Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Methods of synthesis of cyclobutenediones

Amere Mukkanti and Mariappan Periasamy*

School of Chemistry, University of Hyderabad, Central University P. O., India 500 046 E-mail: [email protected]

Dedicated to Professor S. Swaminathan on the occasion of his 80th birthday (received 17 Sept 04; accepted 28 Oct 04; published on the web 10 Nov 04)

Abstract Cyclobutenediones have been used as versatile starting materials for the synthesis of a wide range of multifunctional molecules. There have been continued efforts to develop general and practical methods to access the cyclobutenediones, which led to the discovery of several new methodologies over the last two decades. A review of various methods of synthesis of cyclobutenediones is presented.

Keywords: Cyclobutenediones, squaric , squarates, benzocyclobutenediones, cycloadditions and double carbonylations

Introduction

Cyclobutenediones are considered as quinones of unstable cyclobutadienes because of their formal resemblance to cyclobutadienes by virtue of all sp2 hybridised in a four membered ring.1 Phenylcyclobutenedione was the first cyclobutenedione to be synthesized by J. D. Roberts et al.1a in 1955. The initial studies on cyclobutenediones were limited primarily to their unusual stability,1 reactivity toward nucleophiles2 and aromaticity of their oxoanions.3 Extraction of moniliformin 1a, a fungal toxin, from Fusarium moniliforme by Cole et al.4 led to the synthesis and testing of wide range of cyclobutenediones. Subsequently, a number of biological and pharmaceutical applications of cyclobutenediones were discovered. For example,

the di-n-butylsquarate 1c (R = n-C4H9) is a potent allergen and has been used in the treatment of , and in immunotherapy for warts in children.5 Squaric acid 1c (R = H) itself is an inhibitor of glyoxylase I,6a semisquaric acid 1b is an inhibitor for pyruvate dehydrogenase and transketolase6a and 1d is an inhibitor for PTPases (protein tyrosine phosphatases).6c Recently, the diamide of squaric acid 1e was used as a replacement for one of the phosphate diester linkages in an oligodeoxynucleotide,7 while 1f as antagonist of the NMDA (N-methyl-D-aspartate)

ISSN 1424-6376 Page 48 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

receptor.8 Also, some of the cyclobutenedione derivatives are useful as high-affinity ligands for exitatory amino acid receptors9 and anion recognition systems.10

OH O O N H N O H O RO O Ar O HN HN O O N O Z O RO O HO O HN O 1c 1d O N O 1e 1f Z = KO 1a HN OH PO H Z = HO 1b O 3 2

Extensive studies by Liebeskind,11 Moore,12 Paquette13 and others14 have shown that cyclobutenediones are highly versatile starting materials for the synthesis of an array of multifunctional carbocyclic and heterocyclic compounds. Recently, squarate diamides have been used in the construction of chiral auxiliaries.15 Also, cyclobutenedione derivatives (squaraines) are used as NLO materials16 and photoconductors.17 Methods of synthesis of cyclobutenediones reported before 1980 were already reviewed.2 Accordingly, in this review emphasis is on the methods developed in the last 2 decades. The methods of discussion are arranged under the following topics. 1. Cyclobutenediones by thermal or photochemical cycloadditions 1.1. Cycloadditions involving alkynes 1.1.1. Addition of alkynes to tetrahaloalkenes 1.1.2. Addition of alkynes to dichlorovinylene carbonate 1.1.3. Addition of alkynes to ketenes 1.1.4. Alkyne dimerization 1.2. Cycloadditions involving alkenes 1.2.1. Addition of electron-rich olefins to electron-poor olefins 1.2.2. Addition of electron-rich olefins to ketenes 1.2.3. Addition of thioenol ethers to ketenes 1.2.4. Cyclodimerisation of tetrahaloethylenes 1.2.5. Cyclodimerisation of chlorovinylene carbonate 1.2.6. Intramolecular cycloaddition of olefins 1.2.7. Addition of dienes to olefins 2. Cyclobutenediones via transition metal complexes 3. Cyclobutenediones from cyclopropene derivatives 4. Cyclobutenediones from other simple cyclobutenediones 4.1. Halogen derivatives of cyclobutenedione 4.2. Alkoxy derivatives of cyclobutenedione 4.3. Thionyl and selenyl derivatives of cyclobutenedione 4.4. Amino derivatives of cyclobutenedione 4.5. Phosphine derivatives of cyclobutenedione 4.6. Alkyl, alkenyl, alkynyl and aryl derivatives of cyclobutenedione 5. Benzocyclobutenediones

ISSN 1424-6376 Page 49 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

1. Cyclobutenediones by thermal or photochemical cycloadditions

1.1. Cycloadditions involving alkynes 1.1.1. Addition of alkynes to tetrahaloalkenes. Cycloaddition reactions between fluoroalkenes and substituted acetylenes have proven to be of considerable value in the synthesis of cyclobutenediones.18 For example, the first reported cyclobutenedione, i.e. phenylcyclobutenedione 2, was prepared by cycloaddition of chlorotrifluoroethylene or tetrafluoroethylene to phenylacetylene to form tetrahalogenated phenylcyclobutene. The resulting tetrahalogenated phenylcyclobutene was subjected to acid hydrolysis either directly (Path a) or via dihalogenated phenylcyclobutenone (Path b) to provide cyclobutenediones (Scheme 1).1a

Ph H Ph X Ph H ∆ H2SO4 X + o F F X X 100 C; 6 min. CC X X Path b H O F F Path a or H2SO4 hydrolysis F F 100 oC; 20 min. Ph O CC Cl F H O 2 75% Scheme 1

1.1.2. Addition of alkynes to dichlorovinylene carbonate. Irradiation of a mixture of dichlorovinylene carbonate (DCVC) 3 and alkyne in polar aprotic solvents like acetone or acetonitrile in the presence of photo-sensitizers gives cycloadduct 4 in poor yields 10-15%. Subsequent hydrolysis of adduct at 60 ºC in 60% acetone/water yields the corresponding cyclobutenediones (Scheme 2).19

1 2 Cl Cl R R R1 O hν, Acetone H2O/Acetone R1 R2 + OO Cl Cl OO R2 O O 5 3 O 4 R1, R2 = H 10% 1 2 R , R = CH3 93%

Scheme 2

ISSN 1424-6376 Page 50 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

1.1.3. Addition of alkynes to ketenes. Thermal cycloaddition of alkynes to dichloroketene followed by acid hydrolysis of the resulting cylobutenone affords cyclobutenediones (Scheme 3).20

R1 R2 1 R1 R2 R O ∆ H3O Cl + Cl 2 CCO Cl O R O Cl 5 R1, R2 = Ph 73% R1= Ph, R2 = Et 58%

Scheme 3

1.1.4. Alkyne dimerisation. 3-Hydroxycyclobutene-1,2-dione (semisquaric acid) 1b, the parent compound of the natural mycotoxin “moniliformin” has been synthesized by thermal dimerisation of di-t-butoxyethyne followed by solvolysis of 6 using trifluroacetic acid (Scheme 4).21

Ot-Bu O Ot-Bu HO O Me HO O C 2 ∆ TFA CH 2 2 C H 6 6 t-BuO Ot-Bu t-BuO O H H O Ot-Bu 6 1b 100%

Scheme 4

1.2. Cycloadditions involving alkenes 1.2.1. Addition of electron-rich olefins to electron-poor olefins. Tetraalkoxy ethylene, an electron-rich olefin, adds on to electron-poor ethylene derivatives under thermal conditions to form 1,1,2,2-tetraalkoxy-3,3-dicyano-4-arylcyclobutene 7a, which upon base catalysed elimination of HCN gives 7b. The 3-cyanocyclobutenedione 7 is obtained by hydrolysis of acetal groups using concentrated sulphuric acid at 25 ºC (Scheme 5).2a,22

Ar CN OR1 Conc. CC H CN NC NC O 1 H2SO4 H CN ∆ Ar CN t-C4H9-OK OR 1 1 1 OR 1 + 1 R O OR -HCN R O OR Ar 1 Ar O 1 1 OR CC R O OR R1O OR1 7a 7b 7 Ar = Ph 95%

p-NO2Ph 80% p-OMePh 94% Furyl 82%

Scheme 5

ISSN 1424-6376 Page 51 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

1.2.2. Addition of electron-rich olefins to ketenes. An improved synthesis of cyclobutenediones and derivatives of semisquaric acid was achieved by (2+2) cycloaddition of the tetraalkoxyethylenes with alkylketene,23a chloroketene,23b oxy ketene23c or trimethylsilyl ketene,23d produced in situ by triethylamine-promoted dehydrohalogenation of the corresponding acyl chlorides (Scheme 6).

Me RO OR R O OR O OMe NaBH4 RO OR Other [2+2] MeO OMe ∆ + RO OR X cycloadducts X = Cl Cl + 1 OH X R1 O R = Me R CCO 1 HCl R R = Me, Et SiO2/Et3N or Al2O3 o Reflux X = H, SiMe3 hexane, 25 C

RO OR HO O OR HCl

o 1 R1 O 25 C R O 39-86% R1 = H, Cl, OR, SMe, Me, Et, t-Bu Ph, Bn, Anisyl, Cyclohexyl

Scheme 6

Also, cycloaddition of 2,3-dihydro-1,4-dioxane to dichloroketene by sonication followed by hydrolysis leads to semisquaric acid (Equation 1).23f

O HO O Cl 1. Sonication + CCO

O Cl 2. H3O H O 1b 82% (1)

1.2.3. Addition of thioenol ethers to ketenes. Recently, Liebeskind et al.24 reported a relatively simple protocol for the synthesis of monocyclic and bicyclic cyclobutenediones starting from ketones (Scheme 7). Phenylthioenol ethers, prepared from ketones undergo regiospecific [2+2] cycloaddition with dichloroketone to provide dichlorocyclobutanone 8a, which upon

Et3N/CH3CN treatment produces rearranged product 8b through HCl elimination. Reaction of 8b with m-chloroperbenzoic acid gives the corresponding cyclobutenedione.

1 2 R R 2 R1 R2 R1 R2 R O ∆ SPh Et3N PhS mCPBA + SPh Cl Cl 1 O Rearrangement O Cl R O O C C Cl 8b 5 Cl 8a R1 = R1 = Me 93% 1 1 R = R = -(CH2)4- 94% 1 1 R = R = -(CH2)5- 99% R1 = H, R1 = Ph 97% Scheme 7

ISSN 1424-6376 Page 52 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

1.2.4. Cyclodimerisation of tetrahaloethylenes. Heating of fluorinated ethylenes leads to stable cyclobutane rings 9a in contrast to other halogenated olefins (chloro and bromo) which give polymerised products.25 The cyclisation process is exclusively a “head to head”or “tail to tail” joining to form only one isomer. Dechlorination of 9a with Zn affords 9b, which upon further reaction with aryl lithium reagents provides 3,4-diarylcyclobutene-1,2-dione after hydrolysis (Scheme 8). Squaric acid 1c was first synthesized in 1959 by Cohen et al.25a following a similar procedure .

Cl Cl F F Ar Ar Ar O F F ArLi H2SO4 ∆ F F Zn 2 CC F F F F F F Cl F F F F F Ar O F F 9 9a 9b 30-86%

HO O Cl Cl F F RO OR H SO Zn ROH 2 4 F F ∆ F F 2 CC F F F F F F Cl F HO O F F F F F F 1c Scheme 8

1.2.5. Cyclodimerisation of chlorovinylene carbonate. Both mono and dichlorovinylene carbonates undergo dimerisation upon irradiation in acetone solution to form cyclobutanes 10a and 10b, respectively. Hydrolysis of the adduct 10a yields hydroxycyclobutenedione 1b,

whereas the 10b gives octahydrocyclobutane 10c, which on reaction with SO2 yields squaric acid 1c (Scheme 9).26

H Cl Cl H OH O HO O O O H O -H2O h 3 H ν O O 2 OO H O O H O OH O O H Cl 10a 1b Cl Cl Cl Cl HO OH HO O O O H3O HO OH SO2 hν O O 2 OO HO OH O O HO O Cl Cl HO OH O 10b 10c 1c

Scheme 9

1.2.6. Intramolecular cycloaddition of olefins. Allenes of the type 11a undergo intramolecular [2+2] cycloaddition under thermal conditions to form 1,2-dibromo-3,4- bis(diphenylmethylene)cyclobutene 11b which on photo-oxidation affords 3,4- bis(bromodiphenylmethyl)cyclobutene-1,2-dione 11 (Path a)27b (Scheme 10). Alternatively, it can be converted to stable, isolable cyclobutene epoxide 11c by refluxing with potassium alkoxide (Path b). Acid catalysed photochemical ring opening of 11c gives 3-diphenylmethyl-4- bromodiphenylmethylcyclobutene-1,2-dione 12 in quantitative yields.27a

ISSN 1424-6376 Page 53 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Ph Ph Br Ph C Br Ph Br Ph hν, O2 Br Ph C O Ph C CCC Ph ∆ O Ph C CC Ph Path a O C Br Ph Ph C O Br Ph C Br Ph 11b Br Ph 11a Ph 11 50% RO Path b

Ph2HC O O R Ph2C H3O O Ph Ph C O Br Ph Br 12 Ph 11c 51%

Scheme 10

1.2.7. Addition of dienes to olefins. Substituted benzocyclobutenediones 14 have been prepared by utilizing Diels-Alder chemistry. Cycloaddition of trimethylsiloxy dienes to 1,4-dichloro- 3,3,4-triflurocyclobutene 13 gives the cycloadduct 13a that on aromatisation followed by acid hydrolysis gives benzocyclobutenediones (Scheme 11).28

OSiMe F Cl O 3 F R R R F H SO F [4+2] NaOMe F 2 4 + F F o F MeOH 100 C O R Cl Cl Cl F Cl Me3SiO 13 13a 13b 14 40%

Scheme 11

Diels-Alder reaction of 3-chloro-3-cyclobutene-1,2-dione with dienes gives the adduct 15a, 29 which upon oxidation by active MnO2 produces benzocyclobutenediones 15 (Scheme 12).

1 1 R1 R R 2 X O o 2 O 2 O R 110 C R MnO2 R + 3 3 R3 H O R O R O 15a 15 X = H, Cl, SMe 41-81% 62-82%

Scheme 12

Similarly, tetrachlorobenzocyclobutenedione 16 has been prepared via dimerisation of perchlorobutenyne 16a followed by acid hydrolysis (Scheme 13).30

ISSN 1424-6376 Page 54 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Cl Cl Cl O Cl Cl Cl H2SO4 Cl Dimerisation Cl CCCCCl o Cl 160 C Cl Cl Cl O Cl 16a Cl Cl 16 60% Scheme 13

2. Cyclobutenediones via transition metal complexes

Thermal reaction of alkynylalkoxycarbene complexes of chromium 17a and tungsten 17b with tetraalkoxyethylene affords good yields of [2+2] cycloadducts under mild conditions. The release of organic ligand from metal carbonyl was achieved by DMSO oxidation, and the resulting

cyclobutene 18b gives differently substituted cyclobutenediones 18 upon H2SO4 or CF3COOH hydrolysis (Scheme 14).31

3 3 3 3 H SO or R O OR 3 3 O OR 2 4 2 R O OR R R O 3 3 3 3 R O OR CF3COOH R3O OR3 ∆ R O OR DMSO + 1 2 O O OR M R2 O R 1 1 1 OR [M] OR OR 18a 18b 18 R1 R1 R1 R2 Me Pr Et 68%

[M] = Cr(CO)5 17a, W(CO)5 17b Et Ph Et 98% Me Me3Si Me 92%

Scheme 14

Palladium chloride induced cyclodimerization of di-t-butoxyethyne leads directly to di-t- 21 butyl squarate 1c (R = t-C4H9) via intramolecular t-BuCl elimination (Scheme 15).

Ot-Bu t-BuO PdCl t-BuO O Ot-Bu 0 PdCl2(CH3CN)2 + Pd 2 Ot-Bu t-BuO t-BuO Cl O Ot-Bu 1C 52%

Scheme 15

A novel cycloaddition of nickel complex to alkyne was reported. It was found that an equimolar ratio of tetrakis(arylisocyanide)nickel and diphenylacetylene upon refluxing in toluene yielded di-iminocyclobutene 19, which after aqueous HCl work up gave diphenylcyclobutenedione (Scheme 16).32

ISSN 1424-6376 Page 55 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Ph O (R-NC) Ni Ph N R 4 ∆ 2 H2O/H + Ph O Ph Ph Ph N R 19 9 R = Ph 90%

R = 4-MeO C6H4 22% R = 2,6-Me2,4-Br C6H4 30% Scheme 16

Oxidation of tetrakis(diethylamino)cyclopentadienone 20 with bromine and aqueous work up affords a novel cyclobutenedione with an interesting functionality 22.33 Dione has also been prepared via 21 by electrochemical or nitrosonium hexafluorophosphate oxidation (Scheme 17).33

O O NOPF6 Et2N NEt2 Et2N NEt2 Pt anode oxidation

Et NNEt LiClO4, CH3CN Et2NNEt2 2 2 21 Fe(CO)3 20 35% O H O 1. Br2, CH2Cl2 2 O Slow diffusion 2. H2O Et2N

Et2NO 22 70% Scheme 17

It was reported that the FeCl3 oxidation of ferrole complex formed in the reaction of

acetylene with an alkaline solution of Fe(CO)5 leads to cyclobutenedione in low yield (Scheme 18).34 R1 O 1 2 FeCl Unidetified R R Hydroxyferrole 3 + carbonyl Fe(CO)5 + NaOH Complex CH OH CH OH compounds 3 3 R2 O 1 2 R = R = H, CH3 5 10%

Scheme 18

Herrera et al.35 reported that the nickelcyclopentenediones 23, prepared by reaction of

(bpy)Ni(CO)2 with alkyne in THF at 20 ºC, affords cyclobutenediones with maleic anhydride or monoxide (Scheme 19). Nickel complex 23 can also be obtained from the reaction of (bpy)Ni(alkyne) with molecular CO.35a

ISSN 1424-6376 Page 56 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

R R O (bpy)Ni(CO)2 25-60% O O RO CO R O (bpy)Ni(R R) Ni(bpy) 40% R or CO R O O 23 R = Me, Ph R R (bpy)Ni(COD) 65-75% CO 25% Scheme 19

It was reported from this laboratory that the reaction of NaHFe(CO)4/CH3I reagent combination with alkynes at 60 ºC gives the corresponding cyclobutenediones along with 36a unsaturated carboxylic after CuCl2·2H2O oxidation (Scheme 20).

1 o R O 1. Na/Naphthalene 1. CH3I/60 C Fe(CO)5 NaHFe(CO)4 1 2 2 2. CH3COOH 2. R R R O

3. CuCl2. 2H2O 5 27-42% Scheme 20

It was found that the reagent prepared using NaHFe(CO)4/Me3SiCl at 60 ºC, upon reaction with alkynes followed by CuCl2·2H2O oxidation produced the corresponding cyclobutenediones (51-63%) (Scheme 21).36b

R1 O o 1. Na/Naphthalene 1. Me3SiCl/ 60 C Fe(CO)5 NaHFe(CO)4 1 2 2 2. CH3COOH 2. R R R O 5 3. CuCl . 2H O 2 2 51-63% Scheme 21

- Also, it was observed that the [HFe3(CO)11] species, prepared in situ using

Fe(CO)5/NaBH4/CH3COOH, reacts with alkynes to give the corresponding cyclobutenediones in 37 good yields (60-73%) after CuCl2·2H2O oxidation (Equation 2). 1 1 2 R O 1. R R /CH3COOH Fe(CO)5 + NaBH4 o 25 C R2 O 2. CuCl2. 2H2O 5 60-73% (2)

Further, it was found that the iron carbonyl species, prepared by the reduction of

FeCl3/NaBH4 in THF at 25 °C in the presence of CO, reacts with alkynes at room temperature to

ISSN 1424-6376 Page 57 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

give a complex that gives the corresponding cyclobutenediones after CuCl2·2H2O oxidation (Scheme 22).38

1 o R O 1. NaBH4/CO 1. CH3I/0 C FeCl3 HFe(CO)4 1 2 2. CH COOH 2. R R 2 3 R O 3. CuCl . 2H O 2 2 5 30-37% Scheme 22

Coordinatively unsaturated iron carbonyl species, prepared using Fe3(CO)12/amine, react with alkynes under ambient conditions to afford cyclobutenediones (Equation 3).39a

R1 O 1. R1 R2 Fe3(CO)12 + Amine 2 2. CuCl2. 2H2O R O 5 28-61% (3)

Very recently, it has been reported that cyclobutenediones are formed in good yields via bromine oxidation of acyloxyferrole complexes 24 (Equation 4).39b

R3 O O R1 R1 O Br2 Fe(CO)3 o 2 CO -78 C, CH Cl 2 R 2 2 R O O Fe O (CO)2 5 R3 60-90% 24 (4)

3. Cyclobutenediones from cyclopropene derivatives

Though, this is not a method of choice due to the difficulty associated with starting material preparation, cyclobutenediones could be obtained from cyclopropenones by ring expansion. Reaction of sodium trichloroacetate with dialkylcyclopropenone 25a under thermal conditions gives 5 via dichlorodialkylcyclobutenone (Scheme 23).40

1 2 2 1 2 R R R2 Cl R O R R H SO Cl 2 4 CCl + 3 Cl OC -Cl 1 R1 O O Cl R O Cl 5 25a 43% R1, R2 = Me, Pr Scheme 23

ISSN 1424-6376 Page 58 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Similarly, base hydrolysis of 25b directly gives the corresponding cyclobutenedione (Equation 5).41

Ph Ph Ph O

O -BH/-RO H O R Ph O O 9 B 25b ca 100% (5)

Also, it has been reported that isonitriles react with cyclopropenones to give cyclobutenedione in the presence of triphenylphosphine via iminocyclobutenone 26.42 The formation of 26 involves Michael addition of P(Ph)3 to generate ketene-phosphorane followed by concerted rearrangement of P-C bonds as shown in Scheme 24.

1 R Ph R1 1 Ph 1 Ph R Ph R 2 P(Ph)3 P(Ph)3 CNR C C P(Ph)3 C P(Ph) O O 3 O N O R2

1 2 R1 O R N R H2O/H

-P(Ph) 3 Ph O Ph O 26 5 84% ca 100% Scheme 24

4. Cyclobutenediones from other simple cyclobutenediones

Synthesis of cyclobutenediones based on cycloaddition reactions is limited to either to squaric acid or aryl and simple alkyl derivatives. Hence, cyclobutenediones with a wide range of substituents have been synthesized from simple diones such as ynthesi, halo or alkoxy substituted cyclobutenediones by reacting with a variety of carbon as well as hetero atom nucleophiles. The underlying principle in all these reactions is the vinylogous behaviour of cyclobutenediones i.e. ynthesi, halo and alkoxy cyclobutenediones show the reactivity similar to that of acid, acid chloride and ester, respectively (Scheme 25).2

X X O O Nu O Nu Nu

XO XO XO X = OH, Cl, Br, OR Scheme 25

ISSN 1424-6376 Page 59 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

4.1. Halogen derivatives of cyclobutenedione

It has been reported that the reaction of squaric acid with SOCl2 in the presence of DMF leads to the replacement of both the OH groups to form dichlorocyclobutenedione in good yields 27 (Equation 6).43 Also, phenylcyclobutenedione is readily halogenated in glacial acetic acid (Equation 7).1b HO O Cl O SOCl2 (2 equiv.)

DMF, reflux HO O Cl O 1b 27 75%

Ph O Ph O X2

CH3COOH HO XO 28 29 X = Cl 70% X=Br 53%

4.2. Alkoxy derivatives of cyclobutenedione Alkoxy derivatives of cyclobutenedione, squaric acid esters, have been synthesized from squaric acid following different strategies as outlined in Scheme 26.2d,44 The chemical properties of squaric acid are mainly determined by its acid character and its reactivity is comparable to that of dicarboxylic acids. Ethyl or butyl alcohol treatment of squaric acid gives the corresponding diesters, whereas methanol gives monoester 30b. However, dimethylsquarate was synthesized by the action of diazomethane on 1b or by the reaction of methyl iodide with 30d. AgO O R Si O O 3 AgNO (2 equiv.) 1. AgNO3 (2 equiv.) 3 2. R SiCl (2 equiv.) AgO O R Si OO3 30d 3 30a CH I 95% 3 (2 equv.) HO O HO O CH3O O CH N (2 equiv.) CH3OH 2 2 79% 66% CH3OO HO O CH3OO31 30b 1b C2H5OH O (2 equv.) H C C O O 3 C H OH (2 equiv.) C2H5O O AC2O (2 equiv.) 2 5

H C C OO 3 C2H5OO O 30c 32 60% 77%

Scheme 26

A similar reaction of halocyclobutenediones with alcohols give good yields of squaric acid esters (Scheme 27).2b,44b As described later in this section, dialkoxy squarates are extensively used in the synthesis of a variety of cyclobutenediones.

ISSN 1424-6376 Page 60 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Cl O RO O ROH R = Methyl, Ethyl, n-Propyl Cl O RO O

O Ph O Ph O Ph O Ph O 1 ROH Cl C OR ROH 1 R N HO O XO RO O R O C OO 3 1d 33 O 34 X = Cl, Br, I R1 = Ethyl or i-Butyl 62%

Scheme 27

4.3. Thionyl and selenyl derivatives of cyclobutenedione It was reported that the reaction of diethyl squarate with 2 equiv. of sodium or potassium hydrosulfide in alcohol gives the 1,2-dithiosquarate anion 35,45a which has also been prepared from squaric acid diamide 36 in low yield (Scheme 28).45a Dithiosquarate anion is readily alkylated with CH3I to give dithioester 37a. Also, thioester 37b has been ynthesized by the reaction of benzylmercaptan and 3,4–dichloro-3-cyclobutene-1,2-dione in the presence of amine 45b 46 bases (Scheme 28). Later, an improved method was developed using AlCl3.

C2H5O O NaSH or S O RHN O NaH/CS2 KSH C2H5OO SO RHN O 35 36 80-85%

Cl O S O RS O 1. RSH (2 equiv.) RI (2 equiv.)

2. Et3N (2equiv.) SO RS O Cl O R = C2H5 R = PhCH2

R = C2H5 37a 91%

R = PhCH2 37b 36%

Scheme 28

Similarly, the reaction of 3-chloro-4-phenyl-3-cyclobutene-1,2-dione 29 with pyridine saturated with hydrogen sulfide leads to thioether 38. After acid work up, 3-mercapto-4-phenyl- 3-cyclobutene-1,2-dione 39a was obtained, which could be converted to thioester 39b with suitable reagents (Scheme 29).2b,47a Similar reactivity was reported between hydrogen selenide and dichloro- or diethoxycyclobutenediones to produce the corresponding selenide derivatives 40 and 41 (Scheme 30).47b

ISSN 1424-6376 Page 61 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Ph S Ph R 29 O O OO N 38 H Ph SH Cl H S S 2 HCl O O O O R O O 39a 29 N CH N or Phenylsulfenyl 2 2 chloride

Ph SR1

O O 39b R1 = Me, Et, Ar 20-80%

Scheme 29

R1 Se O R1X R1 = Me or Ph 1 X O H Se R Se O 2 40 HSe O XO R HCl N X = Cl or OC H HSe O 2 5 41

Scheme 30

4.4. Amino derivatives of cyclobutenedione Amine derivatives of cyclobutenedione are known as amides of squaric acid. Reaction of

slight excess of a primary or a secondary amine with dialkylsquarate in CH3OH or CH2Cl2 at room temperature give monoamide monoester 42 in excellent yield.48,44a Diamides of squaric acid 36 are prepared under more basic conditions using large excess of amine or by adding triethylamine (Scheme 31).2d Also, halocyclobutenediones react with amines but provide the corresponding amides 43 in lower yields.49

1 R1 R EtO O 2 N O 2 N O 1 excess R1 NH or R R R NH2 or 2 1 2 1 R R N O EtO O R EtO O HN HN 2 1 2 R R 42R 36 >90% >90% R1 X O 1 2 R NH2 or R N O R1 Ph O HN Ph O 1 R2 R = H, Alkyl, Aryl 43 R2 = H, Alkyl, Aryl X = Cl, Br, OEt, O-CO-O-C H 2 5 >90% Scheme 31

ISSN 1424-6376 Page 62 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

This reaction could also be performed in a buffered solution (pH 7), which is appropriate for biopolymers. Hence, this controlled nucleophilic substitution forms the basis for the use of diethyl squarate as a coupling reagent to conjugate oligosaccharides to proteins or polyazamacrocycles.50 Several biologically active and drug molecules such as 44a-44c have been synthesized following similar methods (Scheme 32).51

O HOOC Na O H HOOC NH2 HN O H3N HN O H RO O NHBoc 1. NH3 H N O 1. Et3N 2. H2N OH 2 O O RO O 44c 2. HCl 44a O 86% 88% O 1. NH ONH .HCl 3. Pd(PPh3)4/ 2 N-Methylaniline PhO CO2H 2. Et3N PhOCH2CONH O N O O

K O O 44b 51%

Scheme 32

Also, it was found that aziridine reacts with dihalocyclobutenedione under suitable conditions to generate either 1,2–diamides 45 or (aziridinoethylamino)cyclobutenedione 46 (Scheme 33).52

N 1 H H X N N X N X O (excess) N HN O H H

OO 1 X = Cl X O Ph O 45 29 X1 = Ph X, X1 = Cl 96% 46 82% X, X1 = Br 72%

Scheme 33

Dimethyl squarate reacts with hydrazine and hydroxylamines to form 3,4-dihydrazino-3- cyclobutene-1,2-dione 47 and N-hydroxylamide methylesters 48, respectively (Scheme 34).2d,53

NR2 OH HN O CH O O N O 3 (1.1 equiv.) R NH2-NR2 (excess) R-NHOH o MeOH, 25 oC MeOH, 25 C HN O CH3O O CH3O O NR2 47 48 R = H 85% R = Me 63% R = Me 87% R = i-Pr 92% R = Cyclohexyl 81% R = -(CH2)5- 45% Scheme 34

ISSN 1424-6376 Page 63 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Also, dimethyl squarate undergoes nucleophilic substitution reaction with ortho and para- phenylenediamine to provide 49 and 50, respectively (Scheme 35)2d

NH 2 H H H H N NH N N N O CH3O O 2 2 NH2

N O CH O O O O H 3 n 50 49 31 n = 2,3 56%

Scheme 35

Macrocyclic bridged squaric acid diamides of type 51-54 have been ynthesized in good yields by the reaction of 1,ω-diamines with 1,2-dimethoxycyclobutenedione under high dilution conditions (Scheme 36).54 Cryptands of type 55 are obtained from 1,2- dimethoxycyclobutenedione and monocyclic crown ether amines.

(CH2)2 O NH HN O

ONH HN O

(CH ) 2 2 52 O NH HN O 58% Y O NH HN O O NH HN O CH3O O 53 92% ONHHN O CH3O O O Y HN O 51 O 70% HN O Y = CH, N O O O 54 N O O N O O 39%

O O O N N O O O 55 12%

Scheme 36

Recently, it has been reported that BF3.Et2O or H2SO4 induces oxidation of some 4- hydroxycyclobutenone 56a to furnish the corresponding cyclobutenediones 56 (Equation 8).55

Ph O Ph O BF3.OEt2 or H2SO4

N OH N O 56a 56 73-98% (8)

ISSN 1424-6376 Page 64 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

4.5. Phosphine derivatives of cyclobutenedione 1,2-Bis(diphenylphosphine)cyclobutenedione 58 was prepared by the reaction of dichlorocyclobutenedione with diphenyl(trimethylsilyl)phosphine 57 in ether at –78 °C (Equation 9).56

C6H5 C6H5 (CH3)3Si P Cl O C6H5 C H P O 57 6 5

Cl O -(CH3)3SiCl C6H5 PO C6H5 58 55% (9)

4.6. Alkyl, alkenyl, alkynyl and aryl derivatives of cyclobutenedione Arylcyclobutenediones can be obtained by the reaction of halocyclobutenediones with renas under Friedel-Craft acylation conditions. Dichlorocyclobutenedione 27 affords either mono 29 or

diarylcyclobutenediones 9 depending upon the amount of catalyst (AlCl3), the molar ratio of reactants and reaction conditions (Scheme 37).57,58

Ar O X O Ar O Ar O Ar-H/AlCl3 Ar-H/AlCl3 or 1 1 X O X1 O X, X = Cl Ar O Cl O 9 29 X = Br, X1 = Ph 5-71% Ar = Ph 79% >50% X = Cl, X1 = H 21-27% Fluoryl 68%

Scheme 37

A new class of cyclobutenediones containing quinoid rings have been prepared by Friedel-

Crafts reaction (Scheme 38). Reaction of 1,2-dichloro-3-cyclobutene-1,2-dione with AlCl3 and 2,6-di-t-butylphenol in refluxing dichloromethane yields 59. Compound 59 is readily oxidized to 59 1,2-diquinocyclobutanedione 60 using PbO2.

OH t-Bu t-Bu HO O

Cl O t-Bu O t-Bu O PbO2

AlCl3 Benzene Cl O O CH2Cl2 t-Bu O t-Bu

HO O t-Bu t-Bu 59 60 34% 50%

Scheme 38

ISSN 1424-6376 Page 65 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

3-Amino-4-aryl- and 3-aryl-4-hydroxy-3-cyclobutene-1,2-diones have been obtained by the Meerwein arylation reaction of diazonium salts with squaramides and semisquaric acid, respectively (Equation 10).60

X H O O CuCl2/AcONa (10) + ArN2 Cl o o R O -5 C to 25 C R O X = F, Cl, Br, Me, OMe R = OH 31-65% NO , COOH 2 R = R2N 24-67%

Dichlorocyclobutenedione as well as bromophenylcyclobutenedione 29 condenses with electron rich olefins such as enamines, ketene acetals in the presence of triethylamine (Scheme 39).2b,61 Similarly, phosphrous and sulphur ylides react with 29 to give the products 61 and 62 with cyclobutenedione moiety acting as a stabilizing acceptor (Scheme 40).62

Cl O O N N N

Cl O Et3N O O O O 25%

R NR2 R R R2N Br O R HC C C C O C C O R R2N R + Ph 29 O Et3N Ph O Ph O 48-68% 30-54% Et3N (C2H5O)2C CH2 O H (C2H5O)2C C O C2H5O C CH2 O 1N HCl

Ph O Ph O 35% 62%

Scheme 39

Ph Ph Ph H CCH P 3 S 3 O H H Br O (C H ) P C R C O H3C C O (H3C)2S C CCH3 6 5 3 R O Ph O Ph O Ph O 61 29 62 40% R = Ph 7% COOMe 20% COOEt 28% COPh 12% COOCH2Ph 40%

Scheme 40

ISSN 1424-6376 Page 66 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Functionalised cyclobutenediones were obtained by the reaction of squarates with compounds having acidic hydrogen on carbon atom in the presence of sodium alkoxide in alcoholic solution. For example, alkoxycyclobutenediones condense smoothly with diethylmalonoate and 1,3-diketones to afford 63 and 64 respectively.63 Also, diethylsquarate condenses with 2-methylpyrrole in acetic anhydride to form dipyrrolyl cyclobutenedione 65 (Scheme 41).64

1 COR1 R1OC COR C H O HC 1 CH HC 1 2 5 COR1 R OC COR + O O O 64aO 64b 22-78%

1 CH2(COR )2 R = OEt 2 2 NaOEt R2 R R 3 CH R OOC R CH3 3 3 C Ph CH (COOR3) CH HN NH R OOC 2 2 C2H5O O N 3 NaOEt H O O R = OEt O O 63 R = Ph R O 65 55-75% R2 = H 45% R2 = Me 45%

Scheme 41

Alkyl and alkenyl derivatives of cyclobutenedione have been prepared by the reaction of diazoalkanes with phenylcyclobutenedione through an unusual nucleophilic substitution (Scheme 42).65

HO C Ph R R NNCHCPh CH O NNC H O H C O R R or O

Ph O Ph O Ph O N CH C Ph 2 66b 66b O 62% R = Ph 34%

Scheme 42

3-Ethynyl-4-methoxycyclobutene-1,2-dione 67 was prepared by the addition of vinyllithium to dimethyl squarate followed by quenching of the resulting alkoxide with trifluoroacetic anhydride. Compound 67 undergoes facile 1,6-addition of carbon and non carbon nucleophiles to form a variety of substituted cyclobutenediones (Scheme 43).66

ISSN 1424-6376 Page 67 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Br O OH N CH3O O 67b S 93% S O O

HS Br2 HO CH Cl CH3O O 2 2 CH3O O 67a 67c 73% O 79%

CH O 67 O 3 Ar O S O i-PrCu(CN)ZnBr CH O O O 3 67d CH3O O 43% 67f 60% CH3O O 67e 69%

Scheme 43

A few simple alkyl derivatives of cyclobutenediones are prepared by the reaction of diethylsquarate 32 with Grignard reagents. These reactions proceed in lower yields.67 An efficient process was independently developed by Moore68 and Liebeskind69 via nucleophilic 1,2 addition of organolithium to dialkoxycyclobutenediones followed by hydrolysis of the resulting hydroxycyclobutenone 68 (Scheme 44). Also, differentially disubstituted cyclobutenediones 5 obtained through step-wise addition of two different alkyllithium reagents (Scheme 44, Path b).69

RO O RO O RO O R1Li TFAA or HCl 1 R path a R1 O THF, -78 oC RO O RO OH 69 32 68 R = Me 50-91% R = i-Pr R = i-Pr 65-98% t-Bu(Me)2SiCl path b R3N 2 RO O RO OH R O 2 HCl R Li R2 1 1 R o R -78 C R1 O RO OTBDMS RO OTBDMS 5 1 2 78-96% R , R = n-Bu, t-Bu, Ar CH2 Bu CH3

Scheme 44

ISSN 1424-6376 Page 68 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

These methods, which rely on the introduction of substituents on to cyclobutenedione core as organolithium nucleophiles, are restricted to substituents that are compatible with strongly basic and nucleophilic conditions. Liebeskind et al.70 developed a general method involving stable 3- (tri-n-butylstannyl)-3-cyclobutene-1,2-dione 70 which was readily prepared by the treatment of

3,4-diisopropoxy-3-cyclobutene-1,2-dione with n-Bu3SnSiMe3 in the presence of catalytic amount of cyanide ion (Equation 11).

i-PrO O i-PrO O cat. Bu4N CN + Bu3SnSiMe3 THF, -23 0C i-PrO O Bu3Sn O 70 65% (11)

Stannylcyclobutenedione 70 undergoes cross-coupling with organic iodides attached to sp3, sp2 and sp-hybridised carbon atoms and with vinyl trifluoromethanesulfonate esters in the

presence of PhCH2ClPd(PPh3)2/CuI catalyst to provide a wide variety of substituted cyclobutenediones51b,71 including porphyrin derivatives 73 (Scheme 45).72

O H2O3P

H2N O 72 40% Ph cat. Pd IPO3Et2

NH3 N NH N OPr-i 2 R i-PrO O M M Br O I N N O cat. Pd O Bu Sn O cat. Pd N O 3 70 H Ph 71 73 61% M = Zn or 2H 75-86% Scheme 45

Also, a variety of acyl substituted cyclobutenediones were prepared following a similar strategy (Equation 12).71b R O R O R1COCl - 1 (Ph3P)2PdCl2/CuI R O Bu3Sn O O 74 R1 = Ph (E)-propenyl p-OMeC6H4

R = NH2 84% 93% 98% Oi-Pr 79% 68% 65% N-piperidinyl 92% 83% 67% N-morpholinyl 73% (12)

ISSN 1424-6376 Page 69 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Bisquaryls, a novel class of compounds derived from squaric acid, have been prepared (Equation 13). 71c

R O R O (Ph3P)2PdCl2/CuI O O Bu Sn O 3 O R R = NH2 83% 75 N-piperidinyl 60% N-morpholinyl 63% (13)

Also, a reverse reaction of above methods has been reported in which cyclobutenediones act as halide partner of Stille cross-coupling, to give a broad array of substituted cyclobutenediones (Equation 14).73

R O R O cat. (PhCH )ClPd(PPh ) 1 2 3 2 (Z) + R SnBu3 (Z) cat. CuI X O R1 O THF, 50 oC 5 (14) R = CH3, OCH3 R1 = Ph 70-87% TMS 56-57% X = Cl, Br, OCH3 PhS 80-88% Bu 50-58% p-MeC H OEt 6 4 76-83% 62-70% p-ClC6H4 81%

3,4-Dialkynyl-3-cyclobutene-1,2-diones 76 were synthesized by the reaction of 3,4-dichloro- 3-cyclobutene-1,2-dione either with tri(n-butylstanyl)alkynes in the presence of catalytic 74 amounts of Pd(PPh3)4 or with the soluble copper (I) acetylides (Scheme 46).

Cl O

Cl O R = Ph 70% R SnBu n-Pr 51% 3 Pd(PPh3)4 SiMe3 30% Ph 11% n-BuLi/CuI/Alkyne n-BuLi/ZnI2/Alkyne R Cl O Cl O O R Zn R Cu

Cl O Cl O Pd(PPh3)4 O 76 R = Ph 47% R R = SiMe3 27% (i-Pr)3Si 21%

t-BuSiMe2 57% Me3Si 59%

Scheme 46

ISSN 1424-6376 Page 70 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Analogous method for the preparation of highly functionalized cyclobutenediones was developed by Knochel et al.75 based on zinc-copper reagents (Scheme 47).

1 1 FG-R1Cu(CN)ZnX FG-R O FG-R O Cl O FG-R1Cu(CN)ZnX excess

FG-R2Cu(CN)ZnX FG-R2 O FG-R1 O Cl O unsymmetrical symmetrical 77b 77a FG-R = functionalised alkyl 57-81% 67-89%

Scheme 47

5. Synthesis of benzocyclobutenediones

As discussed in section 1.2.7, some benzocyclobutenediones were prepared via Diels-Alder addition reactions of some dienes with olefins. Benzocyclobutenediones were also synthesized starting from certain aromatic compounds. Benzocyclobutenedione 78 was first synthesized by Cava et al.76 using simple organic transformations from 1,2-diiodobenzocyclobutene as shown in Scheme 48.

I ONO2 O 2AgNO3 2Et3N

ONO O I 2 78 75%

Scheme 48

Bromination of 3,8-diphenylnaphtho[b]cyclobutene 79 with NBS generates tetrabromoderivative 80 along with a mixture of other bromides. The tetrabromide 80 reacts with silver trifluoroacetate and water to give 3,8-diphenylnaphtho[b]cyclobutene-1,2-dione 81 (Scheme 49).77

Ph Ph Ph Br O NBS Br AgOCOCF3 Br H O Br 2 O Ph Ph Ph 79 80 81 41%

Scheme 49

Also, 3-aminobenzocyclobutenedione 83 has been prepared via the oxidation of luminol 82 using t-butyl hypochlorite (Scheme 50).78

ISSN 1424-6376 Page 71 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

NH O 2 NH2 O NH2 Decomposition O NH t-Butyl hypochlorite N

NH N o 25 C O O O 83 82 70%

Scheme 50

It has been reported that the vapour phase pyrolysis of indanetrione 84,79a and 3- bezyloxyphthalide 8579b give traces of benzocyclobutenedione 78, whereas phthalamidodiphenylsulphoxide 86 gives benzocyclobutenedione in 35-70% yield under similar conditions (Scheme 51).79c

O O O o O 600 oC/ 0.02 mm 420 C/ 0.01 mm O N N S R -N2 and R2SO R -CO O O O 84 78 R = Me 35% 86 R = Ph 70% 33%

PhCOO H 560 oC/ 0.1 mm O O -PhCOOH O O 85

Scheme 51

Synthesis of benzocyclobutenediones, on multi-gram scale, was achieved by flash vacuum pyrolysis of the Diels-Alder adducts of phthalazine-1,4-diones 87 with anthracene, cyclopentadiene80 or indene80 (Scheme 52). Among these, the anthracene adduct 88a gave better yields.81 O o N 500 C N 71-98% Anthra- cene O O O O 88a - Eq. 44 NH2NH2 N O O N Pb(OAc)4 78 O O O 87 Cyclopenta 500oC diene N 64-88% N

O 88b

Scheme 52

ISSN 1424-6376 Page 72 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

Conclusions

In view of applications of cyclobutenediones as versatile starting materials in the synthesis of multifunctional carbocyclic and heterocyclic compounds, biologically active molecules and NLO materials, the methods of synthesis of these important class of compounds should be helpful in further development in these areas.

Acknowledgements

We are thankful to the CSIR (New Delhi) for support. We are also grateful to the UGC (New Delhi) for support under “University of Potential for Excellence” Program.

References

1. (a) Smutny, E. J.; Roberts, J. D. J. Am. Chem. Soc. 1955, 77, 3420. (b) Smutny, E. J.; Caserio, M. C.; Roberts, J. D. J. Am. Chem. Soc. 1960, 82, 1793. (c) Cava, M. P.; Mitchel, M. J. Cyclobutadiene and Related Compounds; Academic Press: New York, 1967. 2. (a) Schmidt, A. H.; Ried, W. Synthesis 1978, 1. (b) Knorr, H.; Ried, W. Synthesis 1978, 649. (c) Schmidt, A. H.; Ried, W. Synthesis 1978, 869. (d) Schmidt, A. H. Synthesis 1980, 961. 3. (a) West, R.; Niu, J. Non-Benzenoid Aromatics; Academic Press: New York, 1969, Vol. 1, p 132. (b) West, R.; Niu, H. Y.; Powell, D. L.; Evans, M. V. J. Am. Chem. Soc. 1960, 82, 6204. (c) West, R.; Powell, D. L. J. Am. Chem. Soc. 1963, 85, 2577. (d) Ito, M.; West, R. J. Am. Chem. Soc. 1963, 85, 2580. 4. (a) Cole, R. J.; Kirksey, J. W.; Cutler, H. G.; Doupnik, B. L.; Peckham, J. C. Science 1973, 179, 1324. (b) Sringer, J. P.; Clardy, J.; Cole, R. J.; Kirksey, J. W.; Hill, R. K.; Carlson, R. M.; Isidor, J. J. Am. Chem. Soc. 1974, 96, 2267. (c) Pirrung, M. C.; Nauhaus, S. K.; Sing, B. J. Org. Chem. 1996, 61, 2592. 5. (a) Tietze, L. F.; Arlt, M.; Beller, M.; Glusenkamp, K. H.; Jahde, E.; Rajewsky, M. F. Chem. Ber. 1991, 124, 1215. (b) Gardner, S. H.; Freyschmidt-Paul, P.; Hoffman, R.; Sundberg, J. P.; Happle, R.; Nigel, J.; Tobin, D. J. Eur. J. Dermatol. 2000, 10, 443. (c) Freyschmidt-paul, P.; Sundberg, J. P.; Happle, R.; McElwee, K. J.; Metz, S.; Boggess, D.; Hoffman, R. J. Investigative Dermatol. 1999, 113, 61. (d) Kazumasa, M.; Motonobu, N.; Miyako, N.; Tatsuo, K.; Yoshiki, M. J. Dermatol. 2002, 29, 661. (e) Silverberg, N. B.; Lim, J. K.; Paller, A. S.; Mancini, A. J. J. Am. Acad. Dermatol. 2000, 42, 803. 6. (a) Douglas, K. T.; Nadvi, I. N. FEBS Lett. 1979, 106, 393. (b) Burka, L. T.; Doran, J.; Wilson, B. J. Biochem. Pharmacol. 1982, 31, 79. (c) Xie, J.; Comeau, A. B.; Seto, C. T. Org. Lett. 2004, 6, 83.

ISSN 1424-6376 Page 73 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

7. (a) Sato, K.; Seio, K.; Sekine, M. J. Am. Chem. Soc. 2002, 124, 12715. (b) Beaulieu, P. L.; Cameron, D. R.; Ferland, J. -M.; Gauthier, J.; Ghiro, E.; Gillard, J.; Gorys; Poirier, M.; Rancourt, J.; Wernic, D.; Llinas-Brunet, M.; Betageri, R.; Cardozo, M.; Hickey, E. R.; Ingraham, R.; Jakes, S.; Kabcenell, A.; Kirrane, T.; Lukas, S.; Patel, U.; Proudfoot, J.; Sharma, R.; Tong, L.; Moss, N. J. Med. Chem. 1999, 42, 1757. 8. Kinney, W. A.; Abou-Gharbia, M.; Garrison, D. T.; Schmidt, J.; Kowal, D. M.; Bramlett, D. R.; Miller, T. L.; Tasse, R. P.; Zaleska, M. M.; Moyer, J. A. J. Med. Chem. 1998, 41, 236. 9. Chan, P. C. M.; Roon, R. J.; Koerner, J. F.; Taylor, N. J.; Honek, J. F. J. Med. Chem. 1995, 38, 4433. 10. (a) Tomas, S.; Rotger, M. C.; Gonzalez, J. F.; Deya, P. M.; Ballester, P.; Costa, A. Tetrahedron Lett. 1995, 36, 2523. (b) Tomas, S.; Prohens, R.; Deslongchamps, G.; Ballester, P.; Costa, A. Angew. Chem., Int. Ed. 1999, 38, 2208. (c) Prohens, R.; Martorell, G.; Ballester, P.; Costa, A. Chem. Commun. 2001, 1456. 11. (a) Liebeskind, L. S. Tetrahedron 1989, 45, 3053. (b) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc. 1987, 109, 7908. (c) Liebeskind, L. S.; Bombrun, A. J. Org. Chem. 1994, 59, 1149. (d) Sun, L.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 6856. (e) Sun, L.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 12473. (f) Mingo, P.; Zhang, S.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 2145. (g) Zhang, S.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 4042. 12. (a) Perri, S. T.; Rice, P.; Moore, H. W. Org. Synth. 1990, 69, 220. (b) Moore, H. W.; Yerxa, B. R. Adv. Strain Org. Chem. 1995, 4, 81. (c) Foland, L. D.; Karlsson, J. O.; Perri, S. T.; Schwabe, R.; Xu, S. L.; Patil, S.; Moore, H. W. J. Am. Chem. Soc. 1989, 111, 975. (d) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J. Am. Chem. Soc. 1985, 107, 3392. (e) Xu, S. L.; Xia, H.; Moore, H. W. J. Org. Chem. 1991, 56, 6094. (f) Lee, K. H.; Moore, H. W. J. Org. Chem. 1995, 60, 735. (g) Taing, M.; Moore, H. W. J. Org. Chem. 1996, 61, 329. (h) Tiedemann, R.; Turnbull, P.; Moore, H. W. J. Org. Chem. 1999, 64, 4030. 13. (a) Negri, J. T.; Morwick, T.; Doyon, J.; Wilson, P. D.; Hickey, E. R.; Paquette, L. A. J. Am. Chem. Soc. 1993, 115, 12189. (b) Paquette, L. A.; Morwick, T. M.; Negri, J. T.; Rogers, R. D. Tetrahedron 1996, 52, 3075. (c) Paquette, L. A.; Morwick, T. M. J. Am. Chem. Soc. 1997, 119, 1230. (d) Paquette, L. A.; Kuo, L. H.; Tae, J. J. Org. Chem. 1998, 63, 2010. (e) Geng, F.; Liu, J.; Paquette, L. A. Org. Lett. 2002, 4, 71. 14. (a) Zora, M.; Herndon, J. W. Organometallics 1993, 12, 248. (b) Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.; Wada, K.; Mitsudo, T.-a. J. Am. Chem. Soc. 2000, 122, 6319. (c) Nair, V.; Sheela, K. C.; Rath, N. P.; Eigendorf, G. K. Tetrahedron Lett. 2000, 41, 6217. (d) Allen, A. D.; Ma, J.; McAllister, M. A.; Tidwell, T. T.; Zhao, D.-c. Acc. Chem. Res. 1995, 28, 265. 15. Zhang, J.; Zhou, H. -B.; Lü, S.-M.; Luo, M.-M.; Xie, R. G.; Choi, M. C. K.; Zhou, Z.-Y.; Chan, S. C.; Yang, T.-K. Tetrahedron: Asymmetry 2001, 12, 1907.

ISSN 1424-6376 Page 74 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

16. (a) Ashwell, G. J.; Jefferies, G.; Hamilton, D. G.; Lynch, D. E.; Roberts, M. P. S.; Bahra, G. S.; Brown, C. R. Nature 1995, 375, 385. (b) Pu, L. S. Chem. Commun. 1991, 429. (c) Law, K. Y.; Bailey, F. C. J. Org. Chem. 1992, 57, 3278. 17. Law, K. -Y.; Bailey, F. C. Chem. Commun. 1990, 863. 18. (a) Ried, W.; Schmidt, A. H. Angew. Chem., Int. Ed. 1972, 11, 997. (b) Ried, W.; Schmidt, A. H.; Saxena, V. B. Chem. Ber. 1970, 103, 2709. (c) Ried, W.; Schmidt, A. H.; Kuhn, W. Chem. Ber. 1971, 104, 2622. 19. (a) Hinshaw, J. C. Chem. Commun. 1971, 630. (b) Scharf, H.-D.; Seidler, H. Chem. Ber. 1971, 104, 2995. 20. (a) Dehmlow, E. V. Chem. Ber. 1967, 100, 3829. (b) Knoche, H. Liebigs Ann. 1969, 722, 232. 21. Bou, A.; Pericas, M. A.; Serratosa, F. Tetrahedron Lett. 1982, 23, 361. 22. Ooms, P. H.; Scheeren, J. W.; Nivard, R. J. F. Synthesis 1975, 639. 23. (a) Bellus, D. J. Am. Chem. Soc. 1978, 100, 8026. (b) Brady, W. T.; Watts, R. D. J. Org. Chem. 1980, 45, 3525. (c) Bellus, D. J. Org. Chem. 1979, 44, 1208. (d) Brady, W. T.; Saidi, K. J. Org. Chem. 1980, 45, 727. (e) Hoffmann, R. W.; Bressel, U.; Gehlhaus, J.; Hauser, H. Chem. Ber. 1971, 104, 873. (f) Fetizon, M.; Hanna, I. Synthesis 1990, 583. 24. Liebeskind, L. S.; Baysdon, S. L. Tetrahedron Lett. 1984, 25, 1747. 25. (a) Park, J. D.; Cohen, S.; Lacher, J. R. J. Am. Chem. Soc. 1959, 81, 3480. (b) Park, J. D.; Cohen, S.; Lacher, J. R. J. Am. Chem. Soc. 1962, 84, 2919. (c) Blomquist, A. T.; Verling, R. Tetrahedron Lett. 1961, 655. (d) Blomquist, A. T.; LaLancette, E. A. J. Am. Chem. Soc. 1961, 83, 1387. (e) Ried, W.; Lantzsch, R. Chem. Ber. 1971, 104, 679. 26. (a) Scharf, H.-D. Angew. Chem., Int. Ed. 1974, 13, 520. (b) Hinshaw, J.C. Chem. Commun. 1971,630. 27. (a) Toda, F.; Ishihara, H.; Akagi, K. Tetrahedron Lett. 1969, 2531. (b) Toda, F.; Akagi, K. Chem. Commun. 1970, 764. 28. South, M. S.; Liebeskind, L. S. J. Org. Chem. 1982, 47, 3815. 29. Schmidt, A. H.; Kunz, C. Synthesis 1991, 78. 30. Roedig, A.; Bonse, G.; Helm, R.; Kohlhaupt, R. Chem. Ber. 1971, 104, 3378. 31. Camps, F.; Llebaria, A.; Moreto, J. M.; Ricart, S.; Vinas, J. M. Tetrahedron Lett. 1990, 31, 2479. 32. Suzuki, Y.; Takizawa, T. Chem. Commun. 1972, 837. 33. LePage, T.; Nakasuji, K.; Breslow, R. Tetrahedron Lett. 1985, 26, 5919. 34. Whiting, M. C. Chem. Weekblad 1963, 53, 119. 35. (a) Hoberg, H.; Herrera, A. Angew. Chem., Int. Ed. 1980, 19, 927. (b) Hoberg, H.; Herrera, A. Angew. Chem., Int. Ed. 1981, 20, 876. 36. (a) Periasamy, M.; Radhakrinhnan, U.; Brunet, J. J.; Chauvin, R.; El zaizi, A. Chem. Commun. 1996, 1499. (b) Periasamy, M.; Rameshkumar, C.; Radhakrinhnan, U.; Brunet, J. J. J. Org. Chem. 1998, 63, 4930. 37. Periasamy, M.; Rameshkumar, C.; Radhakrinhnan, U. Tetrahedron Lett. 1997, 38, 7229.

ISSN 1424-6376 Page 75 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

38. Rameshkumar, C.; Periasamy, M. Organometallics 2000, 19, 2400. 39. (a) Rameshkumar, C.; Periasamy, M. Tetrahedron Lett. 2000, 41, 2719. (b) Periasamy, M.; Mukkanti, A.; ShyamRaj, D. Organometallics 2004, 23, 619. 40. Breslow, R.; Altman, L. J.; Krebs, A.; Mohacsi, E.; Murata, I.; Peterson, R. A.; Posner, J. J. Am. Chem. Soc. 1965, 87, 1326. 41. (a) DeBoer, C. D. Chem. Commun. 1972, 377. (b) Komendankov, M. I.; Domnin, I. M.; Kenbaeva, R. M.; Grigorova, T. N. Zh. Org. Khim. 1973, 9, 142. 42. (a) Obata, N.; Takizawa, T. Tetrahedron Lett. 1970, 2231. (b) Chickos, J. S. J. Org. Chem. 1973, 38, 3642. 43. De Selms, R. C.; Fox, C. J.; Riordan, R. C. Tetrahedron Lett. 1970, 781. 44. (a) Cohen, S.; Cohen, S. G. J. Am. Chem. Soc. 1966, 88, 1533. (b) Schmidt, A. H.; Jacob, K. Liebigs Ann. 1970, 742, 116. (c) Treibs, A.; Ried, W. Liebigs Ann. 1966, 699, 153. 45. (a) Coucouvanis, D.; Hollander, F. J.; West, R.; Eggerding, D. J. Am. Chem. Soc. 1974, 96, 3006. (b) Eggerding, D.; West, R. J. Org. Chem. 1976, 41, 3904. 46. Schmidt, A. H.; Kunz, C.; Debo, M.; Mora-Ferrer, J.-P. Synthesis 1990, 819. 47. (a) Schmidt, A. H.; Ried, W.; Pustolemsek, P.; Dietschmann, H. Angew. Chem., Int. Ed. 1972, 11, 142. (b) Schmidt, A. H.; Ried, W.; Pustoslemsek, P. Chem. Ztg. 1977, 101, 154. 48. (a) Maahs, G.; Hegenberg, P. Angew. Chem., Int. Ed. 1966, 5, 888. (b) P. Cohen, S.; Cohen, S. G. J. Am. Chem. Soc. 1966, 88, 1533. (c) Thrope, J. E. J. Chem. Soc. (B) 1968, 435. (d) Neuse, E.; Green, B. Liebigs Ann. 1973, 619. 49. Ried, W.; Kunstmann, W. Chem. Ber. 1969, 102, 1431. 50. (a) Vermeer, H. J.; Halkes, K. M.; van Kuik, A.; Kamerling, J. P.; Vliegenthart, J. F. G. J. Chem. Soc., Perkin Trans. 1 2000, 2249. (b) Corsi, D. M.; Elst, L. V.; Muller, R. N.; van Bekkum, H.; Peters, J. A. Chem. Eur. J. 2001, 7, 64. (c) Kitov, P. I.; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 2001, 838. (d) Chernyak, A.; Karavanov, A.; Ogawa, Y.; Kovac, P. Carbohydr. Res. 2001, 330, 479. 51. (a) Ueda, Y.; Crast, L. B.; Jr.; Mikilineni, A. B.; Partyka, R. A. Tetrahedron Lett. 1991, 32, 3767. (b) Kinney, W. A. Tetrahedron Lett. 1993, 34, 2715. 52. (a) Schmidt, A. H.; Ried, W. Liebigs Ann. 1975, 1863. (b) Ried, W.; Schmidt, A. H. Tetrahedron Lett. 1969, 2435. (c) Ried, W.; Schmidt, A. H. Tetrahedron Lett. 1969, 3007. (d) Ried, W.; Schmidt, A. H. Tetrahedron Lett. 1969, 4115. 53. Lim, N. C.; Morton, M. D.; Jenkins, H. A; Bruckner, C. J. Org. Chem. 2003, 68, 9233. 54. Vogtle, F.; Dix, P. Liebigs Ann. 1977, 1698. 55. Wang, J.; Jiang, X.; Chen, M.; Ge, Z.; Hu, Y.; Hu, H. J. Chem. Soc., Perkin Trans. 1 2001, 66. 56. Becher, H. J.; Fenske, D.; Langer, E. Chem. Ber. 1973, 106, 177. 57. Schmidt, A. H.; Kircher, G.; Maus, S.; Bach, H. J. Org. Chem. 1996, 61, 2085 and the references cited there in. 58. (a) Green, B. R.; Neuse, E. W. Synthesis 1974, 46. (b) Green, B. R.; Neuse, E. W. J. Org. Chem. 1974, 39, 1585.

ISSN 1424-6376 Page 76 ©ARKAT USA, Inc Issue in Honor of Prof. S. Swaminathan ARKIVOC 2005 (xi) 48-77

59. Wendling, L. A.; Koster, S. K.; Murray, J. E.; West, R. J. Org. Chem. 1977, 42, 1126. 60. Schmidt, A. H.; Schmitt, G.; Diedrich, H. Synthesis 1990, 579. 61. Ried, W.; Batz, F. Liebigs Ann. 1972, 755, 32. 62. (a) Ried, W.; Medem, H. Chem. Ber. 1975, 108, 554. (b) Knorr, U.; Knorr, H.; Ried, W.; Scheckmann, W. Chem. Ber. 1976, 109, 3869. 63. (a) Roth, H. J.; Sporlender, H. Tetrahedron Lett. 1968, 6223. (b) Roth, H. J.; Sporlender, H. Arch. Pharmaz. 1970, 303, 886. (c) Sporlender, H.; Roth, H. J. Arch. Pharmaz. 1972, 305, 239. 64. Treibs, A.; Jacob, K. Liebigs Ann. 1966, 699, 153. 65. Ried, W.; Schmidt, A. H.; Kuhn, W.; Bierendemfel, A. Tetrahedron Lett. 1972, 3885. 66. Xu, S.; Yerxa, B. R.; Sullivan, R. W.; Moore, H. W. Tetrahedron Lett. 1991, 32, 1129. 67. Kraus, J. L. Tetrahedron Lett. 1985, 26, 1867. 68. Reed, M. W.; Pollart, D. J.; Perri, S. T.; Foland, L. D.; Moore, H. W. J. Org. Chem. 1988, 53, 2477. 69. Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J. Org. Chem. 1988, 53, 2482. 70. Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359. 71. (a) Liebeskind, L. S.; Zhang, J. J. Org. Chem. 1991, 56, 6379. (b) Liebeskind, L. S.; Yu, M. S.; Fengl, R. W. J. Org. Chem. 1993, 58, 3543. (c) Liebeskind, L. S.; Yu, M. S.; Yu, R. H.; Wang, J.; Hagen, K. S. J. Am. Chem. Soc. 1993, 115, 9048. 72. Shi, X.; Amin, Sk. R.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 1650. 73. Liebeskind, L. S.; Wang, J. Tetrahedron Lett. 1990, 31, 4293. 74. (a) Rubin, Y.; Sophia, S. L.; Knobler, C. B.; Anthony, J.; Boldi, A. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 6943. (b) Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 1607. 75. Sidduri, A.; Budries, N.; Laine, R. M.; Knochel, P. Tetrahedron Lett. 1992, 33, 7515. 76. Cava, M. P.; Napier, D. R. J. Am. Chem. Soc. 1957, 79, 3606. 77. Cava, M. P.; Hwang, B. Tetrahedron Lett. 1965, 2297. 78. Nikokavouras, J.; Perry, A.; Vassilopoulos, G. Israel J. Chem. 1972, 10, 19. 79. (a) Brown, R. F. C.; Solly, R. K. Aust. J. Chem. 1966, 19, 1045. (b) Brown, R. F. C.; Eastwood, F. W.; McMullen, G. L. Chem. Commun. 1975, 328. (c) Gilchrist, T. L.; Rees, C. W.; Stanton, E. Chem. Commun. 1971, 801. 80. Forster, D.L.; Gilchrist, C.; Rees, C. W.; Stanton, E. Chem. Commun. 1971, 698. 81. (a) McOmie, J. F. W.; Perry, D. H. Chem. Commun. 1973, 248. (b) Jung, M. E.; Lowe, J. A. J. Org. Chem. 1977, 42, 2371. (c) Teim, O. A.; Jansen, R. B.; McOmie, J. F. W.; Perry, D. H. J. Chem. Soc., Perkin Trans. 1 1980, 1834. (d) Gould, K. J.; Hacker, N. P.; McOmie, J. F. W.; Perry, D. H. J. Chem. Soc., Perkin Trans. 1 1980, 1841.

ISSN 1424-6376 Page 77 ©ARKAT USA, Inc