Illustrative Visualization of Anatomical Structures Erik Jonsson

Total Page:16

File Type:pdf, Size:1020Kb

Illustrative Visualization of Anatomical Structures Erik Jonsson LiU-ITN-TEK-A--11/045--SE Illustrative Visualization of Anatomical Structures Erik Jonsson 2011-08-19 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiU-ITN-TEK-A--11/045--SE Illustrative Visualization of Anatomical Structures Examensarbete utfört i medieteknik vid Tekniska högskolan vid Linköpings universitet Erik Jonsson Examinator Karljohan Lundin Palmerius Norrköping 2011-08-19 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/ © Erik Jonsson Abstract Illustrative visualization is a term for visualization techniques inspired by tradi- tional technical and medical illustration. These techniques are based on knowl- edge of the human perception and provide effective visual abstraction to make the visualizations more understandable. Within volume rendering these expressive visualizations can be achieved using non-photorealistic rendering that combines different levels of abstraction to convey the most important information to the viewer. In this thesis I will look at illustrative techniques and show how these can be used to visualize anatomical structures in a medical volume data. The result of the thesis is a prototype of an anatomy education application, that makes use of illustrative techniques to have a focus+context visualization with feature enhancement, tone shading and labels describing the anatomical struc- tures. This results in an expressive visualization and interactive exploration of the human anatomy. 1 Acknowledgements I would like to thank my supervisor Karl-Johan Lundin Palmerius and Lena Tibell at the Department of Science and Technology, Linköping University for their help and assistance throughout the thesis work. Thanks also to Daniel Forsberg at the Department of Biomedical Engineering, Linköping University for providing the human body data set together with the segmented data. 2 Contents 1 Introduction 7 1.1 Motivation . .7 1.2 Purpose & Goal . .7 1.3 Limitations . .8 1.4 Outline . .8 2 Background 9 2.1 Anatomy Education . .9 2.1.1 Dissections . .9 2.2 Volume Rendering . 10 2.2.1 Volume Rendering Integral . 10 2.2.2 Segmented Volume Data . 11 2.2.3 Ray Casting . 11 2.2.4 GPU-based Ray Casting . 12 2.2.5 Transfer Functions . 14 2.2.6 Local Illumination . 14 2.3 Illustrative Visualization . 15 2.3.1 Medical Illustrations . 15 2.3.2 Visual Abstraction . 16 2.3.3 Cut-away Views and Ghosted Views . 16 2.3.4 Visibility Control . 18 2.3.5 Textual Annotations . 18 2.4 Voreen . 19 3 Theory 21 3.1 The Importance-aware Composition Scheme . 21 3.2 The Tone Shading Model . 22 4 Implementation 24 4.1 Illustrative Ray Casting . 24 4.1.1 Segmentation Classification . 24 4.1.2 Tone Shading . 25 4.1.3 Importance-aware Composition . 26 4.2 Labeling of Segmented Data . 28 4.2.1 Segment Description File . 29 4.2.2 Layout Algorithm . 29 4.2.3 Rendering . 30 4.3 Anatomy Application . 31 4.3.1 Design and User Interface . 31 4.3.2 Focus+Context Widget . 31 4.3.3 Labeling Widget . 32 5 Conclusion 35 5.1 Results . 35 5.1.1 Result of the Importance-aware Composition . 35 5.1.2 Result of the Tone Shading . 37 5.1.3 Result of the Anatomy Application . 37 5.1.4 Performance . 38 5.2 Discussion . 40 5.2.1 The Illustrative Techniques . 40 5.2.2 The Anatomy Application . 40 5.3 Future work . 41 5.3.1 Additional Features . 41 4 List of Figures 2.1 The front and back face from the bounding box of the volume . 13 2.2 The ray casting technique via rasterization . 13 2.3 A transfer function represented by a 1D texture . 14 2.4 Cut-away and ghosted illustration of a sphere . 17 2.5 Medical illustrations by Leonardo da Vinci . 17 2.6 The standard workspace in VoreenVE . 19 3.1 Tone shading of a red object with blue/yellow tones . 23 4.1 1D TF textures stored in a 2D segmentation TF texture . 25 4.2 Tone shading parameters . 26 4.3 Importance Measurements Parameters . 27 4.4 Convex hull: A set of points enclosed by an elastic band . 30 4.5 The placement of labels . 30 4.6 The network of the anatomy application . 32 4.7 Layout of the Labeling widget . 33 5.1 The intensity measurement . 36 5.2 The gradient magnitude, silhouetteness and background measure- ment.................................. 36 5.3 Focus+context visualization . 36 5.4 Comparision of Blinn-Phong shading and Tone shading . 37 5.5 The Anatomy Application: Selection on Pericardium . 38 5.6 The Anatomy Application: The Digestive and Urinary System . 39 List of Tables 5.1 Performance measurements of front-to-back composition and importance- aware composition with different settings on importance measure- ments (IM) and early ray termination (ERT). 38 5.2 Performance measurement of tone shading and Blinn-Phong shad- ing using front-to-back composition. 38 Chapter 1 Introduction In this Master’s thesis an illustrative volume rendering system has been devel- oped at the division for Media and Information Technology, Department of Sci- ence and Technology at Linköping University. Illustrative techniques are used in the system to achieve an expressive visualization of anatomical structures. The thesis serves as a fulfillment of a Master of Science degree in Media Technology at Linköping University, Sweden. 1.1 Motivation The study of medicine and biology has always relied on visualizations to learn about anatomical relationships and structures. In these studies are dissections often used to support the anatomical learning with both visual and tactile expe- rience. However, the use of dissection is declining for schools that have anatomi- cal education [14]. High schools and universities are more often using other aids such as textbooks, plastic specimens and simulators to support their anatomy education. The computerized aids offer many new possibilities, where simulators and educational software lets the user explore anatomical structures in three dimen- sions. Often these applications are using surface rendering to render pre-modeled 3D models. However, through a technique called volume rendering the structures can be rendered directly from the medical data. Volume rendering has for a long time been considered as much slower than surface rendering, but with newer GPU’s it is possible to achieve interactive frame rates. With volume rendering it is possible to acquire renders that better corresponds with the real material. The density values in the medical data sets are directly mapped to RGBA values for the pixels in the rendered images. This allows for fuzzy surfaces with varying opacity, where surface and internal details can be rendered together, for example material such as soft tissue and blood vessels. 1.2 Purpose & Goal In this thesis an interactive volume visualization system for illustrative visual- ization and exploration of medical volume data is proposed. The purpose with the thesis is to develop a volume rendering application for anatomy education, which allows the user to interactively explore anatomical structures in a medical 7 8 Introduction data set. The goal of using illustrative techniques is to achieve an expressive vi- sualization, where complex data is conveyed in an intuitive and understandable way. Otherwise, the information can quickly overwhelm the user, which makes it harder for the user to convey the information. The goal with the thesis is to achieve illustrative visualization of anatomical structures and to show its use in an application for anatomy education. 1.3 Limitations The application in this thesis is based on research material and is developed as a proof-of-concept, where the potential of the methods are evaluated. This means that the user’s satisfaction is not evaluated and no user requirements are collected. Otherwise, the user’s need and opinions in such an application would have been questioned.
Recommended publications
  • The Chem Access Project from Bitmap Graphics to Fully Accessible Chemical Diagrams
    The Chem Access project From Bitmap Graphics to Fully Accessible Chemical Diagrams Volker Sorge Scientific Document Analysis Group Progressive Accessibility Solutions School of Computer Science Birmingham, UK University of Birmingham progressiveaccess.com 9th European e-Accessibility Forum, 2015, Paris, 8 June 2015 Motivation I Accessibility to STEM material is important issue for inclusive education I Diagrams are an important teaching means in STEM I Chemical diagrams (depictions of molecules) are ubiquitous in teaching from GCSE and A-levels teaching to undergrad curriculum chemistry, biosciences, life sciences. I Previous work on assistive technology for chemical diagrams I Require diagrams to be drawn in particular way or authoring environment I Need for specialist software to access and interact with diagrams I Additional hurdles for both authors and readers Goals I Make regular teaching material accessible I From inaccessible image to support for independent learning I Source independence I Do not rely on the benevolent, educated author I Platform independence I Use standard web technology (HTML5) I Accessible with all browsers, screen readers I Provide a seamless user experience without/very little interface I Support diverse material, for novices and experts alike Examples I Different representations of Aspirin molecule. Displayed formula. Skeletal formula. Structural formula. Examples I Or somewhat more complex. Procedure Input: A bitmap image of a molecule diagram 1. Image analysis and recognition 2. Generation of annotated SVG
    [Show full text]
  • Inviwo — a Visualization System with Usage Abstraction Levels
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction.
    [Show full text]
  • A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble Edited By: Yu-Guo Yu, Jay S
    fnins-12-00664 September 27, 2018 Time: 15:25 # 1 METHODS published: 25 September 2018 doi: 10.3389/fnins.2018.00664 A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble Edited by: Yu-Guo Yu, Jay S. Coggan1 †, Corrado Calì2 †, Daniel Keller1, Marco Agus3,4, Daniya Boges2, Fudan University, China * * Marwan Abdellah1, Kalpana Kare2, Heikki Lehväslaiho2,5, Stefan Eilemann1, Reviewed by: Renaud Blaise Jolivet6,7, Markus Hadwiger3, Henry Markram1, Felix Schürmann1 and Clare Howarth, Pierre J. Magistretti2 University of Sheffield, United Kingdom 1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2 Biological and Environmental Ying Wu, Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 3 Visual Xi’an Jiaotong University, China Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 4 CRS4, Center of Research *Correspondence: and Advanced Studies in Sardinia, Visual Computing, Pula, Italy, 5 CSC – IT Center for Science, Espoo, Finland, Jay S. Coggan 6 Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland, 7 The European jay.coggan@epfl.ch; Organization for Nuclear Research, Geneva, Switzerland [email protected] Corrado Calì [email protected]; One will not understand the brain without an integrated exploration of structure and [email protected] function, these attributes being two sides of the same coin: together they form the †These authors share first authorship currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions Specialty section: This article was submitted to are contained.
    [Show full text]
  • 11.2 Alkanes
    11.2 Alkanes A large number of carbon compounds are possible because the covalent bond between carbon atoms, such as those in hexane, C6H14, are very strong. Learning Goal Write the IUPAC names and draw the condensed structural formulas and skeletal formulas for alkanes and cycloalkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. Naming Alkanes Alkanes • are hydrocarbons that contain only C—C and C—H bonds • are formed by a continuous chain of carbon atoms • are named using the IUPAC (International Union of Pure and Applied Chemistry) system • have names that end in ane • use Greek prefixes to name carbon chains with five or more carbon atoms Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. IUPAC Naming of First Ten Alkanes Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. 1 Condensed Structural Formulas In a condensed structural formula, • each carbon atom and its attached hydrogen atoms are written as a group • a subscript indicates the number of hydrogen atoms bonded to each carbon atom The condensed structural formula of butane has four carbon atoms. CH3—CH2—CH2—CH3 butane Core Chemistry Skill Naming and Drawing Alkanes Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc. Condensed Structural Formulas Alkanes are written with structural formulas that are • expanded to show each bond • condensed to show each carbon atom and its attached hydrogen atoms Expanded Condensed Expanded Condensed Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition © 2015 Pearson Education, Inc.
    [Show full text]
  • Image Processing on Optimal Volume Sampling Lattices
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1314 Image processing on optimal volume sampling lattices Thinking outside the box ELISABETH SCHOLD LINNÉR ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9406-3 UPPSALA urn:nbn:se:uu:diva-265340 2015 Dissertation presented at Uppsala University to be publicly examined in Pol2447, Informationsteknologiskt centrum (ITC), Lägerhyddsvägen 2, hus 2, Uppsala, Friday, 18 December 2015 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Alexandre Falcão (Institute of Computing, University of Campinas, Brazil). Abstract Schold Linnér, E. 2015. Image processing on optimal volume sampling lattices. Thinking outside the box. (Bildbehandling på optimala samplingsgitter. Att tänka utanför ramen). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1314. 98 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9406-3. This thesis summarizes a series of studies of how image quality is affected by the choice of sampling pattern in 3D. Our comparison includes the Cartesian cubic (CC) lattice, the body- centered cubic (BCC) lattice, and the face-centered cubic (FCC) lattice. Our studies of the lattice Brillouin zones of lattices of equal density show that, while the CC lattice is suitable for functions with elongated spectra, the FCC lattice offers the least variation in resolution with respect to direction. The BCC lattice, however, offers the highest global cutoff frequency. The difference in behavior between the BCC and FCC lattices is negligible for a natural spectrum. We also present a study of pre-aliasing errors on anisotropic versions of the CC, BCC, and FCC sampling lattices, revealing that the optimal choice of sampling lattice is highly dependent on lattice orientation and anisotropy.
    [Show full text]
  • Opengl 4.0 Shading Language Cookbook
    OpenGL 4.0 Shading Language Cookbook Over 60 highly focused, practical recipes to maximize your use of the OpenGL Shading Language David Wolff BIRMINGHAM - MUMBAI OpenGL 4.0 Shading Language Cookbook Copyright © 2011 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: July 2011 Production Reference: 1180711 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-849514-76-7 www.packtpub.com Cover Image by Fillipo ([email protected]) Credits Author Project Coordinator David Wolff Srimoyee Ghoshal Reviewers Proofreader Martin Christen Bernadette Watkins Nicolas Delalondre Indexer Markus Pabst Hemangini Bari Brandon Whitley Graphics Acquisition Editor Nilesh Mohite Usha Iyer Valentina J. D’silva Development Editor Production Coordinators Chris Rodrigues Kruthika Bangera Technical Editors Adline Swetha Jesuthas Kavita Iyer Cover Work Azharuddin Sheikh Kruthika Bangera Copy Editor Neha Shetty About the Author David Wolff is an associate professor in the Computer Science and Computer Engineering Department at Pacific Lutheran University (PLU).
    [Show full text]
  • Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy Syeed Ehsan Ahmed University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2017-01-01 Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy Syeed Ehsan Ahmed University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biophysics Commons, and the Optics Commons Recommended Citation Ahmed, Syeed Ehsan, "Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy" (2017). Open Access Theses & Dissertations. 397. https://digitalcommons.utep.edu/open_etd/397 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. IMAGING LIVE DROSOPHILA BRAIN WITH TWO-PHOTON FLUORESCENCE MICROSCOPY SYEED EHSAN AHMED Master’s Program in Physics APPROVED: Chunqiang Li, Ph.D., Chair Cristian E. Botez, Ph.D. Chuan Xiao, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Syeed Ehsan Ahmed 2017 Dedication Dedicated to my beloved family and friends. Thank you for believing in me and helping me throughout my journey. IMAGING LIVE DROSOPHILA BRAIN WITH TWO-PHOTON FLUORESCENCE MICROSCOPY by SYEED EHSAN AHMED, B.Sc. in Physics THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Physics THE UNIVERSITY OF TEXAS AT EL PASO August 2017 ACKNOWLEDGEMENTS All praise and worthiness goes to Almighty Merciful Allah who has given me the opportunity, strength and ability to complete this work.
    [Show full text]
  • Arxiv:2001.11604V2 [Cs.PL] 6 Sep 2020 of Trigger Conditions, Having an in Situ Infrastructure That Simplifies Results They Desire
    DIVA: A Declarative and Reactive Language for in situ Visualization Qi Wu* Tyson Neuroth† Oleg Igouchkine‡ University of California, Davis, University of California, Davis, University of California, Davis, United States United States United States Konduri Aditya§ Jacqueline H. Chen¶ Kwan-Liu Ma|| Indian Institute of Science, India Sandia National Laboratories, University of California, Davis, United States United States ABSTRACT for many applications. VTK [61] also partially adopted this ap- The use of adaptive workflow management for in situ visualization proach, however, VTK is designed for programming unidirectional and analysis has been a growing trend in large-scale scientific simu- visualization pipelines, and provides limited support for highly dy- lations. However, coordinating adaptive workflows with traditional namic dataflows. Moreover, the synchronous dataflow model is procedural programming languages can be difficult because system somewhat difficult to use and does not always lead to modular pro- flow is determined by unpredictable scientific phenomena, which of- grams for large scale applications when control flows become com- ten appear in an unknown order and can evade event handling. This plicated [19]. Functional reactive programming (FRP) [19,24,48,53] makes the implementation of adaptive workflows tedious and error- further improved this model by directly treating time-varying values prone. Recently, reactive and declarative programming paradigms as first-class primitives. This allowed programmers to write reac- have been recognized as well-suited solutions to similar problems in tive programs using dataflows declaratively (as opposed to callback other domains. However, there is a dearth of research on adapting functions), hiding the mechanism that controls those flows under these approaches to in situ visualization and analysis.
    [Show full text]
  • Phong Shading
    Computer Graphics Shading Based on slides by Dianna Xu, Bryn Mawr College Image Synthesis and Shading Perception of 3D Objects • Displays almost always 2 dimensional. • Depth cues needed to restore the third dimension. • Need to portray planar, curved, textured, translucent, etc. surfaces. • Model light and shadow. Depth Cues Eliminate hidden parts (lines or surfaces) Front? “Wire-frame” Back? Convex? “Opaque Object” Concave? Why we need shading • Suppose we build a model of a sphere using many polygons and color it with glColor. We get something like • But we want Shading implies Curvature Shading Motivation • Originated in trying to give polygonal models the appearance of smooth curvature. • Numerous shading models – Quick and dirty – Physics-based – Specific techniques for particular effects – Non-photorealistic techniques (pen and ink, brushes, etching) Shading • Why does the image of a real sphere look like • Light-material interactions cause each point to have a different color or shade • Need to consider – Light sources – Material properties – Location of viewer – Surface orientation Wireframe: Color, no Substance Substance but no Surfaces Why the Surface Normal is Important Scattering • Light strikes A – Some scattered – Some absorbed • Some of scattered light strikes B – Some scattered – Some absorbed • Some of this scattered light strikes A and so on Rendering Equation • The infinite scattering and absorption of light can be described by the rendering equation – Cannot be solved in general – Ray tracing is a special case for
    [Show full text]
  • CS488/688 Glossary
    CS488/688 Glossary University of Waterloo Department of Computer Science Computer Graphics Lab August 31, 2017 This glossary defines terms in the context which they will be used throughout CS488/688. 1 A 1.1 affine combination: Let P1 and P2 be two points in an affine space. The point Q = tP1 + (1 − t)P2 with t real is an affine combination of P1 and P2. In general, given n points fPig and n real values fλig such that P P i λi = 1, then R = i λiPi is an affine combination of the Pi. 1.2 affine space: A geometric space composed of points and vectors along with all transformations that preserve affine combinations. 1.3 aliasing: If a signal is sampled at a rate less than twice its highest frequency (in the Fourier transform sense) then aliasing, the mapping of high frequencies to lower frequencies, can occur. This can cause objectionable visual artifacts to appear in the image. 1.4 alpha blending: See compositing. 1.5 ambient reflection: A constant term in the Phong lighting model to account for light which has been scattered so many times that its directionality can not be determined. This is a rather poor approximation to the complex issue of global lighting. 1 1.6CS488/688 antialiasing: Glossary Introduction to Computer Graphics 2 Aliasing artifacts can be alleviated if the signal is filtered before sampling. Antialiasing involves evaluating a possibly weighted integral of the (geometric) image over the area surrounding each pixel. This can be done either numerically (based on multiple point samples) or analytically.
    [Show full text]
  • FAKE PHONG SHADING by Daniel Vlasic Submitted to the Department
    FAKE PHONG SHADING by Daniel Vlasic Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology May 17, 2002 Copyright 2002 M.I.T. All Rights Reserved. Author ________________________________________________________ Department of Electrical Engineering and Computer Science May 17, 2002 Approved by ___________________________________________________ Leonard McMillan Thesis Supervisor Accepted by ____________________________________________________ Arthur C. Smith Chairman, Department Committee on Graduate Theses FAKE PHONG SHADING by Daniel Vlasic Submitted to the Department of Electrical Engineering and Computer Science May 17, 2002 In Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Computer Science and Engineering And Master of Engineering in Electrical Engineering and Computer Science ABSTRACT In the real-time 3D graphics pipeline framework, rendering quality greatly depends on illumination and shading models. The highest-quality shading method in this framework is Phong shading. However, due to the computational complexity of Phong shading, current graphics hardware implementations use a simpler Gouraud shading. Today, programmable hardware shaders are becoming available, and, although real-time Phong shading is still not possible, there is no reason not to improve on Gouraud shading. This thesis analyzes four different methods for approximating Phong shading: quadratic shading, environment map, Blinn map, and quadratic Blinn map. Quadratic shading uses quadratic interpolation of color. Environment and Blinn maps use texture mapping. Finally, quadratic Blinn map combines both approaches, and quadratically interpolates texture coordinates. All four methods adequately render higher-resolution methods.
    [Show full text]
  • Direct Volume Rendering with Nonparametric Models of Uncertainty
    Direct Volume Rendering with Nonparametric Models of Uncertainty Tushar Athawale, Bo Ma, Elham Sakhaee, Chris R. Johnson, Fellow, IEEE, and Alireza Entezari, Senior Member, IEEE Fig. 1. Nonparametric models of uncertainty improve the quality of reconstruction and classification within an uncertainty-aware direct volume rendering framework. (a) Improvements in topology of an isosurface in the teardrop dataset (64 × 64 × 64) with uncertainty due to sampling and quantization. (b) Improvements in classification (i.e., bones in gray and kidneys in red) of the torso dataset with uncertainty due to downsampling. Abstract—We present a nonparametric statistical framework for the quantification, analysis, and propagation of data uncertainty in direct volume rendering (DVR). The state-of-the-art statistical DVR framework allows for preserving the transfer function (TF) of the ground truth function when visualizing uncertain data; however, the existing framework is restricted to parametric models of uncertainty. In this paper, we address the limitations of the existing DVR framework by extending the DVR framework for nonparametric distributions. We exploit the quantile interpolation technique to derive probability distributions representing uncertainty in viewing-ray sample intensities in closed form, which allows for accurate and efficient computation. We evaluate our proposed nonparametric statistical models through qualitative and quantitative comparisons with the mean-field and parametric statistical models, such as uniform and Gaussian, as well as Gaussian mixtures. In addition, we present an extension of the state-of-the-art rendering parametric framework to 2D TFs for improved DVR classifications. We show the applicability of our uncertainty quantification framework to ensemble, downsampled, and bivariate versions of scalar field datasets.
    [Show full text]