Representation of Linear Groups Copy.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Representation of Linear Groups Copy.Pdf Rolf Berndt Representations of Linear Groups Rolf Berndt Representations of Linear Groups An Introduction Based on Examples from Physics and Number Theory Bibliografische information published by Die Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutschen Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.d-nb.de>. Prof. Dr. Rolf Berndt Department of Mathematics University of Hamburg Bundesstraße 55 D-20146 Hamburg Germany [email protected] Mathematics Subject Classification 20G05, 22E45, 20C25, 20C35, 11F70 First edition, July 2007 All rights reserved © Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden 2007 Editorial Office: Ulrike Schmickler-Hirzebruch | Susanne Jahnel Vieweg is a company in the specialist publishing group Springer Science+Business Media. www.vieweg.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanical, photocopying or otherwise without prior permission of the copyright holder. Cover design: Ulrike Weigel, www.CorporateDesignGroup.de Printing and binding: MercedesDruck, Berlin Printed on acid-free paper Printed in Germany ISBN 978-3-8348-0319-1 Preface There are already many good books on representation theory for all kinds of groups. Two of the best (in this author’s opinion) are the one by A.W. Knapp: “Representation Theory for Semisimple Groups. An Overview based on Examples” [Kn1] and by G.W. Mackey: “Induced Representations in Physics, Probability and Number Theory” [Ma1]. The title of this text is a mixture of both these titles, and our text is meant as a very elementary introduction to these and, moreover, to the whole topic of group represen- tations, even infinite-dimensional ones. As is evident from the work of Bargmann [Ba], Weyl [Wey] and Wigner [Wi], group representations are fundamental for the theory of atomic spectra and elementary physics. But representation theory has proven to be an inavoidable ingredient in other fields as well, particularly in number theory, as in the theory of theta functions, automorphic forms, Galois representations and, finally, the Langlands program. Hence, we present an approach as elementary as possible, having in particular these applications in mind. This book is written as a summary of several courses given in Hamburg for students of Mathematics and Physics from the fifth semester on. Thus, some knowledge of linear and multilinear algebra, calculus and analysis in several variables is taken for granted. Assuming these prerequisites, several groups of particular interest for the applications in physics and number theory are presented and discussed, including the symmetric group Sn as the leading example for a finite group, the groups SO(2), SO(3), SU(2), and SU(3) as examples of compact groups, the Heisenberg groups and SL(2, R), SL(2, C), resp. the Lorentz group SO(3, 1) as examples for noncompact groups, and the Euclidean groups E(n) = SO(n) Rn and the Poincar´egroup P = SO(3, 1)+ R4 as examples for semidi- rect products. This text would not have been possible without the assistance of my students and colleagues; it is a pleasure for me to thank them all. In particular, D. Bahns, S. B¨ocherer, O. v. Grudzinski, M. Hohmann, H. Knorr, J. Michaliˇcek,H. M¨uller,B. Richter, R. Schmidt, and Chr. Schweigert helped in many ways, from giving valuable hints to indicating several mistakes. Part of the material was treated in a joint seminar with Peter Slodowy. I hope that a little bit of his way of thinking is still felt in this text and that it is apt to participate in keeping alive his memory. Finally, I am grateful to U. Schmickler-Hirzebruch and S. Jahnel from the Vieweg Verlag for encouragement and good advice. Contents Introduction ix 0 Prologue: Some Groups and their Actions 1 0.1 Several Matrix Groups ............................. 1 0.2 Group Actions ................................. 3 0.3 The Symmetric Group ............................. 5 1 Basic Algebraic Concepts 7 1.1 Linear Representations ............................. 7 1.2 Equivalent Representations .......................... 9 1.3 First Examples ................................. 10 1.4 Basic Construction Principles ......................... 14 1.4.1 Sum of Representations ........................ 14 1.4.2 Tensor Product of Representations .................. 14 1.4.3 The Contragredient Representation .................. 15 1.4.4 The Factor Representation ...................... 16 1.5 Decompositions ................................. 16 1.6 Characters .................................... 21 2 Representations of Finite Groups 23 2.1 Characters as Orthonormal Systems ..................... 23 2.2 The Regular Representation .......................... 27 2.3 Characters as Orthonormal Bases ...................... 28 3 Continuous Representations 31 3.1 Topological and Linear Groups ........................ 31 3.2 The Continuity Condition ........................... 33 3.3 Invariant Measures ............................... 38 3.4 Examples .................................... 40 4 Representations of Compact Groups 43 4.1 Basic Facts ................................... 43 4.2 The Example G = SU(2) ............................ 48 4.3 The Example G = SO(3) ........................... 52 5 Representations of Abelian Groups 59 5.1 Characters and the Pontrjagin Dual ..................... 59 5.2 Continuous Decompositions .......................... 60 viii CONTENTS 6 The Infinitesimal Method 63 6.1 Lie Algebras and their Representations .................... 63 6.2 The Lie Algebra of a Linear Group ...................... 67 6.3 Derived Representations ............................ 70 6.4 Unitarily Integrable Representations of sl(2, R)............... 73 6.5 The Examples su(2) and heis(R) ....................... 82 6.6 Some Structure Theory ............................ 84 6.6.1 Specifications of Groups and Lie Algebras .............. 85 6.6.2 Structure Theory for Complex Semisimple Lie Algebras ...... 89 6.6.3 Structure Theory for Compact Real Lie Algebras .......... 93 6.6.4 Structure Theory for Noncompact Real Lie Algebras ........ 95 6.6.5 Representations of Highest Weight .................. 97 6.7 The Example su(3)...............................104 7 Induced Representations 117 7.1 The Principle of Induction . ........................117 7.1.1 Preliminary Approach .........................118 7.1.2 Mackey’s Approach ...........................120 7.1.3 Final Approach .............................125 7.1.4 Some Questions and two Easy Examples ...............126 7.2 Unitary Representations of SL(2, R) .....................130 7.3 Unitary Representations of SL(2,C) and of the Lorentz Group .......143 7.4 Unitary Representations of Semidirect Products ...............147 7.5 Unitary Representations of the Poincar´eGroup ...............154 7.6 Induced Representations and Vector Bundles ................161 8 Geometric Quantization and the Orbit Method 173 8.1 The Hamiltonian Formalism and its Quantization ..............173 8.2 Coadjoint Orbits and Representations ....................178 8.2.1 Prequantization .............................178 8.2.2 Example: Construction of Line Bundles over M = P1(C) .....181 8.2.3 Quantization ..............................184 8.2.4 Coadjoint Orbits and Hamiltonian G-spaces .............186 8.2.5 Construction of an Irreducible Unitary Representation by an Orbit 196 8.3 The Examples SU(2) and SL(2, R) ......................197 8.4 The Example Heis(R) .............................202 8.5 Some Hints Concerning the Jacobi Group ..................209 9 Epilogue: Outlook to Number Theory 215 9.1 Theta Functions and the Heisenberg Group .................216 9.2 Modular Forms and SL(2,R) .........................221 9.3 Theta Functions and the Jacobi Group ....................236 9.4 Hecke’s Theory of L−Functions Associated to Modular Forms .......239 9.5 Elements of Algebraic Number Theory and Hecke L-Functions ......246 9.6 Arithmetic L-Functions ............................250 9.7 Summary and Final Reflections ........................256 Bibliography 261 Index 266 Introduction In this book, the groups enumerated in the Preface are introduced and treated as matrix groups to avoid as much as possible the machinery of manifolds, Lie groups and bundles (though some of it soon creeps in through the backdoor as the theory is further devel- oped). Parallel to information about the structure of our groups we shall introduce and develop elements of the representation theory necessary to classify the unitary represen- tations and to construct concrete models for these representations. As the main tool for the classification we use the infinitesimal method linearizing the representations of a group by studying those of the Lie algebra of the group. And as the main tools for the construction of models for the representations we use – tensor products of the natural representation, – representations given by smooth functions (in particular polynomials) living on a space provided with an action of the group, and – the machinery of induced representations. Moreover, because of the growing importance in physics and the success in deriving branching relations, the procedure of geometric quantization and the orbit method, de- veloped and propagated by Kirillov, Kostant, Duflo and many others shall be explained via its application to some of the examples above. Besides the sources already mentioned, the author was largely influenced by the now classical book of Kirillov:
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Classification of Finite Abelian Groups
    Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k.
    [Show full text]
  • Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
    Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation.
    [Show full text]
  • The Unitary Representations of the Poincaré Group in Any Spacetime
    The unitary representations of the Poincar´e group in any spacetime dimension Xavier Bekaert a and Nicolas Boulanger b a Institut Denis Poisson, Unit´emixte de Recherche 7013, Universit´ede Tours, Universit´ed’Orl´eans, CNRS, Parc de Grandmont, 37200 Tours (France) [email protected] b Service de Physique de l’Univers, Champs et Gravitation Universit´ede Mons – UMONS, Place du Parc 20, 7000 Mons (Belgium) [email protected] An extensive group-theoretical treatment of linear relativistic field equa- tions on Minkowski spacetime of arbitrary dimension D > 2 is presented in these lecture notes. To start with, the one-to-one correspondence be- tween linear relativistic field equations and unitary representations of the isometry group is reviewed. In turn, the method of induced representa- tions reduces the problem of classifying the representations of the Poincar´e group ISO(D 1, 1) to the classification of the representations of the sta- − bility subgroups only. Therefore, an exhaustive treatment of the two most important classes of unitary irreducible representations, corresponding to massive and massless particles (the latter class decomposing in turn into the “helicity” and the “infinite-spin” representations) may be performed via the well-known representation theory of the orthogonal groups O(n) (with D 4 <n<D ). Finally, covariant field equations are given for each − unitary irreducible representation of the Poincar´egroup with non-negative arXiv:hep-th/0611263v2 13 Jun 2021 mass-squared. Tachyonic representations are also examined. All these steps are covered in many details and with examples. The present notes also include a self-contained review of the representation theory of the general linear and (in)homogeneous orthogonal groups in terms of Young diagrams.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Lie Algebras and Representation Theory Andreasˇcap
    Lie Algebras and Representation Theory Fall Term 2016/17 Andreas Capˇ Institut fur¨ Mathematik, Universitat¨ Wien, Nordbergstr. 15, 1090 Wien E-mail address: [email protected] Contents Preface v Chapter 1. Background 1 Group actions and group representations 1 Passing to the Lie algebra 5 A primer on the Lie group { Lie algebra correspondence 8 Chapter 2. General theory of Lie algebras 13 Basic classes of Lie algebras 13 Representations and the Killing Form 21 Some basic results on semisimple Lie algebras 29 Chapter 3. Structure theory of complex semisimple Lie algebras 35 Cartan subalgebras 35 The root system of a complex semisimple Lie algebra 40 The classification of root systems and complex simple Lie algebras 54 Chapter 4. Representation theory of complex semisimple Lie algebras 59 The theorem of the highest weight 59 Some multilinear algebra 63 Existence of irreducible representations 67 The universal enveloping algebra and Verma modules 72 Chapter 5. Tools for dealing with finite dimensional representations 79 Decomposing representations 79 Formulae for multiplicities, characters, and dimensions 83 Young symmetrizers and Weyl's construction 88 Bibliography 93 Index 95 iii Preface The aim of this course is to develop the basic general theory of Lie algebras to give a first insight into the basics of the structure theory and representation theory of semisimple Lie algebras. A problem one meets right in the beginning of such a course is to motivate the notion of a Lie algebra and to indicate the importance of representation theory. The simplest possible approach would be to require that students have the necessary background from differential geometry, present the correspondence between Lie groups and Lie algebras, and then move to the study of Lie algebras, which are easier to understand than the Lie groups themselves.
    [Show full text]
  • Representation Theory with a Perspective from Category Theory
    Representation Theory with a Perspective from Category Theory Joshua Wong Mentor: Saad Slaoui 1 Contents 1 Introduction3 2 Representations of Finite Groups4 2.1 Basic Definitions.................................4 2.2 Character Theory.................................7 3 Frobenius Reciprocity8 4 A View from Category Theory 10 4.1 A Note on Tensor Products........................... 10 4.2 Adjunction.................................... 10 4.3 Restriction and extension of scalars....................... 12 5 Acknowledgements 14 2 1 Introduction Oftentimes, it is better to understand an algebraic structure by representing its elements as maps on another space. For example, Cayley's Theorem tells us that every finite group is isomorphic to a subgroup of some symmetric group. In particular, representing groups as linear maps on some vector space allows us to translate group theory problems to linear algebra problems. In this paper, we will go over some introductory representation theory, which will allow us to reach an interesting result known as Frobenius Reciprocity. Afterwards, we will examine Frobenius Reciprocity from the perspective of category theory. 3 2 Representations of Finite Groups 2.1 Basic Definitions Definition 2.1.1 (Representation). A representation of a group G on a finite-dimensional vector space is a homomorphism φ : G ! GL(V ) where GL(V ) is the group of invertible linear endomorphisms on V . The degree of the representation is defined to be the dimension of the underlying vector space. Note that some people refer to V as the representation of G if it is clear what the underlying homomorphism is. Furthermore, if it is clear what the representation is from context, we will use g instead of φ(g).
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • Structure Theory of Finite Conformal Algebras Alessandro D'andrea JUN
    Structure theory of finite conformal algebras by Alessandro D'Andrea Laurea in Matematica, Universith degli Studi di Pisa (1994) Diploma, Scuola Normale Superiore (1994) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1998 @Alessandro D'Andrea, 1998. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor .. ................................ Department of Mathematics May 6, 1998 Certified by ............................ Victor G. Kac Professor of Mathematics rc7rc~ ~ Thesis Supervisor Accepted by. Richard B. Melrose ,V,ASSACHUSETT S: i i. Chairman, Department Committee OF TECHNOLCaY JUN 0198 LIBRARIES Structure theory of finite conformal algebras by Alessandro D'Andrea Submitted to the Department ,of Mathematics on May 6, 1998, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis I gave a classification of simple and semi-simple conformal algebras of finite rank, and studied their representation theory, trying to prove or disprove the analogue of the classical Lie algebra representation theory results. I re-expressed the operator product expansion (OPE) of two formal distributions by means of a generating series which I call "A-bracket" and studied the properties of the resulting algebraic structure. The above classification describes finite systems of pairwise local fields closed under the OPE. Thesis Supervisor: Victor G. Kac Title: Professor of Mathematics Acknowledgments The few people I would like to thank are those who delayed my thesis the most.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]