 84 5.1 Regional overview .................................................................................................................. 84 5.2 Biological communities in and around the Eastern German license area ............................. 85 5.2.1 Surface ........................................................................................................................ 85 5.2.1.1 Seabirds and marine mammals...................................................................................... 85 5.2.1.2 Phytoplankton ................................................................................................................ 86 5.2.1.3 Zooplankton ................................................................................................................... 86 5.2.2 Midwater ..................................................................................................................... 87 5.2.3 Seafloor ....................................................................................................................... 87 5.2.3.1 Megafaunal diversity ...................................................................................................... 88 5.2.3.2 IRZ vs. PRZ: Faunal composition and population genetic analyses............................... 91 5.2.3.3 Connectivity: Macrofaunal and meiofaunal comparisons between the German and French license areas ............................................................................................ 104 5.2.3.4 Meiofaunal communities and their dependence on abiotic parameters ........................ 109 5.2.3.5 Bioturbation .................................................................................................................. 112 5.2.3.6 Microbes ...................................................................................................................... 113 5.2.3.7 Epifauna ....................................................................................................................... 116 5.2.3.8 Demersal
Recommended publications
  • Zootaxa, Haplomesus (Crustacea: Isopoda: Ischnomesidae)
    Zootaxa 1120: 1–33 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1120 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Heterochrony in Haplomesus (Crustacea: Isopoda: Ischnomesidae): revision of two species and description of two new species FIONA A. KAVANAGH1, GEORGE D. F. WILSON2 & ANNE MARIE POWER1 1 Department of Zoology, National University of Ireland, Galway, Ireland. [email protected] 2 Australian Museum, 6 College Street, Sydney, NSW 2010, Australia. [email protected] Abstract Two new species of Ischnomesidae, Haplomesus celticensis sp. nov. and Haplomesus hanseni sp. nov. are described from the southwest of Ireland and the Argentine Basin respectively. Both species lack the expression of pereopod VII, a characteristic that we argue is produced by progenesis, not neoteny as suggested by Brökeland & Brandt (2004). Haplomesus angustus Hansen, 1916 and Haplomesus tropicalis Menzies, 1962, also lack pereopod VII and are revised from the type material. The original description of Haplomesus angustus Hansen, 1916 describes the adult type specimen as a juvenile; the original description of Haplomesus tropicalis Menzies, 1962 fails to mention the lack of pereopod VII. Progenesis is discussed for the above species and within the family Ischnomesidae as a whole. Key words: Isopoda, Asellota, Ischnomesidae, Haplomesus, heterochrony, progenesis Introduction The Ischnomesidae is a family of marine benthic asellote isopods found mostly at bathyal and abyssal depths, with records from about 250–7000 m (Wolff 1962; Kussakin 1988). To date, 99 species have been described in five genera. The known diversity of this family, however, is increasing owing to recent reports of several new species (e.g.
    [Show full text]
  • (Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – a New Species for the Croatian Pyraloid Moth Fauna, with an Updated Checklist
    NAT. CROAT. VOL. 30 No 1 37–52 ZAGREB July 31, 2021 original scientific paper / izvorni znanstveni rad DOI 10.20302/NC.2021.30.4 PSOROSA MEDITERRANELLA (AMSEL, 1954) (LEPIDOPTERA: PYRALIDAE, PHYCITINAE) – A NEW SPECIES FOR THE CROATIAN PYRALOID MOTH FAUNA, WITH AN UPDATED CHECKLIST DANIJELA GUMHALTER Azuritweg 2, 70619 Stuttgart, Germany (e-mail: [email protected]) Gumhalter, D.: Psorosa mediterranella (Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – a new species for the Croatian pyraloid moth fauna, with an updated checklist. Nat. Croat., Vol. 30, No. 1, 37–52, 2021, Zagreb. From 2016 to 2020 numerous surveys were undertaken to improve the knowledge of the pyraloid moth fauna of Biokovo Nature Park. On August 27th, 2020 one specimen of Psorosa mediterranella (Amsel, 1954) from the family Pyralidae was collected on a small meadow (985 m a.s.l.) on Mt Biok- ovo. In this paper, the first data about the occurrence of this species in Croatia are presented. The previ- ous mention in the literature for Croatia was considered to be a misidentification of the past and has thus not been included in the checklist of Croatian pyraloid moth species. P. mediterranella was recorded for the first time in Croatia in recent investigations and, after other additions to the checklist have been counted, is the 396th species in the Croatian pyraloid moth fauna. An overview of the overall pyraloid moth fauna of Croatia is given in the updated species list. Keywords: Psorosa mediterranella, Pyraloidea, Pyralidae, fauna, Biokovo, Croatia Gumhalter, D.: Psorosa mediterranella (Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – nova vrsta u hrvatskoj fauni Pyraloidea, s nadopunjenim popisom vrsta.
    [Show full text]
  • Polymetallic Nodules Are Essential for Food-Web Integrity of a Prospective Deep-Seabed Mining Area in Pacific Abyssal Plains
    www.nature.com/scientificreports OPEN Polymetallic nodules are essential for food‑web integrity of a prospective deep‑seabed mining area in Pacifc abyssal plains Tanja Stratmann1,2,3*, Karline Soetaert1, Daniel Kersken4,5 & Dick van Oevelen1 Polymetallic nodule felds provide hard substrate for sessile organisms on the abyssal seafoor between 3000 and 6000 m water depth. Deep‑seabed mining targets these mineral‑rich nodules and will likely modify the consumer‑resource (trophic) and substrate‑providing (non‑trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food‑web integrity remains unclear. Here, we use seafoor imagery and published literature to develop highly‑resolved trophic and non‑trophic interaction webs for the Clarion‑Clipperton Fracture Zone (CCZ, central Pacifc Ocean) and the Peru Basin (PB, South‑East Pacifc Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock‑down efects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identifed stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food‑web integrity and that their absence will likely result in reduced local benthic biodiversity. Abyssal plains, the deep seafoor between 3000 and 6000 m water depth, have been relatively untouched by anthropogenic impacts due to their extreme depths and distance from continents 1.
    [Show full text]
  • MAST/IOC Advanced Phytoplankton Course on Taxonomy and Syste
    Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist. In order to access to the original document in image form, click on "Original" button on 1st page. Intergovernmental Oceanographic Commission Training Course Reports 36 MAST-IOC Advanced Phytoplankton Course on Taxonomy and Systematics Marine Botany Laboratory Stazione Zoologica ‘A. Dohrn’ di Napoli Casamicciola Terme (Island of Ischia), Naples, Italy 24 September - 14 October 1995 UNESCO Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist. In order to access to the original document in image form, click on "Original" button on 1st page. IOC Training Course Report No. 36 page (i) TABLE OF CONTENTS Page iii ABSTRACT 1. BACKGROUND, ORGANIZATION AND GOALS 1 1.1 BACKGROUND 1 1.2 ORGANIZATION 1 1.3 GOALS 2 2. CONTENT 2 2.1 OPENING AND INTRODUCTION 3 2.2 MANUALS 3 2.3 THEORETICAL SESSIONS 3 2.4 PRACTICAL SESSIONS 3 2.4.1. Species observation 3 2.4.2. Techniques 4 2.4.3. Exercises 4 2.5 FIELD TRIP AND OBSERVATION OF LIVE NATURAL SAMPLES 4 2.6 SCANNING (SEM) AND TRANSMISSION ELECTRON MICROSCOPE (TEM) DEMONSTRATIONS 5 2.7 WORKSHOPS 5 2.8 REGIONAL REPORTS ON HARMFUL ALGAL BLOOMS 5 2.9 SEMINARS 5 3. QUESTIONNAIRE AND CONCLUDING REMARKS 6 3.1 QUESTIONNAIRE 6 3.1 CONCLUDING REMARKS 6 ANNEXES I Programme II Faculty III Participants to the five previous Courses IV Organizing Committee V List of participants VI Financial statement VII Workshops VIII Regional reports IX Questionnaire X List of Acronyms Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist.
    [Show full text]
  • Evolutionary Biology and Ecology of Ostracoda
    Evolutionary Biology and Ecology of Ostracoda ~1997 Developments in Hydrobiology 148 Series editor H. J. Dumont Fifteen papers presented under Theme 3 of the 13th International Symposium on Ostracoda (IS097), held at the University of Greenwich, Medway Campus, U.K., from 27 to 31 July, 1997. The conference organizers were David J. Horne and Ian Slipper (University of Greenwich), Alan Lord (University Col­ lege London), Ian Boomer (University of East Anglia1) and Jonathan Holmes (Kingston University). 1 Present address: University of Newcastle. Evolutionary Biology and Ecology of Ostracoda Theme 3 of the 13th International Symposium on Ostracoda (18097) Edited by David J. Horne & Koen Martens Reprinted from Hydrobio/ogia, volume 419 (2000) Springer-Science+Business Media, B.V. Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5499-9 ISBN 978-94-017-1508-9 (eBook) DOI 10.1007/978-94-017-1508-9 Printed an acid-free paper AII Rights reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, record ing or by any information storage and retrieval system, without written permission from the copyright owner. v Contents Preface Ostracoda and the four pillars of evolutionary wisdom K. Martens, D. J. Home Vll-Xl Keynote Paper Open qm~stions in evolutionary ecology: do ostracods have the answers? R.K.
    [Show full text]
  • Sexual Reproduction and Ecophysiology of the Marine Dinoflagellate Alexandrium Minutum Halim
    .• . • - • ...L-- • • --- _1 .. Sexual reproduction and ecophysiology of the marine dinoflagellate Alexandrium minutum Halim lan P. Probert Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Westminster, London Ifremer, Brest June 1999 Jury Professor Chris Bucke Examiner Mr John Leftley Examiner Mrs Jane Lewis Director of Studies Mrs Evelyne Erard-Le Denn Second Supervisor Professor Jenny George Second Supervisor Sexual reproduction and ecophysiology of the marine dinoflagellate Alexandrium minutum Halim lan P. Probert Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Westminster, London lfremer, Brest June 1999 Jury Professor Chris Bucke Examiner Mr John Leftley Examiner Mrs Jane Lewis Director of Studies Mrs Evelyne Erard-Le Denn Second Supervisor Professor Jenny George Second Supervisor Contents Acknowledgements Chapter 1 Introduction 1 A. Objectives of this study 1 B. Dinoflagellates 1 1. Evolutionary history 1 2. General characteristics 1 3. 'Red tides' 2 4. Dinoflagellate toxins 2 5. Economie impact 2 C. Life Cycles 3 1. Asexuallife history 3 2. Sexuallife history 3 3. Life cycle control 4 4. Environmental triggers for sexual reproduction 4 D. Nutrients and Sexuality 6 1. Microalgal nutrient physiology 6 2. Nutrient stress and the cell's responses 9 3. The sexual induction mechanism 10 4. Nutrient physiology through the time-course of transition from asexual to sexual reproduction 10 E. The Experimental Species 12 Chapter 2 The life history of Alexandrium minutum Halim 12 A. Introduction 12 1. The genusAlexandrium 12 2. Alexandrium minutum Halim 13 3. Dinoflagellate reproductive morphology and ultrastructure 13 B.
    [Show full text]
  • (Janiridae, Isopoda, Crustacea), a Second Species of Austrofilius in the Mediterranean Sea, with a Discussion on the Evolutionary Biogeography of the Genus J
    Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. Castelló To cite this version: J. Castelló. Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUS- SION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2008, pp.193-201. hal-03246157 HAL Id: hal-03246157 https://hal.sorbonne-universite.fr/hal-03246157 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU - LIFE AND ENVIRONMENT, 2008, 58 (3/4): 193-201 AUSTROFILIUS MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. CASTELLÓ Departament de Didàctica de les Ciències Experimentals i de la Matemàtica, Universitat de Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain [email protected] ISOPODA Abstract. – A new species of Janiroidean isopod, Austrofilius majoricensis sp. nov., from ASELLOTA JANIRIDAE Majorca (Balearic Islands, Western Mediterranean), is described.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    9. GEOCHEMICAL EXPRESSION OF EARLY DIAGENESIS IN MIDDLE EOCENE-LOWER OLIGOCENE PELAGIC SEDIMENTS IN THE SOUTHERN LABRADOR SEA, SITE 647, ODP LEG 1051 M. A. Arthur,2 W. E. Dean,3 J. C. Zachos,2 M. Kaminski,4 S. Hagerty Rieg,2 and K. Elmstrom2 ABSTRACT Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this deposi­ tional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was me­ diated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with car­ bonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (C02) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Mysida and Lophogastrida of Greece: a Preliminary Checklist
    Biodiversity Data Journal 4: e9288 doi: 10.3897/BDJ.4.e9288 Taxonomic Paper Mysida and Lophogastrida of Greece: a preliminary checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡‡, Nicolas Bailly ‡ Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Christos Arvanitidis Received: 20 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Koulouri P, Gerovasileiou V, Bailly N (2016) Mysida and Lophogastrida of Greece: a preliminary checklist. Biodiversity Data Journal 4: e9288. https://doi.org/10.3897/BDJ.4.e9288 Abstract Background The checklist of Mysida and Lophogastrida of Greece was created within the framework of the Greek Taxon Information System (GTIS), which is one of the applications of the LifeWatchGreece Research Infrastructure (ESFRI) resuming efforts to develop a complete checklist of species recorded and reported from Greek waters. The objectives of the present study were to update and cross-check taxonomically all records of Mysida and Lophogastrida species known to occur in Greek waters in order to search for inaccuracies and omissions. New information The up-to-date checklist of Mysida and Lophogastrida of Greece comprises 49 species, classified to 25 genera. © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Koulouri P et al. Keywords Mysida, Lophogastrida, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist Introduction The peracarid crustaceans Lophogastrida, Stygiomysida and Mysida were formerly grouped under the order "Mysidacea".
    [Show full text]
  • Meteoric Be and Be As Process Tracers in the Environment
    Chapter 5 Meteoric 7Be and 10Be as Process Tracers in the Environment James M. Kaste and Mark Baskaran 7 10 Abstract Be (T1/2 ¼ 53 days) and Be (T1/2 ¼ occurring Be isotopes of use to Earth scientists are the 7 1.4 Ma) form via natural cosmogenic reactions in the short-lived Be (T1/2 ¼ 53.1 days) and the longer- 10 atmosphere and are delivered to Earth’s surface by wet lived Be (T1/2 ¼ 1.4 Ma; Nishiizumi et al. 2007). and dry deposition. The distinct source term and near- Because cosmic rays that cause the initial cascade of constant fallout of these radionuclides onto soils, vege- neutrons and protons in the upper atmosphere respon- tation, waters, ice, and sediments makes them valuable sible for the spallation reactions are attenuated by tracers of a wide range of environmental processes the mass of the atmosphere itself, production rates of operating over timescales from weeks to millions of comsogenic Be are three orders of magnitude higher in years. Beryllium tends to form strong bonds with oxygen the stratosphere than they are at sea-level (Masarik and atoms, so 7Be and 10Be adsorb rapidly to organic and Beer 1999, 2009). Most of the production of cosmo- inorganic solid phases in the terrestrial and marine envi- genic Be therefore occurs in the upper atmosphere ronment. Thus, cosmogenic isotopes of beryllium can be (5–30 km), although there is trace, but measurable used to quantify surface age, sediment source, mixing production as oxygen atoms in minerals at the Earth’s rates, and particle residence and transit times in soils, surface are spallated (in situ produced; see Lal 2011, streams, lakes, and the oceans.
    [Show full text]
  • 4. a Growth Model for Polymetallic Nodules
    A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐CLIPPERTON FRACTURE ZONE ISA TECHNICAL STUDY SERIES Technical Study No. 1 Global Non‐Living Resources on the Extended Continental Shelf: Prospects at the year 2000 Technical Study No. 2 Polymetallic Massive Sulphides and Cobalt‐Rich Ferromanganese Crusts: Status and Prospects Technical Study No. 3 Biodiversity, Species Ranges and Gene Flow in the Abyssal Pacific Nodule Province: Predicting and Managing the Impacts of Deep Seabed Mining Technical Study No. 4 Issues associated with the Implementation of Article 82 of the United Nations Convention on the Law of the Sea Technical Study No. 5 Non‐Living resources of the Continental Shelf beyond 200 nautical miles: Speculations on the Implementation of Article 82 of the United Nations Convention on the Law of the Sea PAGE | II A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐ CLIPPERTON FRACTURE ZONE This report contains a summary of two documents – A Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone and a Prospector’s Guide prepared under the project ‘Development of a Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone, Pacific Ocean’. ISA TECHNICAL STUDY: NO. 6 International Seabed Authority Kingston, Jamaica PAGE | III The designation employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Seabed Authority concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers or maritime boundaries. All rights reserved.
    [Show full text]