Identification of Mulberry Pests and Its Natural Enemies at “Rumah Sutera Alam” Ciapus, West Java

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Mulberry Pests and Its Natural Enemies at “Rumah Sutera Alam” Ciapus, West Java Akta Agrosia. 2021. 24(1):9 - 18 9 Akta Agrosia Identification of Mulberry Pests and Its Natural Enemies at “Rumah Sutera Alam” Ciapus, West Java * Adrian Triandi , Nadzirum Mubin, Lia Nurulalia Department of Plant Protection, Faculty of Agriculture, IPB University Wing 7 Level 5 Kamper St. Dramaga Babakan Bogor 16680. INDONESIA ABSTRACT ARTICLE INFO Mulberry plant (Morus alba) has an important social and economic contribution, which grown mainly for feeding silk worm (Bombyx mori), Keywords: whose silk is used for crafting Indonesia traditional clothes. Cultivation IPM of mulberry crops, harveste dfor its leaves and fruit, ideally by Morus alba Integrated Pest Management (IPM) is necessary so that mulberry plants natural enemies grow ideally and leaves have high quality and quantity without pest becoming a source of inoculum for pests and diseases of silkworm trapping maintenance. Mulberry cultivation is generally carried out without using Article history: pesticide input so it is interesting in monitoring pests and natural Received: Dec 03, 2020 enemies in the mulberry ecosystem. The research was conducted on two Accepted: Jun 04, 2021 varieties of mulberry plants, namely Morus alba var. Kanva-2 and Morus cathayana in the same agroecosystem. Observation of pests and *Corresponding author: natural enemies was carried out using yellow sticky traps (YST) and E-mail: [email protected] pitfall traps (PFT). The orders and families found in the two varieties showed acroceridae family of 37.81% in the YST and hypogastruridae family with a value of 83.76% in the PFT observation INTRODUCTION Morus spp. including economic value because they produce large amounts of high-quality Mulberry (Morus spp.) is a plant that has leaves, namely M. alba, M. multicaulis (good important socio-economic value in Asia, quality without fertilization but with coarse especially Central and East Asia. Mulberry leaves), and M. nigra (black mulberry). The cultivation practices are related to many development of a new type of mulberry that is industries, including food (fruit), medicine often cultivated by farmers are M. cathayana, (polyphenol and antioxidative flavonoid M. alba var. Kanva 2, and M. lembang. compounds), and the use of leaves as silkworm Regarding those varieties, several varieties feed-in sericulture practices. However, have economically importance namely mulberry crop is grown mainly for feeding the cathayana and Kanva-2. silkworm, Bombyx mori, to produce silk yarn. The challenges faced by silkworm farmers The silk worm, eating the mulberry leaves, are the lack of availability to good mulberry converts the leaf protein to silk protein (Ghosh leaves or the decreased productivity of et. al. 2017). mulberry due to pests and disease The varieties played important values in the (Prayudyaningsih 2006). There are at least 6 ISSN: 1410-3354 / e-ISSN:2615-7136 Cited this as: Triandi, A., N. Mubin and L. Nurulalia. 2021. Identification of mulberry pests and its natural enemies at “Rumah Sutera Alam” Ciapus, West Java. Akta Agrosia 24(1):9-18 . 10 Akta Agrosia, 2021, 24(1): 9– 18 types of pests that are of concern in the Sampling Techniques cultivation of mulberry plants in Indonesia. In Sample was taken weekly for a month by a general, pests attack all parts of the plant, survey, using the Yellow Sticky Trap (YST) including leaves, stems, and roots. The and Pitfall Trap (PFT), done in 2 different negative impact of pest attacks is a decrease in mulberry plant varieties (Morus cathayana and the production and quality of mulberry leaves, M. alba Var. Kanva-2). The author determines in this case, water and protein content, so it is sample plants or samples by making a diagonal not good for use as caterpillar feed map of the observation area. For each plant that (Prayudyaningsih 2006). Mulberry is is passed by a diagonal point, YST and PFTs vulnerable to attack by a variety of pests which are performed. The YST size used is 20 cm x causes an abrupt decline in leaf yield and a 25 cm. The PFT used was a 90 mL volume cup degradation of its appearance. Feeding certain filled with soapy water.Both of these sampling leaves to silkworm results in detrimental techniques are aimed at obtaining insects that effects on the yield of coconut and the have flying characteristics and are around the consistency of the silk. While mulberry is canopy of the plantations (YST), while the PFT home to hundreds of insect species, including is aimed at getting insects that cross and are active in Pyralidae, mulberry thrips, Thripidae, pink the roots and soil around the mulberry plantations. mealybug, Pseudococcidae, Pseudoccidae on The author uses the yellow sticky trap (YST) papaya, and Aleyrodidae cause significant because in general arthropods and other flying disruption and crop damages, while the insects are attracted to yellow. Yellow sticky majority of them live in mild or secondary pest traps were effective in attracting and trapping a status below the level of economic harm. large number of adult whiteflies (Bandyopadhyay et The loss of yield due to pest attacks on al. 2004) as the main pest of mulberry plants. mulberry cultivation is definitely high, In a comparative efficacy study, the yellow considering the low use of pesticides (insecticides) sticky traps alone could suppress 32% of the in the crop, since the leaves can still be used populations within 28 days of installation. (harvested 2-3 times a day as feed for Some literature noted that YST is not silkworms (Bombyx mori). Yield losses substantially different in the monitoring (leaves) from pests ranged from 20.05 % process for other essential mulberry pests. (41.36 grams per plant) to 94.34 % (each plant Monitoring and controlling of Cotarina sp. or leaf was invaded by pests) (Prayudyaningsih generally referred to as mulberry fruit gal- 2006). Pest management is required in a proper midge, did not have a major impact using YST, manner so that mulberry pests can be properly but Green sticky traps had an exceptionally managed. Mulberry pest control options are excellent adult trapping effect followed by blue required to apply the Integrated Pest Control sticky traps, whereas turquoise and purple (IPM) concept and to make pesticides the last sticky traps had the worse trapping effects control choice so that mulberry leaves are not harmful (Jiequn et al. 2018). Due to its general when offered as feed to silkworm (B.mori). existence, the authors have preferred to use The objective of this experiment were to YST as a monitoring tool. observe and to classify the pest incidence on The use of PFT instruments is used to track two species of mulberry Morus alba var. arthropods that have the roles of pests and Kanva-2 and Morus cathayana and their natural enemies. Pitfall trapping, the easiest natrural enemies. and cheapest method, is useful in catching certain arthropod that are nocturnally active on MATERIALS AND METHODS the surface but are inefficient in capturing either the bottom dwellers or those that scatter Time and Location by flight. Pitfall trapping is most effective in The experiment was done from September open environments, such as grasslands and 5th to October 20th, 2020, at Rumah Sutera scrub woodland, as the capture values can be Alam Ciapus, Bogor, West Java, from where influenced by vegetation complexity. the leaf sample were taken for the experiment. Akta Agrosia. 2021. 24(1):9 - 18 A. B. Fig 1 Sampling location and placement of YST (A) and PFT (B) on mulberry plants Determination of sample space, varies Identification of Insects and Other between species, but for mulberry plants, the Arthropods on The Trap author is related by Jiequn's research (2018), Insects and arthropods caught in both traps putting mulberry sticky traps at a distance of (YST and PFT) were identified to the family 1,5 m from the ground using a wooden stick. level using the reference source Hymenoptera There is no standardization of the size and of the world: an identification guides to families depth of the PFT when monitoring using PFT, by Goulet and Huber (1993), Australasian because the PFT application is a modification Chalcidoidea (Hymenoptera): a Biosystematic depending on the commodity. Even if researchers Revision of Genera of Fourteen Families, with a are unable to use the suggested uniform reclassification of Species, Borror and Delong's template, pitfall trap data obtained in future Introduction to the study of insects (2005), studies will be more useful if investigators Insects of Australia Volumes 1A & 2A (1991), listed all of the pitfall trap approaches used as well as specific national and international including specifics of the above characteristics scientific journals. Observation of insects and of pitfall traps, positioning, and maintenance arthropods was carried out using a stereo- strategies (Hohbein 2018). The author microscope and a binocular microscope. In positions the PFT at a depth of 2-5cm such that some limitation conditions, the authors also observed the observation plate is level with the land, the with a dinolite magnification tool (potable digital plate has a diameter of 8cm and the plate depth microscope). is 5cm. The author adds a solution to kill insects or arthropods, a mixture of water and Relative Abundance of Insects and dishwashing liquid soap. The history of this Arthropods in the Sampling Area solution is resistance (does not evaporate The relative abundances of each other insect quickly), is efficient in killing insects, and is and arthropod were calculated by the Krebs inexpensive. The placement of the PFT is in a equation (1989). distance of +-10cm from the stem of the plant. 12 Akta Agrosia, 2021, 24(1): 9– 18 Relative abundance data were then analyzed population abundance of up to 83.76%. Several on the role of each arthropod in the agroecosystem.
Recommended publications
  • Contribution to the Knowledge of the Preimaginal Stages of Suana Concolor Walker, 1855 (Lepidoptera, Lasiocampidae) 23-26 ©Entomologisches Museum Dr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Neue Entomologische Nachrichten Jahr/Year: 2011 Band/Volume: 67 Autor(en)/Author(s): Pugaev Sergey N, Skrobotov Anton A. Artikel/Article: Contribution to the knowledge of the preimaginal stages of Suana concolor Walker, 1855 (Lepidoptera, Lasiocampidae) 23-26 ©Entomologisches Museum Dr. Ulf Eitschberger, download unter www.zobodat.at Neue Entomologische Nachrichten 67: 23-26, Marktleuthen (2011) Contribution to the knowledge of the preimaginal stages Suanaof concolor Walker , 1855 (Lepidoptera, Lasiocampidae) by Sergey N. P ugaev & A nton A. Skrobotov received 4.XII.2009 Abstract: A description of the preimaginal stages and the rearing peculiarities of Suana concolor Walker , 1855, are given for the population of northern Vietnam. The distribution of the species is discussed; the Vietnamese population is considered within the nominotypical subspecies. Zusammenfassung: Von der Population aus Nordvietnam von Suana concolor Walker , 1855 werden die Präimaginal-Stadien be­ schrieben, dazu wird über die Besonderheiten der Zucht berichtet. Im Rahmen der Gesamtverbreitung der Art wird die Population aus Vietnam zur namenstypischen Unterart gezogen. With this article we are starting a circle devoted to preimaginal instars of Bombycoid moths. The main aim is to study their biology and morphology, so that the data obtained, can be used to define the status and taxonomic score of individual taxa. For many species of the Bombycoidea such data are very fragmental and completely unknown, with knowledge confined only to genera. Also, rearing can be especially helpful in matching the sexes of some tropical species having distinct sexual dimorphism.
    [Show full text]
  • A New Species of the Genus Euricania Melichar
    Zootaxa 4033 (1): 137–143 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4033.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:8A95CF0B-BCD9-4D34-AD74-F1C3DA4616D6 A new species of the genus Euricania Melichar, 1898 (Hemiptera: Fulgoromorpha: Ricaniidae) from China, with a world checklist and a key to all species recorded for the country LAN-LAN REN1, ADAM STROIŃSKI2 & DAO-ZHENG QIN1,* 1Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education; Entomological Museum, North- west A&F University, Yangling, Shaanxi 712100, China 2Museum and Institute of Zoology, Polish Academy of Sciences, 64, Wilcza Street, 00-679 Warsaw, Poland 3Corresponding author. E-mail: [email protected] Abstract One new species of the planthopper genus Euricania Melichar, 1898 – E. paraclara sp. nov. is described from Guizhou (southwest China). A checklist of all Euricania species and an identification key to the species of the Chinese fauna are provided. Photographs of the adult and illustrations of male and female genitalia of the new species are also given. Key words: Fulgoroidea, planthopper, taxonomy, key, checklist Introduction The planthopper genus Euricania (Hemiptera: Ricaniidae) was established by Melichar (1898a) with the type species Pochazia ocellus Walker, 1851 designated subsequently by Distant (1906). It is a relatively large genus in the family Ricaniidae with 36 species and subspecies (Bourgoin 2015), widely distributed in the southeastern Palaearctic (China, Japan), Oriental Region (India, Bangladesh, Indonesia, Malaysia, Taiwan), New Guinea, Solomon Islands, Vanuatu, Fiji and North Australia (Fletcher 2008).
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Large Positive Ecological Changes of Small Urban Greening Actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R
    Large positive ecological changes of small urban greening actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R. Olson, Christina Renowden, Tessa R. Smith and Blythe Vogel WebPanel 2 Table S2.1. List of the 94 insect species that were recorded during the study. DET: Detritivore; HER: Herbivore; PRE: Predator; PAR: Parasitoid. All species are indigenous to the study area, excepting those marked with an *. Year 0 Year 1 Year 2 Year 3 Species/morphospecies Common name Family DET HER PRE PAR [2016] [2017] [2018] [2019] Hymenoptera | Apocrita Apocrita 5 Apocrita 5 Apocrita 33 Apocrita 33 Apocrita 36 Apocrita 36 Apocrita 37 Apocrita 37 Apocrita 40 Apocrita 40 Apocrita 44 Apocrita 44 Apocrita 46 Apocrita 46 Apocrita 48 Apocrita 48 Apocrita 49 Apocrita 49 Apocrita 51 Apocrita 51 Apocrita 52 Apocrita 52 Apocrita 53 Apocrita 53 Apocrita 54 Apocrita 54 Apocrita 55 Apocrita 55 Apocrita 56 Apocrita 56 Apocrita 57 Apocrita 57 Apocrita 58 Apocrita 58 Apocrita 59 Apocrita 59 Apocrita 60 Apocrita 60 Apocrita 61 Apocrita 61 Apocrita 62 Apocrita 62 Apocrita 65 Apocrita 65 Apocrita 74 Apocrita 74 Apocrita 89 Apocrita 89 Apocrita 90 Apocrita 90 Apocrita 91 Apocrita 91 Hymenoptera | Apoidea | Anthophila Anthophila 1 Anthophila 1 Anthophila 3 Anthophila 3 Apis mellifera* European honeybee Apidae Diptera | Brachycera Brachycera 2 Brachycera 2 Brachycera 7 Brachycera 7 Brachycera 8 Brachycera 8 Brachycera 14 Brachycera 14 Brachycera 15 Brachycera 15 Brachycera 16 Brachycera 16 Brachycera 18 Brachycera 18 Brachycera 19 Brachycera
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • Diaphorina Citri) in Southern California
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Predators of Asian Citrus Psyllid (Diaphorina citri) in Southern California Permalink https://escholarship.org/uc/item/3d61v94f Author Goldmann, Aviva Publication Date 2017 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Predators of Asian Citrus Psyllid (Diaphorina citri) in Southern California A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Aviva Goldmann December 2017 Dissertation Committee: Dr. Richard Stouthamer, Chairperson Dr. Matt Daugherty Dr. Jocelyn Millar Dr. Erin Rankin Copyright by Aviva Goldmann 2017 The Dissertation of Aviva Goldmann is approved: Committee Chairperson University of California, Riverside Acknowledgements I would like to thank my graduate advisor, Dr. Richard Stouthamer, without whom this work would not have been possible. I am more grateful than I can express for his support and for the confidence he placed in my research. I am very grateful to many members of the Stouthamer lab for their help and contributions. Dr. Paul Rugman-Jones gave essential support and guidance during all phases of this project, and contributed substantially to the design and troubleshooting of molecular analyses. The success of the field experiment described in Chapter 2 is entirely due to the efforts of Dr. Anna Soper. Fallon Fowler, Mariana Romo, and Sarah Smith provided excellent field and lab assistance that was instrumental in completing this research. I could not have done it alone, especially at 4:00 AM.
    [Show full text]
  • Fly Times 59
    FLY TIMES ISSUE 59, October, 2017 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! As usual, I thank everyone for sending in such interesting articles. I hope you all enjoy reading it as much as I enjoyed putting it together. Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community for the next issue. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the associated digital images you wish to provide. This is also a great placeto report on your interesting (and hopefully fruitful) collecting activities! Really anything fly-related is considered. And of course, thanks very much to Chris Borkent for again assembling the list of Diptera citations since the last Fly Times! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. For this issue, I want to again thank all the contributors for sending me such great articles! Feel free to share your opinions or provide ideas on how to improve the newsletter.
    [Show full text]
  • Download Download
    ISSN 0974-7907 (Online) OPEN ACCESS ISSN 0974-7893 (Print) 26 October 2018 (Online & Print) Vol. 10 | No. 11 | 12443–12618 10.11609/jot.2018.10.11.12443-12618 www.threatenedtaxa.org Building evidence for conservatonJ globally TTJournal of Threatened Taxa YOU DO ... ... BUT I DON’T SEE THE DIFFERENCE. ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Published by Typeset and printed at Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: 0 938 533 9863 Email: [email protected], [email protected] www.threatenedtaxa.org EDITORS Christoph Kuefer, Insttute of Integratve Biology, Zürich, Switzerland Founder & Chief Editor Christoph Schwitzer, University of the West of England, Clifon, Bristol, BS8 3HA Dr. Sanjay Molur, Coimbatore, India Christopher L. Jenkins, The Orianne Society, Athens, Georgia Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines Managing Editor Colin Groves, Australian Natonal University, Canberra, Australia Mr. B. Ravichandran, Coimbatore, India Crawford Prentce, Nature Management Services, Jalan, Malaysia C.T. Achuthankuty, Scientst-G (Retd.), CSIR-Natonal Insttute of Oceanography, Goa Associate Editors Dan Challender, University of Kent, Canterbury, UK Dr. B.A. Daniel, Coimbatore, India D.B. Bastawade, Maharashtra, India Dr. Ulrike Streicher, Wildlife Veterinarian, Danang, Vietnam D.J. Bhat, Retd. Professor, Goa University, Goa, India Ms. Priyanka Iyer, Coimbatore, India Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada Dr. Manju Siliwal, Dehra Dun, India Daniel Brito, Federal University of Goiás, Goiânia, Brazil Dr. Meena Venkataraman, Mumbai, India David Mallon, Manchester Metropolitan University, Derbyshire, UK David Olson, Zoological Society of London, UK Editorial Advisors Davor Zanella, University of Zagreb, Zagreb, Croata Ms.
    [Show full text]
  • Mitochondrial Genomes of Hestina Persimilis and Hestinalis Nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications
    insects Article Mitochondrial Genomes of Hestina persimilis and Hestinalis nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications Yupeng Wu 1,2,*, Hui Fang 1, Jiping Wen 2,3, Juping Wang 2, Tianwen Cao 2,* and Bo He 4 1 School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; [email protected] 2 College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; [email protected] (J.W.); [email protected] (J.W.) 3 Department of Horticulture, Taiyuan University, Taiyuan 030012, China 4 College of Life Sciences, Anhui Normal University, Wuhu 241000, China; [email protected] * Correspondence: [email protected] (Y.W.); [email protected] (T.C.) Simple Summary: In this study, the mitogenomes of Hestina persimilis and Hestinalis nama were obtained via sanger sequencing. Compared with other mitogenomes of Apaturinae butterflies, conclusions can be made that the mitogenomes of Hestina persimilis and Hestinalis nama are highly conservative. The phylogenetic trees build upon mitogenomic data showing that the relationships among Nymphalidae are similar to previous studies. Hestinalis nama is apart from Hestina, and closely related to Apatura, forming a monophyletic clade. Citation: Wu, Y.; Fang, H.; Wen, J.; Wang, J.; Cao, T.; He, B. Abstract: In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis Mitochondrial Genomes of Hestina and Hestinalis nama (Nymphalidae: Apaturinae) were acquired. The mitogenomes of H. persimilis persimilis and Hestinalis nama and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the (Lepidoptera, Nymphalidae): typical composition, including 37 genes and a control region.
    [Show full text]
  • Lappet Moths (Lepidoptera : Lasiocampidae) of North-West India- Brief Notes on Some Frequently Occurring Species Rachita Sood*, P.C
    Biological Forum – An International Journal 7(2): 841-847(2015) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Lappet Moths (Lepidoptera : Lasiocampidae) of north-west India- brief notes on some frequently occurring species Rachita Sood*, P.C. Pathania** and H.S. Rose*** *Department of Zoology, GNGC, Model Town, Ludhiana (PB), India **Department of Entomology, Punjab Agricultural University, Ludhiana, (PB), India ***Department of Zoology, Punjabi University, Patiala, (PB), India (Corresponding author: Rachita Sood) (Received 12 August, 2015, Accepted 09 October, 2015) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Four species, i.e, Trabala vishnou Lefebvre (Lasiocampinae), Suana concolor Walker, Euthrix laeta Walker and Gastropacha pardalis (Walker) (Gastropachinae) of Lasiocampidae moths were collected from north-west India, and are here described and illustrated. Besides an illustrated account of their genitalia, diagnostics of these subfamilies, genera and species are also provided. Key words: Lappet Moths, Lasiocampidae, Lepidoptera, North-West India INTRODUCTION The classic work of Maxwell-Lefroy & Howlett, 1909) on our “Indian insect life” mentions that “Over 50 This family of the Eggar or Lappet moths is most Indian species are listed by Hampson of which about diverse in the Old World tropics, with about 2,200 six are to be found commonly in the plains.” Four of species so far known worldwide, but absent from New these are described in some detail. He goes on to write Zealand (Holloway , 1987). The moths are medium to that “most are of moderate size, thick bodied, of light large, and of a robust and hairy appearance. They are colour, cryptic in design.
    [Show full text]
  • Ants (Order Hymenoptera, Family Formicidae)
    BugWise Invertebrate Guide A tool for studying Australian invertebrates Introduction The Invertebrate Guide was created by Matthew Bulbert and David Britton. Illustrations were prepared by Andrew Howells. Images on title page were provided by Matthew Bulbert. An electronic version is available at www.australianmuseum.net.au/bugwise. This version has coloured pictures of groups. Funding for the BugWise project and associated resources were supplied by Coal and Allied Community Trust and NSW Environmental Trust. All images, illustrations and text copyrighted to the Australian Museum, 2007. The Australian Museum encourages the availability, dissemination and exchange of public information. Unless otherwise specified you may copy, distribute, display, download and otherwise freely deal with this material on the condition that you include the copyright notice “© Australian Museum” on all uses. You must, however, obtain written permission from the Australian Museum if you wish to: · charge others for access to the material; · include all or part of the material in advertising or a product for sale; · modify the material in any form; or · publish the material on another website - we prefer that you make a direct link to this website to ensure that the latest version is always displayed. Invertebrate Guide 1 Scope of the document: BugWise Invertebrate Guide has been prepared by Australian Museum staff working on invertebrate behaviour, taxonomy and ecology. It has been designed to help people who need to identify invertebrates. Unlike other guides of similar nature, extensive notes on behaviour and common misidentifications for each invertebrate group are also provided. An advantage of this added information is that it potentially allows identification of invertebrate groups without the need to collect them.
    [Show full text]
  • Similarities and Contrasts in the Local Insect Faunas Associated with Ten Forest Tree Species of New Guinea!
    Pacific Science (1996), vol. 50, no. 2: 157-183 © 1996 by University of Hawai'i Press. All rights reserved Similarities and Contrasts in the Local Insect Faunas Associated with Ten Forest Tree Species of New Guinea! YVES BASSET,z,3 G. A. SAMUELSON, 2 AND S. E. MILLER 2 ABSTRACT: Insect faunas associated with 10 tree species growing in a sub­ montane area in Papua New Guinea are described and compared. In total, 75,000 insects were collected on these trees during the day and night by hand collecting, beating, branch clipping, intercept flight traps, and pyrethrum knock­ down over a l-yr period. Association of chewing insects with the hosts was in­ ferred from feeding trials. Characteristics of the fauna associated with each tree species are briefly outlined, with an emphasis on chewing insects. Four subsets of data, of decreasing affinity with the host, were analyzed by canonical corre­ spondence and cluster analyses: (1) specialist leaf-chewers, (2) proven leaf­ chewers, (3) all herbivores (including transient leaf-chewers and sap-suckers), and (4) all insects (including nonherbivore categories). Analyses of similarity between tree species were performed using number of either species or in­ dividuals within insect families. Analyses using number ofindividuals appeared more robust than those using number of species, because transient herbivore species artificially inflated the level of similarity between tree species. Thus, it is recommended that number of individuals be used in analyses of this type, par­ ticularly when the association of insects with their putative host has not been ascertained. Not unexpectedly, the faunal similarity of tree species increased along the sequence (1)-(2)-(3)-(4).
    [Show full text]