Hybrid Fitness Across Time and Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Fitness Across Time and Habitats Review Hybrid fitness across time and habitats Michael L. Arnold1 and Noland H. Martin2 1 Department of Genetics, University of Georgia, Athens, GA 30602, USA 2 Department of Biology, Texas State University–San Marcos, San Marcos, TX 78666, USA There has been considerable debate about the role of vation has been used to argue that genetic exchange via hybrids in the evolutionary process. One question has horizontal gene transfer (involving prokaryotic lineages) or involved the relative fitness of hybrid versus non-hybrid viral recombination can result in similar outcomes to those genotypes. For some, the assumption of lower hybrid obtained through sexual reproduction (i.e. via natural fitness continues to be integral to their concept of hybridization [7]). Specifically, novel evolutionary lineages species and speciation. In contrast, numerous workers might arise that possess elevated fitness, relative to the have suggested that hybrid genotypes might demon- parental lineages, in novel environments. It would there- strate higher relative fitness under various environmen- fore seem important to broaden the discussion to include tal settings. Of particular importance in deciding viral and prokaryotic lineages. Second, in addition to the between these opposing hypotheses are long-term consideration of only eukaryotes, when the previous review analyses coupling ecological and genetic information. was published there was a lack of information that would Although currently rare, such analyses have provided a allow a fine-scale genotypic description of different test of the fitness of hybrid genotypes across gener- hybrids. The technical revolution of the last 15 years ations and habitats and their role in adaptation and has alleviated this deficiency by making possible the sim- speciation. Here we discuss examples of these analyses ultaneous analysis of numerous loci. Finally, fitness esti- applied to viruses, prokaryotes, plants and Darwin’s mates were generally based upon only one component (e.g. Finches. survivorship), and these estimates were almost never derived from analyses across generations or habitats Hybrid fitness as a testable hypothesis (but see [8]). In their 1995 Trends in Ecology and Evolution review, In this article, we review recent examples from viral, Arnold and Hodges [1] argued that plant and animal prokaryotic and eukaryotic groups that have provided infor- hybrids could show reduced, equivalent or higher fitness mation on the relative fitness of hybrid genotypes. We will than their parents depending upon both their genotypic focus specifically on examples that highlight the fundamen- makeup and the environment in which they occurred. tally important role played by long-term investigations of These authors concluded that genotype by environment hybrid fitness that span multiple generations and habitats, interactions would affect the fitness of hybrids just as they and which have a detailed genetic component. Together do nonhybrids. Though not a new idea [e.g. see 2–4], the these examples provide a definition of the genetic architec- suggestion that hybrids could possess higher fitness than ture of hybrid fitness and allow a test of models that predict ‘pure species’ genotypes ran counter to the prevailing uniformly low or, alternatively, variable hybrid fitness. conceptual framework. This framework rested firmly on This, in turn, provides the opportunity to highlight the the related hypotheses that speciation must occur under potential role of genetic exchange in adaptive evolution. allopatric conditions, and that lineages were not ‘good In particular, the findings discussed provide tests for adap- biological species’ if they exchanged genes with other tive trait introgression and adaptive lineage formation. species (see [5] for a review). These assumptions resulted in the conclusion that hybridization would almost never Fitness of recombinant viruses and bacteria occur during speciation (because species had to arise in Because of the implications for human health, pathogenic allopatry), but when it did rarely occur, genetic exchange viral and bacterial lineages are some of the best-studied would only lead to hybrids that were unfit relative to their organisms in terms of their evolutionary origins and geno- progenitors. mic constitutions. The evolution of some of these disease- The review by Arnold and Hodges presented a challenge causing lineages has been traced across time, across differ- to the prevailing paradigm by providing examples of hybrid ent portions of the human population and/or in different genotypes that did indeed run the gamut from less to more niches within the bodies of humans. These analyses have fit relative to their non-hybrid parents [1]. However, there not only provided tests for recombination between diver- were important deficiencies in the types of data considered gent lineages during the evolution of pathogens, but have in this review. First, Arnold and Hodges [1] only considered also highlighted the role such genetic exchange events eukaryotic groups, whereas it has been recognized for might have played in creating ‘hybrid’ organisms with decades that horizontal transfer between prokaryotic increased fitness. lineages can result in adaptive evolution (e.g. the acqui- sition of antibiotic resistance; [6]). Recently, this obser- Influenza By comparing yearly isolates of avian influenza viruses Corresponding author: Arnold, M.L. ([email protected]). from 1999 through 2004, Li et al. [9] were drawn to the 530 0169-5347/$ – see front matter ß 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tree.2010.06.005 Trends in Ecology and Evolution 25 (2010) 530–536 Review Trends in Ecology and Evolution Vol.25 No.9 conclusion that the ‘H5N1’ viral lineage was endemic in exchange. Like influenza, this species evolves at an extre- Asian poultry populations and that it presented a threat to mely high rate, with a significant proportion of its adaptive human populations through reassortment with human- change due to the exchange of genes between divergent associated H5N1 viruses. Indeed, such viral reassortants lineages. Also like the influenza studies discussed above, caused the influenza pandemics of 1918, 1957 and 1968; the analysis of samples collected across time and ecological pandemics that claimed hundreds of millions of lives [10]. setting provided the information necessary to identify Specifically, the 1918, 1957 and 1968 influenza strains better-adapted ‘hybrids.’ Ranging from the 1980’s to the originated from recombination events giving rise to gen- 2000’s, and from healthy adults to children suffering from a omes consisting of genes from viruses found in humans, variety of pathologies, the temporal and niche breadth other mammals and birds [10]. The unique hybrid combi- encompassed in this study was extensive [12]. By sequen- nations of genes gave rise to viruses with increased patho- cing the genomes of these diverse isolates, it was concluded genicity that reflected an increased fitness relative to that horizontal transfers of various genes allowed the previous lineages. diversification of metabolic functions associated with niche Recently, the origin of a novel recombinant influenza adaptation in these E. coli strains [12]. lineage resulted in extensive, worldwide efforts by various Ogura et al. [13], studying a series of pathogenic, enter- governments and health agencies to reduce the possibility ohemorrhagic E. coli isolates, drew very similar con- of another pandemic. The so-called ‘swine-flu’ of 2009–2010 clusions to those of Touchon et al. [12] with regard to was, like all other influenza variants that infect humans, a the importance of gene acquisition to the adaptation of complex reassortant viral lineage (Figure 1) [11]. This bacterial species. Specifically, although the four enterohe- particular ‘H1N1’ virus is comprised of genes derived from morrhagic strains analyzed were not closely related phy- avian-, swine- and human-associated viral populations. By logenetically, they were found to share the same toxin examining samples across time and space, it was possible producing genes along with other genetic elements import- for Smith et al. [11] to identify the sources of all eight viral ant for their particular pathogenic niche [13]. The obser- genes (Figure 1) and to date the various divergence events vation that much of the remainder of the genomes of these of the genes. In particular, they concluded that: (i) PB2 and pathogens reflected divergent evolutionary histories, PA were of avian origin; (ii) PB1 came from a human virus; whereas the toxin genes indicated a recent common ances- (iii) HA, NP and NS were from one clade of swine influenza try, supported the hypothesis of the horizontal acquisition viruses; and (iv) NA and M originated from avian-like of the toxin loci. viruses found in Eurasian swine populations [11]. The mean divergence dates of these various components of Staphylococcus aureus the 2009 virus from other similar gene sequences were Horizontal gene transfer among bacterial species is well 1992 (N), 1997 (M) and 1998 (PB1, PB2, PA, H, NP, NS) established as a mechanism by which adaptations to new [11]. The divergence times were calculated using known niches are transferred or established [6]. As discussed dates of origin for some 20th Century viral lineages as above for E. coli, this is true for both commensal and parameters for a Bayesian analysis [11]. Thus, divergence pathogenic strains. Often, host shifts associated with and genetic exchange among viral lineages produced yet
Recommended publications
  • Hybrid Vigor Between Native and Introduced Salamanders Raises New Challenges for Conservation
    Hybrid vigor between native and introduced salamanders raises new challenges for conservation Benjamin M. Fitzpatrick*† and H. Bradley Shaffer‡ *Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; and ‡Evolution and Ecology, University of California, Davis, CA 95616 Edited by John C. Avise, University of California, Irvine, CA, and approved August 10, 2007 (received for review May 22, 2007) Hybridization between differentiated lineages can have many populations by alleviating inbreeding depression (13, 14) or different consequences depending on fitness variation among facilitating adaptive evolution in modified or degraded habitats hybrid offspring. When introduced organisms hybridize with na- (15–17). tives, the ensuing evolutionary dynamics may substantially com- The long-term consequences of hybridization are strongly plicate conservation decisions. Understanding the fitness conse- influenced by the genetic basis of hybrid fitness. In the case of quences of hybridization is an important first step in predicting its hybrid vigor, genetic models fall into two classes: heterozygote evolutionary outcome and conservation impact. Here, we mea- advantage and recombinant hybrid vigor (18–20). Heterozygote sured natural selection caused by differential viability of hybrid advantage (overdominance) refers to beneficial interactions larvae in wild populations where native California Tiger between heterospecific alleles of a single locus. Recombinant Salamanders (Ambystoma californiense) and introduced Barred hybrid vigor depends on multilocus genotypes and may be caused Tiger Salamanders (Ambystoma tigrinum mavortium) have been by epistasis (beneficial interactions between heterospecific al- hybridizing for 50–60 years. We found strong evidence of hybrid leles from different loci) or by complementary effects of inde- vigor; mixed-ancestry genotypes had higher survival rates than pendent advantageous alleles from each parental population (19, genotypes containing mostly native or mostly introduced alleles.
    [Show full text]
  • Fitness Maximization Jonathan Birch
    Fitness maximization Jonathan Birch To appear in The Routledge Handbook of Evolution & Philosophy, ed. R. Joyce. Adaptationist approaches in evolutionary ecology often take it for granted that natural selection maximizes fitness. Consider, for example, the following quotations from standard textbooks: The majority of analyses of life history evolution considered in this book are predicated on two assumptions: (1) natural selection maximizes some measure of fitness, and (2) there exist trade- offs that limit the set of possible [character] combinations. (Roff 1992: 393) The second assumption critical to behavioral ecology is that the behavior studied is adaptive, that is, that natural selection maximizes fitness within the constraints that may be acting on the animal. (Dodson et al. 1998: 204) Individuals should be designed by natural selection to maximize their fitness. This idea can be used as a basis to formulate optimality models [...]. (Davies et al. 2012: 81) Yet there is a long history of scepticism about this idea in population genetics. As A. W. F. Edwards puts it: [A] naive description of evolution [by natural selection] as a process that tends to increase fitness is misleading in general, and hill-climbing metaphors are too crude to encompass the complexities of Mendelian segregation and other biological phenomena. (Edwards 2007: 353) Is there any way to reconcile the adaptationist’s image of natural selection as an engine of optimality with the more complex image of its dynamics we get from population genetics? This has long been an important strand in the controversy surrounding adaptationism.1 Yet debate here has been hampered by a tendency to conflate various different ways of thinking about maximization and what it entails.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • 1 "Principles of Phylogenetics: Ecology
    "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2016 University of California, Berkeley D.D. Ackerly March 7, 2016. Phylogenetics and Adaptation What is to be explained? • What is the evolutionary history of trait x that we see in a lineage (homology) or multiple lineages (homoplasy) - adaptations as states • Is natural selection the primary evolutionary process leading to the ‘fit’ of organisms to their environment? • Why are some traits more prevalent (occur in more species): number of origins vs. trait- dependent diversification rates (speciation – extinction) Some high points in the history of the adaptation debate: 1950s • Modern Synthesis of Genetics (Dobzhansky), Paleontology (Simpson) and Systematics (Mayr, Grant) 1960s • Rise of evolutionary ecology – synthesis of ecology with strong adaptationism via optimality theory, with little to no history; leads to Sociobiology in the 70s • Appearance of cladistics (Hennig) 1972 • Eldredge and Gould – punctuated equilibrium – argue that Modern Synthesis can’t explain pervasive observation of stasis in fossil record; Gould focuses on development and constraint as explanations, Eldredge more on ecology and importance of migration to minimize selective pressure 1979 • Gould and Lewontin – Spandrels – general critique of adaptationist program and call for rigorous hypothesis testing of alternatives for the ‘fit’ between organism and environment 1980’s • Debate on whether macroevolution can be explained by microevolutionary processes • Comparative methods
    [Show full text]
  • Hybrid Fitness, Adaptation and Evolutionary Diversification: Lessons
    Heredity (2012) 108, 159–166 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy REVIEW Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises ML Arnold, ES Ballerini and AN Brothers Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin’s publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotypeÂenvironment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system’ for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.
    [Show full text]
  • Phylogenetics: Recovering Evolutionary History COMP 571 Luay Nakhleh, Rice University
    1 Phylogenetics: Recovering Evolutionary History COMP 571 Luay Nakhleh, Rice University 2 The Structure and Interpretation of Phylogenetic Trees unrooted, binary species tree rooted, binary species tree speciation (direction of descent) Flow of time ๏ six extant taxa or operational taxonomic units (OTUs) 3 The Structure and Interpretation of Phylogenetic Trees Phylogenetics-RecoveringEvolutionaryHistory - March 3, 2017 4 The Structure and Interpretation of Phylogenetic Trees In a binary tree on n taxa, how may nodes, branches, internal nodes and internal branches are there? How many unrooted binary trees on n taxa are there? How many rooted binary trees on n taxa are there? ๏ six extant taxa or operational taxonomic units (OTUs) 5 The Structure and Interpretation of Phylogenetic Trees polytomy Non-binary Multifuracting Partially resolved Polytomous ๏ six extant taxa or operational taxonomic units (OTUs) 6 The Structure and Interpretation of Phylogenetic Trees A polytomy in a tree can be resolved (not necessarily fully) in many ways, thus producing trees with higher resolution (including binary trees) A binary tree can be turned into a partially resolved tree by contracting edges In how many ways can a polytomy of degree d be resolved? Compatibility between two trees guarantees that one can back and forth between the two trees by means of node refinement and edge contraction Phylogenetics-RecoveringEvolutionaryHistory - March 3, 2017 7 The Structure and Interpretation of Phylogenetic Trees branch lengths have Additive no meaning tree Additive tree ultrametric rooted at an tree outgroup (molecular clock) 8 The Structure and Interpretation of Phylogenetic Trees bipartition (split) AB|CDEF clade cluster 11 clades (4 nontrivial) 9 bipartitions (3 nontrivial) How many nontrivial clades are there in a binary tree on n taxa? How many nontrivial bipartitions are there in a binary tree on n taxa? How many possible nontrivial clusters of n taxa are there? 9 The Structure and Interpretation of Phylogenetic Trees Species vs.
    [Show full text]
  • THE MUTATION LOAD in SMALL POPULATIONS HE Mutation Load
    THE MUTATION LOAD IN SMALL POPULATIONS MOT00 KIMURAZ, TAKE0 MARUYAMA, and JAMES F. CROW University of Wisconsin, Madison, Wisconsin Received April 29, 1963 HE mutation load has been defined as the proportion by which the population fitness, or any other attribute of interest, is altered by recurrent mutation (MORTON,CROW, and MULLER1956; CROW1958). HALDANE(1937) and MULLER(1950) had earlier shown that this load is largely independent of the harmfulness of the mutant. As long as the selective disadvantage of the mutant is of a larger order of magnitude than the mutation rate and the heterozygote fitness is not out of the range of that of the homozygotes, the load (measured in terms of fitness) is equal to the mutation rate for a recessive mutant and approxi- mately twice the mutation rate for a dominant mutant. A detailed calculation of the value for various degrees of dominance has been given by KIMURA(1 961 ) . In all these studies it has been assumed that the population is so large and the conditions so stable that the frequency of a mutant gene is exactly determined by the mutation rates, dominance, and selection coefficients, with no random fluctuation. However, actual populations are finite and also there are departures from equilibrium conditions because of variations in the various determining factors. Our purpose is to investigate the effect of random drift caused by a finite population number. It would be expected that the load would increase in a small population because the gene frequencies would drift away from the equilibrium values. This was confirmed by our mathematical investigations, but two somewhat unexpected results emerged.
    [Show full text]
  • Genetic Erosion of Agrobiodiversity in India and Intellectual Property Rights: Interplay and Some Key Issues
    Genetic Erosion of Agrobiodiversity in India and Intellectual Property Rights: Interplay and some Key Issues Sabuj Kumar Chaudhuri [SRF (UGC) NET], Department of Library and Information Science, Jadavpur University, Kolkata-32 [West Bengal], India. email: [email protected] Abstract Agrobiodiversity is the backbone of a nation’s food security and the basis of economic development as a whole. Over the years this diversity in India is under pressure due to the massive commercialisation of agriculture leading to the almost extinction of traditional farming systems. The top-down system of agricultural research, where farmers are seen merely as recipients of research rather than as participants in it, has contributed to an increased dependence on a relatively few plant varieties. This trend and the increasing industrialization of agriculture are key factors in what can only be called "genetic erosion". The term refers to both the loss of species and the reduction of variety. Behind this commercialization there lies the interest of the breeders for obtaining intellectual property rights. It has a very complicated relationship with this diversity. The paper highlights this relationship and provides some suggestions in order to rectify the current negative phenomenon. India’s agrobiodiversity is most significant one in the world. This diversity is the result of thousand of years of farmer’s selection, experimentation (even cross breeding) and propagation of desirable traits of desirable species in innumerable ways for their subsistence and cultural purposes. Over the years this unparallel diversity of various crops of India has been eroded. Replacement of landraces (a crop cultivar that evolved with and has been genetically improved by traditional agriculturists, but has not been influenced by modern breeding practices) or TVs (traditional varieties) by MVs (modern varieties) or HYVs (High Yielding Varieties) is one of the most important reasons.
    [Show full text]
  • Hybrid Striped Bass: Biology and Life History
    SRAC Publication No. 300 II Southern Regional Aquaculture Center July, 1989 Hybrid Striped Bass Biology and Life History Ronald G. Hodson* Hybrid striped bass generally refers The genus Morone belongs to the States where striped bass do not to a cross between striped bass family Percichthyidae of the order reproduce. (Morone saxatilis) and white bass Perciformes. Four species of Morone (M. chrysops). This cross, sometimes are found in the United States. Two The species is anadromous and con- called the “original cross,” was first species, white bass and yellow bass sidered an excellent food and game produced in South Carolina in the (M. mississippiensis) are found in fish sometimes reaching over 70 mid-1960s using eggs from striped freshwater. Striped bass are pounds. Commercial harvest of bass and sperm from white bass. The anadromous, but landlocked popula- striped bass has declined drastically accepted common name of this cross tions can be found in some fresh- since 1973 when a harvest of nearly is the Palmetto Bass. More recently water reservoirs. White perch (M. 15 million pounds was recorded. the “reciprocal” cross using white americana) is a brackish water Now, less than a million pounds per bass females and striped bass males species but also does well in fresh- year are harvested commercially, was also produced. The accepted water lakes and reservoirs. Three and commercial and sportfishing for common name of this cross is the other marine species belong to the striped bass is prohibited or strictly Sunshine Bass. Hybrid striped bass family Percichthyidae. regulated. have gained widespread acceptance as a sportfish, particularly in the Distribution White bass was originally distributed large reservoirs of the southeast throughout most of the Mississippi U.S., where it was stocked because Striped bass was originally found on basin and along the Gulf Coast and of the large forage base provided by the Atlantic Coast from New has since been widely introduced gizzard shad and threadfin shad.
    [Show full text]
  • Practice Problems in Population Genetics
    PRACTICE PROBLEMS IN POPULATION GENETICS 1. In a study of the Hopi, a Native American tribe of central Arizona, Woolf and Dukepoo (1959) found 26 albino individuals in a total population of 6000. This form of albinism is controlled by a single gene with two alleles: albinism is recessive to normal skin coloration. a) Why can’t you calculate the allele frequencies from this information alone? Because you can’t tell who might be a carrier just by looking. b) Calculate the expected allele frequencies and genotype frequencies if the population were in Hardy-Weinberg equilibrium. How many of the Hopi are estimated to be carriers of the recessive albino allele? If we assume that the population’s in H-W equilibrium, then the frequency of individuals with the albino genotype is the square of the frequency of the albino allele. In other words, freq (aa) = q2. Freq (aa) = 26/6000 = 0.0043333, and the square root of that is 0.0658, which is q, the frequency of the albino allele. The frequency of the normal allele is p, equal to 1 - q, so p = 0.934. We’d then predict that the frequency of Hopi who are homozygous normal (genotype AA) is p2, which is 0.873. In other words, 87.3% of the population, or an estimated 5238 people, should be homozygous normal. The frequency of carriers we’d predict to be 2pq, which is 0.123. So 12.3%, or 737 people, should be carriers of albinism, if the population is in H-W. 2. A wildflower native to California, the dwarf lupin (Lupinus nanus) normally bears blue flowers.
    [Show full text]
  • Strong Natural Selection on Juveniles Maintains a Narrow Adult Hybrid Zone in a Broadcast Spawner
    vol. 184, no. 6 the american naturalist december 2014 Strong Natural Selection on Juveniles Maintains a Narrow Adult Hybrid Zone in a Broadcast Spawner Carlos Prada* and Michael E. Hellberg Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 Submitted April 28, 2014; Accepted July 8, 2014; Electronically published October 17, 2014 Online enhancement: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.983b0. year, cumulative effects over many years before reproduc- abstract: Natural selection can maintain and help form species tion begins can generate a strong ecological filter against across different habitats, even when dispersal is high. Selection against inferior migrants (immigrant inviability) acts when locally adapted immigrants. Immigrant inviability can act across environ- populations suffer high mortality on dispersal to unsuitable habitats. mental gradients, generating clines or hybrid zones. If re- Habitat-specific populations undergoing divergent selection via im- productive isolation occurs as a by-product of immigrant migrant inviability should thus show (1) a change in the ratio of inviability, new species can arise by natural selection (Dar- adapted to nonadapted individuals among age/size classes and (2) a win 1859; Nosil et al. 2005; Rundle and Nosil 2005; Schlu- cline (defined by the environmental gradient) as selection counter- ter 2009), often occurring across environmental gradients, balances migration. Here we examine the frequencies of two depth- segregated lineages in juveniles and adults of a Caribbean octocoral, where they generate hybrid zones (Endler 1977). Eunicea flexuosa. Distributions of the two lineages in both shallow The segregation of adults of different species into dif- and deep environments were more distinct when inferred from adults ferent habitats is pronounced in many long-lived, sessile than juveniles.
    [Show full text]
  • Adaptation for Fitness Intense Crossfit Workouts Improve Your Fitness—But How? Dr
    Adaptation for Fitness Intense CrossFit workouts improve your fitness—but how? Dr. Lon Kilgore explains how doing Grace can cause adaptive changes at the cellular level and result in improved performance. By Dr. Lon Kilgore Midwestern State University January 2010 Courtesy of the Faculty of Kinesiology Management, University of Manitoba and Recreation Courtesy of the Faculty Any study of exercise physiology must begin with an understanding of what it is we wish to know. Exercise physiology is an applied science, meaning it is intended to solve a problem. The problem needing solving is that we—you, me and our trainees—are not as physically fit as we could be. 1 of 6 Copyright © 2010 CrossFit, Inc. All Rights Reserved. Subscription info at http://journal.crossfit.com CrossFit is a registered trademark ‰ of CrossFit, Inc. Feedback to [email protected] Visit CrossFit.com Adaptation ... (continued) The solution that needs to be provided by our study Courtesy of the University of Montreal should be a defined means of improving fitness levels. The discipline of exercise physiology should provide us with an understanding of how the body adapts to exercise to make us more fit. We can begin that quest with a look at the work of one individual, Hans Selye, MD. Who Is Hans Selye and Why Do I Care? Adaptation is not a new concept. Friedrich Nietzsche’s quote, “That which does not kill us makes us stronger,” is a famous adage used in reference to the many challenges we face in life. The fact that it’s from the 1800s means we have known for hundreds of years that the human body, when presented with a sub-lethal physical, psycho- logical or chemical stress, can adapt to the source of stress, allowing the body to tolerate incrementally larger similar stresses.
    [Show full text]