Glacial Erratic Boulders from Jutland, Denmark, Feature an Uppermost

Total Page:16

File Type:pdf, Size:1020Kb

Glacial Erratic Boulders from Jutland, Denmark, Feature an Uppermost Glacial erratic boulders from Jutland, Denmark, feature an uppermost lower Cambrian fauna of the Lingulid Sandstone Member of Västergötland, Sweden THOMAS WEIDNER, GERD GEYER, JAN OVE R. EBBESTAD & VOLKER VON SECKENDORFF Weidner, T., Geyer, G., Ebbestad, J. O. R. & von Seckendorff, V. 2015. Glacial erratic boulders from Jutland, Denmark, feature an uppermost lower Cambrian fauna of the Lingulid Sandstone Member of Västergötland, Sweden. © 2015 by Bulletin of the Geological Society of Denmark, Vol. 63, p. 59-86. ISSN 2245-7070. (www.2dgf.dk/publikationer/bulletin). https://doi.org/10.37570/bgsd-2015-63-06 Reinvestigation of glacial erratic boulders from Jutland, Denmark, and from northern Germany, has revealed a moderately diverse fauna with the trilobites Holmiella? sp., Epichalnipsus anartanus, Epichalnipsus sp. A, Epichalnipsus sp. B, and Berabichia erratica, three species of lingulid brachiopods, one hyolith species, and trace fossils comparable to Halopoa imbricata. Comparison with faunas from the Cambrian of Scandinavia strongly suggested a biostratigraphic position equivalent to the uppermost part of the (revised) Holmia kjerul i–‘Ornamentaspis’ linnarssoni to lowermost Com- Received 21 April 2015 luella?–Ellipsocephalus lunatus zones sensu Nielsen & Schovsbo (2011), or the lower to middle part Accepted in revised form of the traditional ‘Ornamentaspis’ linnarssoni Zone, but probably a particular horizon and biofacies 2 November 2015 not yet discovered in Scandinavia. Considerations of glacial transport regimes and the distribu- Published online tion of comparable rock units, as well as a petrographical analysis of the material from the studied 4 December 2015 erratic boulders and rocks from outcrops in Sweden, indicate that the boulders were derived from the Lingulid Sandstone Member of the File Haidar Formation and the source area is situated in the vicinity of the present-day outcrops in the Halleberg–Hunneberg area, Västergötland, Sweden. Keywords: Trilobites, Lingulid Sandstone Member, lower Cambrian, Cambrian Series 2, Västergöt- land, Sweden, Denmark, biostratigraphy, glacial boulders. Thomas Weidner [[email protected]], Ravnholtvej 23, Rårup, DK-7130 Juelsminde, Denmark. Gerd Geyer [[email protected]], Institut für Geographie und Geologie, Lehrstuhl für Geodynamik und Geo- materialforschung, Bayerische Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany. Jan Ove R. Ebbestad [[email protected]], Museum of Evolution, Uppsala University, SE-75236 Uppsala, Sweden. Volker von Seckendorff [[email protected]], Institut für Geographie und Geologie, Lehrstuhl für Geodynamik und Geomaterialforschung, Bayerische Julius- Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany. Corresponding author: Gerd Geyer Trilobite-bearing lower Cambrian strata (provisional Ornamentaspis and Strenuaeva), and the eodiscid genera Cambrian Series 2) in Sweden have been studied mainly Runcinodiscus, Calodiscus, Chelediscus and Neocobboldia. at scattered localities in the south (Scania) and in nu- The early Cambrian faunas and biostratigraphy of the merous outcrops along the Caledonian mountain range Swedish regions are portrayed by Bergström (1973), (Jämtland, Ångermanland and Lapland), in both the Ahlberg & Bergström (1978, 1983, 1991), Ahlberg (1979, autochthonous and allochthonous sequences (Fig. 1A). 1980, 1984a, 1984b, 1984c, 1985), Bergström & Ahlberg Rocks of early Cambrian age predominantly consist of (1981), Ahlberg et al. (1986), Nielsen & Schovsbo (2006, siltstone and sandstone. Trilobites recorded from these 2011) and Høyberget et al. (2015). Studies during the last strata of Baltica are fairly restricted by comparison 15 years have increased our knowledge about these fau- to those from other Cambrian continents and belong nas, particularly of those from localities in the northern to the olenelloid family Holmiidae (Holmia, Holmiella, Caledonides (Moczydłowska et al. 2001; Axheimer et Kjerulfia and Schmidtiellus), to the ptychoparioid family al. 2007; Cederström et al. 2009, 2011, 2012). Due to both Ellipsocephalidae (with species assigned, or provision- outcrop conditions and depositional environments, ally attributed to the genera Comluella, Ellipsocephalus, polymerid trilobites are mostly fragmentary and often Glacial boulders from Denmark of the Lingulid Sandstone Member, Sweden · 59 Fig. 1. A, map of Scandinavia showing outcrops of the Cambrian with inserts of the areas in Denmark and Sweden treated in the text; B and B1, maps of Jutland, Denmark, with localities (red) yielding boulders of the fossil-bearing Lingulid Sandstone; C, map of Västergötland showing Lower Palaeozoic outcrops at Halleberg, Hunneberg, Kinnekulle, and Falbygden to the east with localities (red) yielding the fossil-bearing Lingulid Sandstone; C1, detailed map of Halleberg with the localities Ovandalen and Kvillen (base map from Andersson et al. 1985). 60 · Bulletin of the Geological Society of Denmark do not permit a precise determination; they belong to Geyer et al. (2004) described trilobites of the el- genera or species endemic to Baltica and are of limited lipsocephaloid genera Epichalnipsus and Berabichia from use for intercontinental or even global correlation, glacial erratic boulders collected at As Hoved and other whereas correlation into other Cambrian continents is localities in Denmark and northern Germany. These facilitated by the species of Calodiscus and Chelediscus. boulders of trilobite-bearing quartzitic sandstones The lower Cambrian biostratigraphy of Scandinavia and were interpreted as being derived from the Lingulid Baltica in general has thus been in a state of preliminary Sandstone Member of Västergötland and to represent subdivision and was recently revised by Nielsen & an unidentified stratigraphical interval. Based on close Schovsbo (2011) as shown in Fig. 2. morphological affinities with ellipsocephaloid trilobites Of particular interest is the upper lower Cambrian from the Moroccan Atlas ranges, Geyer et al. (2004) pro- part of the succession, which provides distinct problems posed a stratigraphic correlation with the Sectigena Zone for correlation into other regions as emphasized in the of Morocco, West Gondwana. However, differences in discussions on the Cambrian Series 2‒Series 3 and Stage lithology suggested that this type of Lingulid Sandstone 4‒Stage 5 boundary (e.g., Geyer & Palmer 1995; Fletcher was unknown in Sweden. 2003; Geyer 2005; Sundberg et al. in press). The tradi- tional subdivision and subsequent zonal schemes that recognize a Holmia kjerulfi group Zone, a Proampyx (or ‘Ornamentaspis’) linnarssoni Zone, and a ‘Protolenus’ Zone Lingulid Sandstone: distribution, (Fig. 2) are equally unable to characterize the trilobite faunas, lack a recognizable evolutionary development lithology, and biostratigraphy of the trilobites, and are not even readily correlatable A key unit for the upper lower Cambrian is the with the neighbouring regions of Baltica in northern Lingulid Sandstone which is generally treated as a Poland or the Holy Cross Mountains in southern Poland. member of the File Haidar Formation (Thorslund & Fig. 2. Biostratigraphic chart of the Scandinavian classical lower Cambrian with the historic development of the lithostratigraphi- cal units for Västergötland and Scania (left and right columns under Lithostratigraphy southern Sweden) and the tentative posi- tion of important fossil horizons mentioned in numerous publications (cited in the text) from southern and central Sweden, the Swedish Allochthon and Lapland, the Mjøsa District in Norway and the Digermul Peninsula, Finnmark, Norway. Stratigraphic interpretations that differ from the original concepts follow data in Nielsen & Schovsbo (2011). RM, Rispebjerg Member. Glacial boulders from Denmark of the Lingulid Sandstone Member, Sweden · 61 Westergård 1938; Thorslund 1960; Bergström & Gee fragmentary pygidium identified as Holmiella sp. from 1985; Nielsen & Schovsbo 2006). The Lingulid Sand- the lower part of the Lingulid Sandstone Member in a stone was first adequately recognized by Holm (in quarry at Hällekis at Lake Vänern, Kinnekulle (Ahl- Holm & Munthe 1901) who separated Linnarsson’s berg et al. 1986). However, this specimen had originally Fucoid Sandstone (see Wallin 1868) into a lower and been attributed to the Mickwitzia Sandstone (Berg- an upper unit termed Mickwitzia and Lingulid Sand- ström 1981; Ahlberg 1984c). This incomplete pygidium stone, respectively, based on differences in lithological and numerous cranidial fragments from this locality characters and bedding thicknesses. It is generally were assigned to Holmiella sp. Both olenelloid taxa were regarded as a depositional tongue of the File Haidar assumed to indicate the Holmia kjerulfi Zone and are Formation extending from the stratotype on Gotland of little biostratigraphic significance, although Jensen (Thorslund & Westergård 1938; Bergström & Gee 1985) (1997) emphasized the lithological equivalence of the into Öland, Västergötland, Östergötland and Närke. host rocks with the Mickwitzia Sandstone. Further- The two units of the File Haidar Formation form the more, Jensen (1997) cited the discovery of a relatively uppermost part of the traditional lower Cambrian complete trilobite by collector Holger Buentke in 1992, succession, but their vertical extent shows an opposite which has remained unpublished since and also is un- trend. The Mickwitzia Sandstone Member increases in certain with respect
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Morphology and Developmental Traits of the Trilobite Changaspis Elongata from the Cambrian Series 2 of Guizhou, South China
    Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China GUANG-YING DU, JIN PENG, DE-ZHI WANG, QIU-JUN WANG, YI-FAN WANG, and HUI ZHANG Du, G.-Y., Peng, J., Wang, D.-Z., Wang, Q.-J., Wang, Y.-F., and Zhang, H. 2019. Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China. Acta Palaeontologica Polonica 64 (4): 797–813. The morphology and ontogeny of the trilobite Changaspis elongata based on 216 specimens collected from the Lazizhai section of the Balang Formation (Stage 4, Series 2 of the Cambrian) in Guizhou Province, South China are described. The relatively continuous ontogenetic series reveals morphological changes, and shows that the species has seventeen thoracic segments in the holaspid period, instead of the sixteen as previously suggested. The development of the pygid- ial segments shows that their number gradually decreases during ontogeny. A new dataset of well-preserved specimens offers a unique opportunity to investigate developmental traits after segment addition is completed. The ontogenetic size progressions for the lengths of cephalon and trunk show overall compliance with Dyar’s rule. As a result of different average growth rates for the lengths of cephalon, trunk and pygidium, the length of the thorax relative to the body shows a gradually increasing trend; however, the cephalon and pygidium follow the opposite trend. Morphometric analysis across fourteen post-embryonic stages reveals growth gradients with increasing values for each thoracic segment from anterior to posterior. The reconstruction of the development traits shows visualization of the changes in relative growth and segmentation for the different body parts.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Phylogenetic Analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian) Bruce S
    2 j&o I J. Paleont., 75(1), 2001, pp. 96-115 Copyright © 2001, The Paleontological Society 0022-3360/01 /0075-96$03.00 PHYLOGENETIC ANALYSIS OF THE OLENELLINA WALCOTT, 1890 (TRILOBITA, CAMBRIAN) BRUCE S. LIEBERMAN Departments of Geology and Ecology and Evolutionary Biology, University of Kansas, Lindley Hall, Lawrence 66045, <[email protected]> ABSTRACT—Phylogenetic analysis was used to evaluate evolutionary relationships within the Cambrian suborder Olenellina Walcott, 1890; special emphasis was placed on those taxa outside of the Olenelloidea. Fifty-seven exoskeletal characters were coded for 24 taxa within the Olenellina and two outgroups referable to the "fallotaspidoid" grade. The Olenelloidea, along with the genus Gabriellus Fritz, 1992, are the sister group of the Judomioidea Repina, 1979. The "Nevadioidea" Hupe, 1953 are a paraphyletic grade group. Four new genera are recognized, Plesionevadia, Cambroinyoella, Callavalonia, and Sdzuyomia, and three new species are described, Nevadia fritzi, Cirquella nelsoni, and Cambroinyoella wallacei. Phylogenetic parsimony analysis is also used to make predictions about the ancestral morphology of the Olenellina. This morphology most resembles the morphology found in Plesionevadia and Pseudoju- domia Egorova in Goryanskii and Egorova, 1964. INTRODUCTION group including the "fallotaspidoids" plus the Redlichiina, and HE ANALYSIS of evolutionary patterns during the Early Cam- potentially all other trilobites. Where the Agnostida fit within this T brian has relevance to paleontologists and evolutionary bi- evolutionary topology depends on whether or not one accepts the ologists for several reasons. Chief among these are expanding our arguments of either Fortey and Whittington (1989), Fortey (1990), knowledge of evolutionary mechanisms and topologies. Regard- and Fortey and Theron (1994) or Ramskold and Edgecombe ing evolutionary mechanisms, because the Cambrian radiation (1991).
    [Show full text]
  • Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More By Michelle M. Casey1, Perry Kennard2, and Bruce S. Lieberman1, 3 1Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, 2Earth Science Teacher, Southwest Middle School, USD497, and 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Middle level laboratory exercise for Earth or General Science; supported provided by National Science Foundation (NSF) grants DEB-1256993 and EF-1206757. Learning Goals and Pedagogy This lab is designed for middle level General Science or Earth Science classes. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens 3) to highlight major events or trends in the evolutionary history and ecology of the Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They only lived in the oceans but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter across. They were once one of the most successful of all animal groups and in certain fossil deposits, especially in the Cambrian, Ordovician, and Devonian periods, they are extremely abundant.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana
    [Show full text]
  • New Information on Olenelline Trilobites from the Early Cambrian Sekwi Formation, Northwestern Canada
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. New information on olenelline trilobites from the Early Cambrian Sekwi Formation, Northwestern Canada by Bruce S. Lieberman 2010 This is the author’s accepted manuscript version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Lieberman, Bruce S. 2010. “New information on olenelline trilobites from the Early Cambrian Sekwi Formation, northwestern Canada.” Canadian Journal of Earth Sciences (47):1445-1449. Published version: http://www.nrcresearchpress.com/doi/ abs/10.1139/E10-073#.U21JO4FdXUL Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. For Review Purposes Only/Aux fins d'examen seulement 1 1 New information on olenelline trilobites from the Early Cambrian Sekwi Formation, 2 Northwestern Canada 3 4 Francine R. Abe 5 Department of Ecology and Evolutionary Biology, University of Kansas, 1345 Jayhawk 6 Boulevard, Lawrence, Kansas 66045, USA, Tel: +1 (785) 864-3369, Fax: +1 (785) 864-5335 7 <[email protected]> 8 Bruce S. Lieberman 9 Department of Geology and Natural History Museum and Biodiversity Research Center, 10 University of Kansas, 1475 Jayhawk Boulevard, 120 Lindley Hall, Lawrence, Kansas 66045, 11 USA, <[email protected]> 12 Michael C. Pope 13 Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843, 14 USA, <[email protected]> 15 Kelly Dilliard 16 Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, 17 Wayne, Nebraska 68787, USA, <[email protected]> 18 For Review Purposes Only/Aux fins d'examen seulement 2 19 Abstract 20 A new species of olenelline trilobite, Nevadella keelensis, is described from the lower Cambrian Sekwi 21 Formation, Mackenzie Mountains, Canada.
    [Show full text]
  • Ptychopariid Trilobites in the Middle Cambrian of Central Bohemia (Taxonomy, Biostratigraphy, Synecology)
    Ptychopariid trilobites in the Middle Cambrian of Central Bohemia (taxonomy, biostratigraphy, synecology) VRATISLAV KORDULE A revision of ptychopariid trilobites from the Middle Cambrian of central Bohemia is presented. With a few exceptions, they were previously referred only to Ptychoparia striata. Three genera are recently distinguished: Ptychoparia Hawle & Corda, 1847, Ptychoparioides Růžička, 1940, and Mikaparia gen. nov. Seven species are described: three are revised, four are new, and two is left in open nomenclature; their stratigraphical ranges and significance are discussed. A new stratigraphical subdivision of the Middle Cambrian of the Skryje-Týřovice area is suggested, including three assemblage zones and three barren zones. Four substrate and bathymetrically controlled trilobite associations are recognized in the Skryje-Týřovice area. • Key words: Bohemia, Middle Cambrian, trilobites, new taxa, biostratigraphy. KORDULE, V. 2006. Ptychopariid trilobites in the Middle Cambrian of Central Bohemia (taxonomy, biostratigraphy, synecology). Bulletin of Geosciences 81(4), 277–304 (13 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received February 17, 2005; accepted in revised form December 4, 2006; issued December 31, 2006. Vratislav Kordule, Dlouhá 104, 261 01 Příbram III, Czech Republic; [email protected] Representatives of the genera Ptychoparia Hawle & Corda to study the materials in Vokáč’s private collection, the 1847, Ptychoparioides Růžička, 1940, and Mikaparia gen. specimens described and figured by Vokáč (1997) can be nov. are significant components of the trilobite fauna of identified, and their taxonomic position is revised. the Middle Cambrian marine deposits in the Jince and Following the previous stratigraphical models (their Skryje-Týřovice areas. Specimens referred to these taxa summary is given in Havlíček 1998 and Fatka et al.
    [Show full text]
  • Progressive Palaeontology 2020 Abstract Booklet
    Progressive Palaeontology 2020 Abstract Booklet Contents [These have been linked, click a title to skip to that location in the document] Timetable 3 Meet the Committee 4 Accessing the conference materials 5 Careers Panel 6 Quiz 7 Discord 8 Delegate expectations 9 Contact the Committee 9 Abstracts: Full talks 10 Abstracts: Lightning talks 23 Abstracts: Posters 36 2 Timetable Thursday 11th June Content launch 2am PDT / 5am EDT / 10am BST / 5pm HKT Tea break 1 3am PDT / 6am EDT / 11am BST / 6pm HKT (30 mins) Discord Careers Panel 6am PDT / 9am EDT / 2pm BST / 9pm HKT (90 mins) Zoom Presenter Q&A 1 11am PDT / 2pm EDT / 7pm BST / 2am HKT (60 mins) Discord Friday 12th June Presenter Q&A 2 3am PDT / 6am EDT / 11am BST / 6pm HKT (60 mins) Discord Workshop drop-in 6am PDT / 9am EDT / 2pm BST / 9pm HKT (90 mins) Zoom Tea break 2 8am PDT / 11am EDT / 4pm BST / 11pm HKT (30 mins) Discord Quiz 11am PDT / 2pm EDT / 7pm BST / 2am HKT (120 mins) Zoom Saturday 13th June Tea break 3 3am PDT / 6am EDT / 11am BST / 6pm HKT (30 mins) Discord Presenter Q&A 3 6am PDT / 9am EDT / 2pm BST / 9pm HKT (60 mins) Discord Tea break 4 8am PDT / 11am EDT / 4pm BST / 11pm HKT (30 mins) Discord 3 Meet the Committee The ProgPal 2020 Committee are all students at the University of Leeds, in Yorkshire, UK, and have all been involved in the work of Palaeo@Leeds research group. Bethany Allen - Final year PhD Fearless leader and avid baker @bethany_j_allen Owain Fletcher Williams MGeol Geological Sciences (2nd year) Always found in a mosh pit Adam Woodhouse - Final year PhD
    [Show full text]
  • Re-Evaluation of the Stratigraphically Important Olenellid Trilobite Holmia Cf. Mobergi from the Cambrian Series 2, Stage 3
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-04 Re-evaluation of the stratigraphically important olenellid trilobite Holmia cf. mobergi from the Cambrian Series 2, Stage 3 and its implications for the lower Cambrian stratigraphy in the Mjøsa area, Norway Magne Høyberget1, Jan Ove R. Ebbestad2 & Bjørn Funke3 1Rennesveien 14, N–4513 Mandal, Norway. 2Museum of Evolution, Uppsala University, Norbyvägen 16, SE–752 36 Uppsala, Sweden. 3Gjelleråsveien 10, N–1481 Hagan, Norway. E-mail corresponding author (Magne Høyberget): [email protected] The olenellid trilobite Holmia cf. mobergi, known from a single cephalon in the upper lower Cambrian strata from a river section in Flagstadelva, Hamar, has played a significant stratigraphic role in interpreting the lower Cambrian informal Series 2, Stage 3 in the Mjøsa area, Norway, since its discovery in the early 1950s. It was considered one of the oldest trilobite taxa in the lower Cambrian of Scandinavia, but the stratigraphic level and biozonation of the cephalon were problematic and a matter of discussion for decades. Moreover, organic-walled microfossil biostratigraphy questioned the supposed age of the trilobite. New specimens of this taxon collected from the type locality show that the species occurs at a different stratigraphic level than first reported, prompting a new description of the species and a re-evaluation of the taxon’s biostratigraphic significance. Holmia cf. mobergi is compared with new and well-preserved topotype material of Holmia inusitata, a very rare taxon hitherto known from one single outcrop in an autochthonous setting in Norway. Holmia cf.
    [Show full text]
  • Coupled Oceanic Oxygenation and Metazoan Diversification During the Early–Middle Cambrian?
    Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian? Chao Li1*, Chengsheng Jin1, Noah J. Planavsky2, Thomas J. Algeo1,3,4, Meng Cheng1, Xinglian Yang5, Yuanlong Zhao5, and Shucheng Xie1 1State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 2Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA 3State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China 4Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013, USA 5College of Resource and Environment, Guizhou University, Guiyang 550003, China ABSTRACT We conducted a high-resolution Fe-trace element geochemical study The early–middle Cambrian (Fortunian to Age 4) is characterized of lower-middle Cambrian (Fortunian to Age 4) sections of the South by a significant increase in metazoan diversification. Furthermore, this China Craton representing intermediate- to deep-marine settings, includ- interval is marked by a prominent environmental and ecological expan- ing outer shelf (Jiuqunao-Wangjiaping, JW; note: Jiuqunao data were sion of arthropod- and echinoderm-rich biotas. Recent redox work has compiled from Och et al. [2016]), slope (Wuhe-Geyi, WG), and basinal suggested that this shift occurred during stable or decreasing marine (Zhalagou, ZLG) sections of the Yangtze Block (Fig. DR1 in the GSA oxygen levels, suggesting that these paleobiological and paleoecological Data Repository1). Linking our redox proxy analysis with detailed pale- transformations were decoupled from a redox control. We tested this ontological data from the lower-middle Cambrian of South China affords idea by conducting new paleoredox analyses on Age 2–Age 4 Cambrian the unique opportunity to investigate the association, if any, between outer shelf (Jiuqunao-Wangjiaping), slope (Wuhe-Geyi), and basinal ocean-redox evolution and metazoan diversification during the early to (Zhalagou) sections of the South China Craton.
    [Show full text]