The Lemon Battery Challenge

Total Page:16

File Type:pdf, Size:1020Kb

The Lemon Battery Challenge The Lemon Battery Challenge Grade Level • Understand how much approximately 6 million power it takes to run an million million 3rd through 8th electric car (6,000,000,000,000,000,0 00) electrons flow through Background the bulb each second Materials (write this number on the The power behind board). The flow of • 4 D-size batteries electricity comes from one electrons is called an • 4 Lemons of the smallest things electrical current and is • 4 Copper electrodes - known to science -- measured in Amperes --- in shape of a spike, 3- electrons. Electrons are when 6 million million 5 cm. long tiny particles within atoms million electrons flow • 4 Zinc electrodes - in that have a minute electric through an electrical circuit shape of a spike, 3-5 charge. If a million million in one second, the current cm long (1,000,000,000,000 -- is approximately 1 Ampere • Multimeter for write this number on the (6,000,000,000,000,000,0 measuring DC voltage chalkboard or white 00 electrons = 1 Ampere). and low (-.0001 A) board!) electrons were current lined up, they would barely Electricity is used for many reach across the head of a important things in our Objectives of this pin. When electric current lives: light, heat in our homes, computers, etc. In activity flows through a wire, these tiny particles actually order for electrons to move surge through the metal of (and for us to get electrical • Learn how a chemical the wire -- just like water current to power our reaction can produce flows through a pipe. It favorite devices), a source electricity takes an unbelievably of energy is needed. This large number of electrons energy may exist in • Create a wet-cell battery flowing through a wire to various forms: mechanical light a bulb -- motion, light, heat, or a chemical reaction. Chemical energy is the engineers use these source of power in measurements: Engineers abbreviate batteries. The simplest these electrical quantities batteries consist of two In an analogy to water as V (voltage), I (current), different metals flow, a battery is like a R (resistance). These are (electrodes) floating in a paddle wheel that raises related to each other as bath of acid. Atoms from water up to a height --this follows: V = I x R. one metal travel through is voltage. Electrical power (P) is the acid to the other metal related to voltage and releasing electrons. As water flows through a current as follows: Eventually, when all the pipe, electrons flow P = I x V. mobile atoms have been through the filament of the transferred, no additional light bulb this is current. Activity electrons may be released, and the battery As water flowing downhill • Explain the goal of the is dead through a pipe encounters exercise: To calculate friction, electrons flowing how many lemons it Engineers make through the filament of the would take to run an measurements when they light bulb encounter friction electric car. are working with electricity. and release energy -- this They measure voltage, is electrical resistance. • Explain that electric current, resistance and cars run on very large power. By considering a The entire process batteries and not simple circuit, a battery converts electrical energy internal combustion connected to a light bulb, to light energy and heat engines like regular one can see how energy. cars. So what are lemon so that batteries? approximately half of the electrode is still • Show the students a protruding out. typical alkaline battery. Ask them how it • Instruct them to do the works. same with the copper electrode. Have them • Explain that, within a space the electrodes battery, a chemical about 3 or 4 cm apart. reaction takes place between an electrolyte • Go around to each and electrodes. An group with the electrolyte can be a students will create a multimeter. Set the liquid acid or a dry wet cell battery using multimeter to read DC chemical. The the juice of a lemon, voltage, and measure electrodes are two which is a mild acid, the voltage (V) of the different conducting as the electrolyte. battery. Hold the materials, such as display or needle of metals. Show the • The voltage (V) and the multimeter so that theory diagram of the current (I) delivered by everyone can see and electrodes in an acid the lemon battery will read the numbers. The bath. be measured using a battery voltage (V) multimeter. Show the should read • The chemical reaction multimeter and the approximately 1.5 causes electrons to be model diagram Volts -- show that this displaced, and these depicting the circuit is written on the side electrons have the through the lemon and of the battery, potential to do work. the multimeter. confirming in the The potential energy students' minds that stored in the electrons • Divide the class into the multimeter works is known as voltage smaller groups. Give properly. If the reading (V). The flow of each group a D-size is less than 1.5 Volts, electrons through a battery, a lemon, a tell them the battery is wire is known as copper electrode and old and has lost some current (I). The power a zinc electrode. of its energy. (P) delivered by a battery is measured by • Ask one student to be • Read the voltage (V) multiplying its voltage a designated recorder across the electrodes times the current. On a and stand by the of the lemon battery. chalkboard or chalkboard or The multimeter should whiteboard, write whiteboard to record read approximately I P=V x I. the results as they are volt. Digital LCD called out. displays might show • Batteries come in two 0.997 Volts or 0.989 categories: dry cell • From the front of the Volts. Have the and wet cell. Dry cells room direct each designated recorder (such as flashlight group to first press put this under a batteries) are the down on the lemon column labeled "V' on alkaline batteries that and roll it on the table the chalkboard. The use a powder to get the juices readings will be chemical for an flowing inside. averaged. electrolyte; wet cells (such as car batteries) • Have the students • Set the meter to read use acids as the insert the zinc DC current, and take electrolyte. The electrode into the the reading across the electrodes of the think about that for a Credits lemon battery. The minute. reading will be This activity was provided approximately 0.0001 • Ask if it makes sense by IBM research engineers Amperes. Ask the to use lemons to who invite you to see recorder to put this power a car. What are what's going on at reading in a separate some of the pros and www.research.ibm.com. column labeled "I" on cons? the board. Again, the readings will be Pros - does not pollute, averaged. renewable energy source, electric cars are quiet etc. • After taking readings from each small group, Cons - cannot recharge look at the recorded lemons, heavy, expensive results. Take the (25 cents per lemon = $15 average of the million) readings. • Explain that the point • Multiply the average was to actually see if voltage (V- 1. 0 Volt) lemons should be times the average used to power cars, current (1-0.0001 but rather to explain ampere) to find the the principles of average power (P- batteries and 0.0001 watt) delivered electricity; that a by the battery. simple lemon could be made into a battery by • Explain how it takes creating a chemical 100 watts to power a reaction, and that we 100 watt light bulb. can apply simple The more the wattage, mathematical formulas the greater the power and determine how consumption. Ask the much power we can students to calculate generate and how how many lemon much it would take to batteries would be run the car. required to power the 100 watt light bulb Conclusion [Answer: 100 watt / 0.0001 watt = I million These are the problems (1,000,000) lemon engineers and scientists batteries]. face. They ask questions, develop a theory or a • An electric car model, test out their ideas requires 6000 W of and draw conclusions. In power to run. Ask the order to do this however students to calculate you need a strong how many lemon background in math and batteries would be science. required to power the electric car. [Answer: 60 million (60,000,000) lemon batteries, employing 60 million lemons!] Let, them .
Recommended publications
  • Material - Safety - Data Sheet (MSDS) No.16 for Ansmann Zinc Carbon (Mercury Free Heavy Duty) Batteries Single Cells and Multi-Cell Battery Packs 1/6
    Material - Safety - Data Sheet (MSDS) No.16 for Ansmann Zinc Carbon (Mercury Free Heavy Duty) Batteries single cells and multi-cell battery packs 1/6 Date of issue: 2015 - 02 - 23 The information contained within is provided as a service to our customers and Revision no: 1 for their information only. The information and recommendations set forth herein Revision date: 2016 - 10 - 07 are made in good faith and are believed to be accurate at the date of preparation. Editor: Ansmann AG ANSMANN AG makes no warranty expressed or implied. 1. Product and Supplier Identification Product name: ANSMANN (Super) Heavy Duty Battery Designation: Zinc Manganese Dioxide Battery Models / types: R3 (AAA); R6 (AA); R14 (C); R20 (D); 6F22 (9V E-Block); 3R12; 4R25 Electrochemical system: MnO2 (Manganese Dioxide) (positive electrode) Zn (negative electrode) NH4Cl, ZnCl2 (electrolyte) Supplier: Germany ANSMANN AG Address: Industriestraße 10; 97959 Assamstadt; Germany Phone / Fax: + 49 (0) 6294 42040 / + 49 (0) 6294 420444 Home / email: ansmann.de / [email protected] USA ANSMANN USA Corporation Address: 1001 Lower Landing Rd. Ste 101; Blackwood, NJ08012; USA Phone / Facsimile: +1 973 4395244 1012 / +1 973 2062006 email: [email protected] United Kingdom ANSMANN UK LTD. Address: Units 11-12, RO24, Harlow Business Park, Harlow, Essex. CM19 5QB. UK Phone / Facsimile: +44 (0) 870 609 2233 / +44 (0) 870609 2234 email: [email protected] Hong Kong ANSMANN Energy Int. LTD. Address: Unit 3117-18, 31/F; Tower 1; Millenium City 1; No. 388 Kwun Tong Road; Kwun Tong, kowloon; Hong-Kong
    [Show full text]
  • PSDS Zinc Air Batteries MF
    Primary Zinc-Air-Battery: Button Type Hearing Aid Batteries Product Safety Data Sheet This "Safety information" is provide as a service to our customers Disclaimer: (EU) These batteries are no "substances" nor "preparations"according to Regulation (EC) No 1907/2006 EC. Instead they have to be regarded as "articles", no substances are intended to be released during handling. Therefore there is no obligation to supply a MSDS according to Regulation (EC) 190'7/2006, Article 31. This PSDS is intended to be unsolicited information without any further legal commitment. The details presented are in accordance with our present knowledge and experiences. They are no contractual assurances of product attributes. (U.S.A.) Material Safety Data Sheets (MSDS) are a sub-requirement of the Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR Subpart 1910.1200. This Hazard Communication Standard does not apply to various subcategories including anything defined by OSHA as an "article". OSHA has defined "article" as a manufactured item other than a fluid or particle; (i) which is formed to a specific shape or design during manufacture; ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g. minute or trace amounts of a hazardous chemical, and does not pose a physical hazard or health risk to employees. This sheet is provided as technical information only. The information contained in this Product Safety Data Sheet has been established to the best of RENATA SA's knowledge and belief.
    [Show full text]
  • Batteries Information Received from EU, Canada, Japan, Indonesia, USA and Other Stakeholders (BAJ, IPEN, NRDC, ZMWG)
    Batteries Information received from EU, Canada, Japan, Indonesia, USA and other stakeholders (BAJ, IPEN, NRDC, ZMWG) 1. Category of mercury-added product Batteries 2. Further description of the product Mercury-containing button cells 3. Information on the use of the Currently, there are three types of button cell batteries that contain mercury: zinc air, silver oxide and alkaline. product These batteries contain mercury in small amounts (typically 0.1-2%) and the purpose of mercury in the cell is to prevent the build-up of hydrogen gas. The mercury acts as a barrier to the production of hydrogen and as such prevents the cell swelling and becoming damaged. Figure 1 – Cross Section of Zinc Anode Button Cell and Zinc Air Button Cell (European Commission, 2014) Range of mercury content/consumption per unit product - 0.1 – 2 weight-% (button cells with intentionally added mercury) - 0.0005 weight-% (button cells without intentionally added mercury) Button batteries are used for powering high drain devices such as watches, calculators, and hearing aids. 4. Information on the availability of EU mercury-free (or less-mercury) Main alternatives: Mercury-free zinc air batteries alternatives Mercury free versions are commercially available for all applications of the main types of button cells (lithium, silver, oxide, alkaline and zinc air). The most frequently used types make use of zinc air technology (European Commission, 2014). Since October 2015, mercury-containing button cell batteries have been prohibited in the EU following the expiry of the exemption granted under the Batteries Directive. 1 Canada Alternatives: mercury-free silver oxide batteries, mercury-free zinc air batteries, lithium batteries Mercury-free alternatives have been available from major battery manufacturers since the late 1990s and early 2000s (e.g.
    [Show full text]
  • A3 Lemon Batteries and Other Batteries – Electricity from Chemical Energy Answer Sheet
    A3 Lemon batteries and other batteries – Electricity from chemical energy Answer sheet A3 Lemon batteries and other batteries – Electricity from chemical energy Note: This answer sheet will go into the analyses for the individual subexperiments only if experi- ence shows that there could be particular difficulties. 1 How well does the “fruit and vegetable battery” work? 1.6 Questions What do you think: Does the electricity really come from the lemon, or what is the real source? Answer: A reasonable answer would be: I can decide that only if I test different fruits and vegetables. If the effect is the same for different fruits and vegetables, the electricity must come from the metals that are inserted into the fruit or vegetable as electrodes, or perhaps also from a common property of the fruits or vegetables. 2 The “lemon battery”: What role does each element play? 2.5 Analysis Check your results. List the three metals used in the experiment in a logical order according to the measured voltages. Start with copper at the left as the noble metal. What does the voltage value of a battery basically seem to depend on? Note: It depends on the different (!) metals that are used. 2.6 Questions a) What does the experiment have to do with the electrochemical voltage series of metals? Answer: The greater the difference between the two electrode metals in the electro- chemical voltage series, that is, the less noble the metal of the one electrode is com- pared to the other electrode, the better the corresponding battery will work.
    [Show full text]
  • Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity Thetech.Org
    201 S. Market St. San Jose CA. 95113 Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity thetech.org This activity is meant to extend your students’ knowledge of the topics covered in our Simplicity of Electricity lab. Through this activity, your students will create a simplified version of the batteries used in everyday electronics. Grade Levels: 4-8 (this activity is meant to be done in groups of 4-5 students) Estimated Time: 30-45 minutes Student Outcomes: 1. Students will be able to create a simple battery to power a light bulb. Next Generation Science Standards Common Core ELA Standards Physical Sciences: Grades 4-5: Writing W.7; W.8 Grade 4: 4-PS3-2, 4-PS3-4; Grade 5: 5-PS1-3 Grade 4: Speaking and Listening 4.SL.1b-d Engineering and Design: Grade 5: Speaking and Listening 5.SL.1b-d Grades 3-5: 3-5-ETS1-3; Grades 6-8: MS-ETS1-1-4 Grades 6-8: Writing W.7; Speaking and Listening SL.1b-e California State Science Standards Physical Sciences: Grade 4: 4.1.g; Grade 5: 5.1.c; Grade 8: 8.7.c Investigation and Experimentation: Grade 4: 4.6.a, c, d; Grade 5: 5.6.b, c, i; Grade 6: 6.7.a, d, e; Grade 7: 7.7.c- e; Grade 8: 8.9.a Vocabulary: Familiarity with these terms and concepts will enhance students’ experience in the activity. Conductor: a material that allows electricity to flow through it easily. Insulator: a material that does not allow electricity to flow through it easily Electricity: (from Greek, meaning “amber”) phenomena resulting from the presence and flow of electric charge; includes: lightning, static electricity, electromagnetic field, and electromagnetic induction.
    [Show full text]
  • Electrical Energy
    142 7 Electrical energy By the end of this chapter you will be able to … Science Understanding ● investigate factors that affect the transfer of energy through an electric circuit ● describe the differences between series and parallel circuits in terms of voltage, current and resistance ● use laboratory equipment to investigate the relationship between current and voltage in an electric circuit Science as a Human Endeavour ● discuss Cathy Foley’s career with superconductors Science Inquiry Skills ● draw circuit diagrams using the correct symbols alternating current (AC) electrical resistance electromagnet short-circuit ammeter electric cell fuse solenoid circuit diagram electric circuit magnetic field voltage FOCUS direct current (DC) electric current parallel circuit voltmeter earth wire electric generator series circuit volts LITERACY 200717_SE9_07.indd 142 20/05/11 9:36 AM CHAPTER 7: Electrical Energy 143 Focus for learning You use electricity every day. It is supplied to your home, and you just have to flick a switch to turn on a light or an electrical appliance. You can even carry electricity with you in batteries to power watches, torches, CD players, mobile phones and laptops. Electricity is not just found in our homes and in batteries. It also occurs naturally. Electricity can build up in storm clouds and be released as a flash of lightning. Electric eels live in South American rivers. They grow up to 2 m long and can produce enough electricity to kill or stun any fish nearby. The dead or stunned fish are then easy to catch. Your brain and nerves produce electric signals which control your body and keep you alive.
    [Show full text]
  • Characterization of Spent Household Zinc-Carbon Dry Cell Batteries in the Process of Recovery of Value Metals
    Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No.6, pp.641-651, 2012 jmmce.org Printed in the USA. All rights reserved Characterization of Spent Household Zinc-Carbon Dry Cell Batteries in the Process of Recovery of Value Metals Majharul Haque Khan and A.S.W Kurny* Materials and Metallurgical Engineering Department, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh *Corresponding author: [email protected] ABSTRACT Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both new and spent batteries of all the five types (AAA, AA, C, D and 9V) were examined. The outer steel casings were found to be tin plated. Steel, zinc and manganese constituted 63 percent of the total weight of the battery. Average zinc and manganese contents were about 22 and 24 percent of the total weight of spent batteries. The electrolyte paste of the spent batteries contained 22 wt. percent zinc and 60 wt. percent manganese. The rest was chlorine, carbon and small amounts of iron and other impurity elements. The major phases in the fresh batteries were carbon, MnO2 and NH4Cl, while Zn(NH3)2Cl2, ZnO.Mn2O3, Mn3O4 and Mn2O3 were the prominent phases in the spent batteries. Presence of mercury and cadmium were not detected and a small percentage of lead was found in both the zinc anode and in the electrolyte paste. Keywords: Zinc-carbon battery, Characterization, Spent batteries, Waste management 1. INTRODUCTION Zinc-carbon dry cell batteries are widely used in different household applications like toys, radios, recorders, watches, remote controls, cameras, torches etc.
    [Show full text]
  • Lemon Battery (Part 1)
    Remote HW #3 (Based on Video #3) Topic: Lemon Battery (Part 1) Name: Note: Data will be provided so that you don’t have to do the experiment. Pre Lab Questions: 1. What is the difference between simulation vs. hands on labs According to Steve, Simulation is for data and hands on for understanding. 2. Why did Sam and Derick fail to light up the LED? Because Sam and Derick did not do the simulation before hands on 3. Why was Steve successful lighting up the LED? Because he did PHET simulation before doing the hands on. ​ ​ 4. What is a battery? Who invented it? Battery is a device with two terminals, anode (+) and cathode (-) to create potential difference between these two terminals. 5. What is an electrolyte? A liquid that contains ions. Lemon is a good source of electrolyte 6. What is anode and cathode? Anode (+) and cathode (-) terminals 7. What are the differences between potatoes and lemons? According to the table below, more voltage produced by the lemon since the pH of a lemon (2) is lower than the potato (6) that means the lemon is more acidic which means a more acidic product is bound to produce more electricity and voltage. 8. How can we use lemons/potatoes to light up a LED? Electrons flow from the zinc electrode through the LED bulb to the copper electrode and the bulb lights up 9. What is pH? pH is a scale of acidity from 0 to 14. It tells how acidic or alkaline a substance is. More acidic solutions have lower pH.
    [Show full text]
  • Lemon Cell/Battery the Manoa Experience -11/15/2008 (Dept. Of
    Lemon cell/battery The Manoa Experience -11/15/2008 (Dept. of Physics and Astronomy) This document can be downloaded from http://www2.hawaii.edu/~plam/K-12-projects/) Materials: 1. Positive electrode – copper (e.g. a US penny before 1982 - 95% copper, or a US quarter - 92% copper) 2. Negative electrode – zinc (a piece of galvanize of nail – the coating is zinc) 3. An electrolyte – a lemon (or a potato or other fruits which has acidic or salt content) Setup: Make a slit on the lemon and insert penny, push nail into lemon about ~ 1 inch (2 -3 cm) away from the penny (if the lemon is not too ripe, you may want to squeeze the lemon slightly to mobilize the juice before you insert the electrodes). You have made a lemon cell. If you have a voltmeter (or multi-meter), you can measure the voltage across the two electrodes (copper is positive and zinc is negative); you should get around 0.9 volt. If you connect two of them in series, you will get two the voltage (~ 1.8 volt). When more than one cell is connected together, it is call a battery (or battery of cells). At this point, you may think that you can light up a flash light bulb with this lemon battery because a D- cell is 1.5 volt. But, you can’t; the lemon battery has too high an internal resistance (few thousand ohms); it can only supply a very small amount of current (~ few tenths of a mA). Light Emitting Diode (LED): A LED requires about 1.5 volt but a very small amount of current to light up; two lemon cells in series can light up a LED (very dimly).
    [Show full text]
  • How Does a Battery Work? 3/14/20, 1004 AM
    How does a battery work? 3/14/20, 1004 AM How does a battery work? Energy cannot be created or destroyed, but it can be saved in various forms. One way to store it is What were the 100 Greatest in the form of chemical energy in a battery. When connected in a circuit, a battery can produce Inventions? electricity. See the list--Greatest Inventions of all Time Batteries convert Chemical Energy into Electrical Energy (https://www.edinformatics.com/inventions_inventors/) A battery has two ends -- a positive terminal (cathode) and a negative terminal (anode). If you connect the two terminals with wire, a circuit is formed. Electrons will flow through the wire and a current of electricity is produced. Inside the battery, a reaction between chemicals take place. But the reaction takes place only if there is a flow of electrons. Batteries can be stored for a long time and still work because the chemical process doesn't start until the electrons flow from the negative to the positive terminals through a circuit. A Chemical Reaction Takes Place in a Battery A Simple example -- The lemon cell battery STEM Activies Let's start with a very simple battery that uses a lemon that has two different metallic objects Mass Volume Density inserted into it, for example a galvanized nail and a copper coin or wire. The copper serves as the (http://www.edinformatics.com/math_science/mass.htm) positive electrode or cathode and the galvanized (zinc coated) nail as the electron-producing Molecular Modeling-- An NGSS negative electrode or anode. These two objects work as electrodes, causing an electrochemical Activity reaction which generates a small potential difference.
    [Show full text]
  • 1 4.6 the Lemon Battery
    Last revised 30/03/2021 4.6 The lemon battery Curriculum links ACSSU155 Energy appears in different forms, including movement (kinetic energy), heat and potential energy, and energy transformations and transfers cause change within systems. KEY IDEAS • Energy is the capacity to do work. • Energy transfers involve change. • Energy looks different in different situations – it can be transferred from one object to another. ACSIS144 Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships in data using digital technologies as appropriate. ACSIS145 Summarise data, from students’ own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions based on evidence. Lesson outcomes At the end of this activity students will be able to: • construct a battery made of lemons and copper and zinc electrodes. • explain that the energy to power the battery ultimately comes from the chemical energy in the metal electrodes. What ideas might your students already have? • A very common misconception is that this battery is powered by the lemon. In fact the chemical energy comes from the pure metals. A large amount of chemical or electrical energy was put in to produce the pure metals from their ores. Key vocabulary Electrode, battery, LED (light emitting diode). Equipment list Each GROUP will require: • 4-6 lemons • 4-6 pieces of copper and zinc, approximately 1 cm x 3 cm • LED • electrical leads with alligator clips • tray for lemons. Things to consider A typical LED requires around 2.2 V to light. A copper/zinc electric cell (in any appropriate electrolyte) can produce up to around 0.8 V).
    [Show full text]
  • Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry
    Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry of Experienced Teachers A Dissertation Presented by Stephanie O’Brien to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science Education Stony Brook University August 2017 ProQuest Number:10619384 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10619384 Published by ProQuest LLC ( 2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright by Stephanie O'Brien 2017 ii Stony Brook University The Graduate School Stephanie O’Brien We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Angela M. Kelly, Ph.D. Associate Professor, Department of Physics & Astronomy Keith Sheppard, Ed.D. Associate Professor, Department of Biochemistry & Cell Biology David Hanson, Ph.D. Professor Emeritus, Department of Chemistry Stephen A. Koch, Ph.D. Professor, Department of Chemistry This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School iii Abstract of the Dissertation Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry of Experienced Chemistry Teachers by Stephanie O’Brien Doctor of Philosophy in Science Education Stony Brook University 2017 Topic specific pedagogical content knowledge (TSPCK) is the basis by which knowledge of subject matter of a particular topic is conveyed to students.
    [Show full text]