Solar Power Satellites

Total Page:16

File Type:pdf, Size:1020Kb

Solar Power Satellites Solar Power Satellites August 1981 NTIS order #PB82-108846 Library of Congress Catalog Card Number 81-600129 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword The energy difficulties the Nation has faced over the past decade have given rise to an increased awareness of the potential long-term, inexhaustible, or renewable energy technologies. This assessment responds to a request by the House Committee on Science and Technology for an evaluation of the energy potential of one of the most ambitious and long-term of these technologies, the solar power satellite (SPS). In assessing SPS, OTA has taken into account the preliminary nature of SPS technology by comparing four alternative SPS systems across a broad range of issues: their technical characteristics, long-term energy supply potential, interna- tional and military implications, environmental impacts, and institutional effects. The SPS options are also compared to potentially competitive future energy technologies in order to identify how choices among them might be made. In addi- tion, OTA developed a set of Federal research and funding options to address the central questions and uncertainties identified in the report. We were greatly aided by the advice of the SPS advisory panel, as well as by the participants in three specialized workshops: one on alternative SPS systems, one on public opinion, and another on competing energy supply technologies. The contri- butions of a number of contractors, who provided important analyses, and of numerous individuals who gave generously of their time and knowledge, are gratefully appreciated. Director . Ill Solar Power Satellites Advisory Panel John P. Schaefer, Chairman University of Arizona Paul Craig Jerry Grey John J. Sheehan University of California American Institute of Aeronautics United Steelworkers of America S. David Freeman and Astronautics Graham SiegeI Tennessee Valley Authority Grant Hansen Tennessee Valley Authority Eilene Galloway SDC Corp. Robert Uhrig Consultant Russell Hensley Florida Power & Light Karl Gawell Aetna Life & Casualty Frank von Hippel Solar Energy Research Institute Maureen Lamb Princeton University Peter G laser Consultant Charles Warren Arthur D. Little, Inc. J. C. Randolph Attorney University of Indiana Workshop on Technical Options John W. Freeman, Jr., Chairman Joe G. Foreman John D. G. Rather Rice University Naval Research Laboratories The B.D.M. Corp. Kenneth Billman Jerry Grey Fred Sterzer Electric Power Research Institute American Institute of Aeronautics RCA Laboratories Hubert P. Davis and Astronautics Frank von Hippel Eagle Engineering Abraham Hertz berg Princeton University Henry M. Foley University of Washington Gordon Woodcock Colurnbia University Boeing Aerospace Co Workshop on SPS Public Opinion Issues Ken Bossong Leonard David Skip Laitner Citizens Energy Project National Space Institute Community Action Research Croup Ben Bova Chris E If ring of Iowa, Inc. OMNI Office of Technology Assessment Maureen Lamb Clifflyn Bromling Joe Foreman Consultant Bromling and Associates Naval Research Laboratories Jenifer Robinson Mike Casper Jerry Grey Office of Technology Assessment Carlton College American Institute of Aeronautics Louis Slesin Earl Cook and Astronautics Natural Resources Defense Texas A&M Council, Inc. Workshop on Energy Context of Solar Power Satellites Clark Bullard, Chairman Peter Drummond William Metz University of Illinois McDonnel-Douglas Astronautics Consultant Charles Baker Lessly Goudarzi David Morris Argonne National Laboratory International Energy Associates, Institute for Local Self Reliance Piet Bos Limited James Moyer Electric Power Research Institute Kenneth Hub Southern California Edison Glen Brandvold Argonne National Laboratory Larry Ruff Sandia National Laboratory Jerry Karaganis Brook haven National Laboratory Clifflyn Bromling Edison Electric Institute Frank von Hippel Bromling & Associates John Lamarsh Princeton University Paul Craig Polytechnic Institute of New York Gordon Woodcock University of California Kenneth Ling Boeing Aerospace Co. Applied Solar Energy Corp. iv Solar Power Satellites Project Staff Lionel S. Johns, Assistant Director, OTA Energy, Materials, and International Security Division Richard E. Rowberg, Energy Program Manager David Claridge, Project Director (until January 1980) Ray A. Williamson, Project Director (from January 1980) Stefi Weisburd Adam Wasserman Administrative Staff Marian Grochowski Lisa Jacobson Lillian Quigg Edna Saunders Yvonne White Contributors Clifflyn Bromling Alan Crane Arlene Maclin William Metz Contractors and Consultants Eric Drexler International Energy Associates, Ltd. John Furber David Morris Mark Gersovitz Institute for Local Self Reliance Princeton University Barry Smernoff Jerry Grey Smernoff & Associates OTA Publishing Staff John C. Holmes, Publishing Officer John Bergling Kathie S. Boss Debra M. Datcher Joe Henson Acknowledgments OTA thanks the following people who took time to provide information or to review part or all of the study. Martin Abromavage, Argonne National Laboratory Ernest L. Morrison, National Telecommunications Edwin Beatrice, Letterman Army Institute of and Information Administration Research Fred Osborne, Sunsat Energy Council Richard Beverly and William Brown, Raytheon Steven Plotkin, Office of Technology Assessment Tom Bull, Office of Technology Assessment John Richardson, National Academy of Sciences Daniel F. Cahill, U.S. Environmental Protection Michael Riches, U.S. Department of Energy Agency Donald Rote, Argonne National Laboratory Don Calahan, National Aeronautics and Space Charles Rush, National Telecommunications and Administration Information Administration Stephen Cheston, Georgetown University Richard Santopietro, U.S. Department of Energy Stephen Cleary, Mfedical College of Virginia Carl Schwenk, National Aeronautics and Space P. Czerski, National Research Institute of Mother Administration and Child, Poland Richard Setlow, Brookhaven National Laboratory Steven Doyle, Office of Technology Assessment Charlotte Silverman, U.S. Public Health Service Lewis Duncan, Los Alamos Scientific Laboratory David Sliney, U.S. Army Environment/ Hygiene William Erickson, University of Mary/and Agency Harold A. Feiveson, Woodrow Wilson School, Marcia Smith, Congressional/ Research Service Princeton University Gerald Stokes, Pacific Northwest Laboratory Zorach Glaser, Bureau of Radiological Health A.R. Thompson, National Radio Astronomy Anita Harlan, L-5 Society Observatory John Hooper, Sierra Club Kosta Tsipas, Massachusetts Institute’ of Wayne Jones, Lockheed Corp. Technology Don Justesen, Veterans Administration Paul Tyler, Armed Forces Radiological Research Fred Koomanoff, U.S. Department of Energy Institute John Logsdon, George Washington University A.R. Valentine, Argonne National Laboratory Simon V. Manson, National Aeronautics and Peter Vajk, Science Applications, Inc. Space Administration Margaret White, Lawrence Berkeley Laboratory Richard Marsten, Office of Technology John Zinn, Los Alamos Scientific Laboratory Assessment Contents Chapter Page 1. Summary. 3 2. Introduction . 17 3. Issues and Find ngs . 23 4. Policy Options. 55 5. Alternative Systems for SPS . 65 6. SPS inContext. 101 7. The International Implications of Solar Power Satellites . 145 8. Environment and Health. 179 9. Institutional Issues . 227 A. Alternatives to the Reference System Subsystems . , . 265 B. Decentralized Photo voltaic Model . ................269 c. Global Energy Demand Forecasts . .. ...271 D. Environment and Health . .......275 E. Examples of international Cooperation . .........289 Acronyms, Abbreviations, and Glossary . .. ....293 Chapter 1 Contents Page Current Status . 3 Energy Context . 5 International and Military Imp ications. 7 Systems and Costs. 7 Public Issues. 10 Environment and Health . 10 Space Context. 14 LIST OF TABLES Page Characterization of Four Alternative SPS Systems. 9 Summaryof SPS Environmental Impacts . 12 The solar power satellite (SPS) concepts en- ● Mirror transmission. Orbiting mirrors vision using the constant availability of sun- would reflect sunlight directly to central light in space to generate baseload electricity locations on Earth. Terrestrial solar re- on Earth. Orbiting satellites would collect ceivers would convert the resulting 24- solar energy and beam it to Earth where it hour illumination to electricity. would be converted to electricity. Three major Since SPS would be a major future energy alternative systems have been suggested. system with diverse potential impacts and im- ● Microwave transmission. Solar radiation placations, this assessment of SPS technology would be collected in space and con- is interdisciplinary. It includes the study of SPS verted to microwaves. Microwave energy interactions with society, the environment, the would be beamed to a receiving antenna economy, and other energy systems. in addi- on Earth where it would be converted to tion, because space is an international realm electricity. and energy is a global need, this assessment Laser transmission. Solar radiation would also undertakes a broad look at the interna- be collected in space and converted to in- tional aspects of SPS. frared laser radiation. The lasers would beam power to an Earth receiver. CURRENT STATUS Too little is currently known about the techni- designate an agency to track generic research cal, economic, and environmental aspects of SPS which is applicable to SPS, to review trends in to make
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Potential European Contributions to Europa Lander Mission
    The Europa Initiative for ESA’s M5 mission Report to OPAG Michel Blanc, Geraint Jones, Olga Prieto-Ballesteros, Veerle Sterken, Javier Gomez-Elvira, David Mimoun, Adam Masters, Sascha Kempf, Luciano Iess, John Cooper, Zita Martins, Ralph Lorenz, Jérémie lasue, Nicolas André, Bruce Bills, Gael Choblet, Geoff Collins, Philippe Garnier, Kevin Hand, Paul Hartogh, Krishan Khurana, Andrea Longobardo, Katrin Stephan, Federico Tosi, Steve Vance, Tim van Hoolst, Roland Wagner, Frances Westall, Martin Wolverk, William Desprats, Ryan Russell, Georges Balmino, Julien Laurent-Varin and the Europa Initiative team August 11th, 2016 1 EI WORKING SCHEME Europa M5 for an ESA contribution to the Europa Lander mission Initiative Penetrator Contribution to Cubesat? Orbiter or… NASA lander A – GLOBAL GEOPHYSICSMagnetospheric interactions CHARACTERIZE EUROPA AS A COMPLEX DYNAMICAL SYSTEM B – ExosphereOF COUPLED LAYERS(neutrals, dust, plumes) FROM CORE TO PLASMA ENVELOPE THROUGH OCEAN AND CRYOSPHERE dimension RESPONDING TO E – Geophysics (internalJUPITER SYSTEM FORCING: TIDAL, MAGNETOSPHERICstructure, incl. Characterization of the ocean) themes ASTROBIOLOGY CONTRIBUTE TO NASA’s LANDER SCIENCE Science AND PROVIDE AN ADDITIONAL ELEMENT (AWL) As resources permit « Spacecraft » dimension EI contribution to EUROPA LanDer : SubmitteD LOI’s Joint Europa Mission (Blanc/Prieto-Ballesteros) • Baseline: Carrier-Orbiter + lander joint NASA/ESA mission: – P1a: Carrier-Orbiter provided by ESA, operated by NASA; – P1b: Alternative option: Carrier-Orbiter provided and operated by NASA; science platform (+ sub-systems?) provided by ESA – Science platform open to both ESA member states and NASA • Option 1: Augmented surface science: Astrobiology Wet Laboratory (AWL) provided by ESA + Member States to enhance landing site exploration. • Option 2: Augmented orbital science - cubesat released from carrier.
    [Show full text]
  • Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales a White Paper for the NRC Decadal
    Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales A White Paper for the NRC Decadal Survey of Solar and Space Physics Andrew Stephan, Scott Budzien, Ken Dymond, and Damien Chua NRL Space Science Division Overview In order to fulfill the pressing need for accurate near-Earth space weather forecasts, it is essential that future measurements include both temporal and spatial aspects of the evolution of the ionosphere and thermosphere. A combination of high altitude global images and low Earth orbit altitude profiles from simple, in-the-medium sensors is an optimal scenario for creating continuous, routine space weather maps for both scientific and operational interests. The method presented here adapts the vast knowledge gained using ultraviolet airglow into a suggestion for a next-generation, near-Earth space weather mapping network. Why the Ionosphere, Thermosphere, and Mesosphere? The ionosphere-thermosphere-mesosphere (ITM) region of the terrestrial atmosphere is a complex and dynamic environment influenced by solar radiation, energy transfer, winds, waves, tides, electric and magnetic fields, and plasma processes. Recent measurements showing how coupling to other regions also influences dynamics in the ITM [e.g. Immel et al., 2006; Luhr, et al, 2007; Hagan et al., 2007] has exposed the need for a full, three- dimensional characterization of this region. Yet the true level of complexity in the ITM system remains undiscovered primarily because the fundamental components of this region are undersampled on the temporal and spatial scales that are necessary to expose these details. The solar and space physics research community has been driven over the past decade toward answering scientific questions that have a high level of practical application and relevance.
    [Show full text]
  • Future Photovoltaic Power Generation for Space-Based Power Utilities
    '. IAF-02-R.4.06 Future Photovoltaic Power Generation for Space-Based Power Utilities Sheila Bailey, Geoffrey Landis, Aloysius Hepp, and *Ryne RaffaeIIe NASA Glenn Research Center, MS 302-1 , Cleveland, OH 44135 *Rochester Institute of Technology, Rochester, NY 14623 53rdInternational Astronautical Congress The World Space Congress - 2002 10-19 Qct 2002/Houston, Texas For permission to copy or republish, contact the International Federation, 3-5 Rue Mario- Nikis, 75015 Paris, France This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author. IAP-02-R.4.06 FUTURE PHOTOVOLTAIC POWER GENERATION FOR SPACE-BASED POWER UTILITIES Sheila Bailey, Geoffrey Landis, Aloysius Hepp, and “Ryne Raffaelle NASA Glenn Research Center, MS 302-1, Cleveland, OH 44135 *Rochester Institute of Technology, Rochester, NY 14623 [email protected] ABSTRACT This paper discusses requirements for large weight gigawatt (GW) space power generation. earth orbiting power stations that can serve as Investment in solar power generation central utilities for other orbiting spacecraft, or technologies would also benefit high power for beaming power to the earth itself. The military, commercial and science missions. current state of the art of space solar cells, and a These missions are generally those involving variety of both evolving thin film cells as well solar electric propulsion, surface power as new technologies that may impact the future systems to sustain an outpost or a permanent choice of space solar cells for high power colony on the surface of the moon or mars, mission applications are addressed.
    [Show full text]
  • ESA Strategy for Science at the Moon
    ESA UNCLASSIFIED - Releasable to the Public ESA Strategy for Science at the Moon ESA UNCLASSIFIED - Releasable to the Public EXECUTIVE SUMMARY A new era of space exploration is beginning, with multiple international and private sector actors engaged and with the Moon as its cornerstone. This renaissance in lunar exploration will offer new opportunities for science across a multitude of disciplines from planetary geology to astronomy and astrobiology whilst preparing the knowledge humanity will need to explore further into the Solar System. Recent missions and new analyses of samples retrieved during Apollo have transformed our understanding of the Moon and the science that can be performed there. We now understand the scientific importance of further exploration of the Moon to understand the origins and evolution of Earth and the cosmic context of life’s emergence on Earth and our future in space. ESA’s priorities for scientific activities at the Moon in the next ten years are: • Analysis of new and diverse samples from the Moon. • Detection and characterisation of polar water ice and other lunar volatiles. • Deployment of geophysical instruments and the build up a global geophysical network. • Identification and characterisation of potential resources for future exploration. • Deployment long wavelength radio astronomy receivers on the lunar far side. • Characterisation of the dynamic dust, charge and plasma environment. • Characterisation of biological sensitivity to the lunar environment. ESA UNCLASSIFIED - Releasable to the Public
    [Show full text]
  • A Technical Comparison of Coal Pipeline Options
    A TECHNICAL COMPARISON OF COAL PIPELINE OPTIONS By N.T. Cowper1, J. Sobota2 and A.D. Thomas1 1 Slurry Systems Pty Limited, Sydney, Australia. [email protected] 2 Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland Hydrotransport 18 Conference, Rio de Janeiro September 2010 Long distance transportation of coal was commercially proven in the highly successful 440 km Black Mesa Coal Pipeline commissioned in 1970. The economic pumping of coal in water over long distances requires the coal to be reduced to a fine size consist. At the power station the de-watered coal is further reduced to pulverised fuel (pf) size. Another option is to reduce the coal to pf size before transport and pump as a coal-water mixture. For long distance transport of minus 50 mm export size coal, the only viable option is to use a unique Special Vehicle Slurry (SVS) system. The paper compares the technical issues involved in all coal pipeline options. 1. INTRODUCTION The transportation of coal over long distances was commercially proven in the highly successful 440 km Black Mesa Coal Pipeline commissioned Aug. 14, 1970. The Black Mesa pipeline fed the captive Mohave Power Station for over 35 years. Although the use of coal for energy may slowly decrease in the long term, coking coal will still require transportation. The economic pumping of coal in water over long distances requires the particle size of the coal to be reduced to a fine size consist with the Black Mesa pipeline having a top size of 1.4 mm and 18 to 20% minus 45 microns to ensure optimum slurry properties.
    [Show full text]
  • A Future Mars Environment for Science and Exploration
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1.
    [Show full text]
  • First Results from the Solar Mesosphere Explorer
    N_A_ru_RE_v_o_L_JOS_I _SEPTE__ MB_E_R_I_98_3 ---------- NEWSANDVIEWS------------------15 and changes in environmental variables demonstrating the complementarity of the getic particles - caused by a solar proton (such as food density) are well known. two approaches. 0 event4, for example. The largest event in Previously, comparative studies and op­ the current solar cycle occurred on 13 July timality theory have addressed rather dif­ 1982, and the notable decrease of ozone ferent kinds of ethological issue. The ap­ Paul H. Harvey is a lecturer in the School of concentration it caused was measured by plication of optimal foraging models to Biological Sciences, University of Sussex, SME. Proton events of this kind inject large data on interspecies differences in territory BrightonBN19RH, andGeorginaM. Mace is a research associate at London Zoo and at the numbers of high-energy protons into the size may throw light on the precise form of Department of Anthropology, University Col­ middle atmosphere, changing the concen­ cross-species relationships, as well as lege ofLondon, London WCIE 6BT. trations of ionized hydrogen, nitrogen and oxygen, and thus the ozone destruction rate and density. SME's near-infrared Atmospheric chemistry spectrometer observed ozone depletion reaching 70 per cent at 65° latitude, 78 km altitude, on the morning side and 10-20 per First results from the cent on the afternoon side. All the observations, including those of Solar Mesosphere Explorer the proton event, have been satisfactorily from Guy Brasseur compared with a particularly elaborate two-dimensional model which takes into THE first results from the Solar Meso­ foreseen by the Chapman theory in 1930, account most chemical reactions related to sphere Explorer (SME), a satellite designed and show that atmospheric temperature is the mesosphere and the fundamental specially to study atmospheric ozone, are the principal cause of changes in ozone dynamical mechanisms5•6 • now becoming available (Geophys.
    [Show full text]
  • Solar Power Satellites
    Solar Power Satellites August 1981 NTIS order #PB82-108846 Library of Congress Catalog Card Number 81-600129 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword The energy difficulties the Nation has faced over the past decade have given rise to an increased awareness of the potential long-term, inexhaustible, or renewable energy technologies. This assessment responds to a request by the House Committee on Science and Technology for an evaluation of the energy potential of one of the most ambitious and long-term of these technologies, the solar power satellite (SPS). In assessing SPS, OTA has taken into account the preliminary nature of SPS technology by comparing four alternative SPS systems across a broad range of issues: their technical characteristics, long-term energy supply potential, interna- tional and military implications, environmental impacts, and institutional effects. The SPS options are also compared to potentially competitive future energy technologies in order to identify how choices among them might be made. In addi- tion, OTA developed a set of Federal research and funding options to address the central questions and uncertainties identified in the report. We were greatly aided by the advice of the SPS advisory panel, as well as by the participants in three specialized workshops: one on alternative SPS systems, one on public opinion, and another on competing energy supply technologies. The contri- butions of a number of contractors, who provided important analyses, and of numerous individuals who gave generously of their time and knowledge, are gratefully appreciated. Director . Ill Solar Power Satellites Advisory Panel John P.
    [Show full text]
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Thermosphere? Why Is It So Hot? Atmosphere Model and Thermosphere 5
    UNIT 6, LESSON 1: EARTH LAYERS & ATMOSPHERE LET’S BUILD OUR EARTH AND THE ATMOSPHERE 1 & 2 Where is earth’s crust? What is the difference between the 1. Read/annotate the oceanic and continental crust? paragraph(s) Crust and Mantle Where is the earth’s mantle? What is a plate? What part of the 2. Answer the questions mantle is below the plates? that go with the 3 Where is the earth’s core? How is the core similar to the mantle? paragraph(s) Core 4 & 5 Where is the troposphere? What are you likely to find there? Name at least 3 things. 3. Show Mrs. Stoddard Troposphere and Stratosphere your answers Where is the stratosphere? Why would the air be warm in the 4. If you get it correct, get stratosphere? Where is the mesosphere? Why do meteors burn in this layer? a piece of your 6 & 7 Mesosphere Where is the thermosphere? Why is it so hot? atmosphere model And Thermosphere 5. Repeat until your 8 Where is the exosphere? Why do some experts ignore the exosphere and think the thermosphere is the outermost layer of Exosphere model is finished! the earth’s atmosphere? CHECK YOUR MODEL! Exosphere Thermosphere Mesosphere Stratosphere Troposphere Core Name Class Period Mantle Crust HOW DID WE DO ON THE ATMOSPHERE MODEL? LET’S SET UP OUR JOURNALS! Earth’s Layers and Atmosphere 1:301:291:281:271:261:251:241:231:221:211:201:191:181:171:161:151:141:131:121:111:101:091:081:071:061:051:041:031:021:011:000:590:580:570:560:550:540:530:520:510:500:490:480:470:460:450:440:430:420:410:400:390:380:370:360:350:340:330:320:310:300:290:280:270:260:250:240:230:220:210:200:190:180:170:160:150:140:130:120:110:100:090:080:070:060:050:040:030:020:01End
    [Show full text]
  • Energia - Motorul Dezvoltării Economice Şi Sociale
    Energia - motorul dezvoltării economice şi sociale Noţiuni introductive În aceeaşi măsură în care un organism biologic are nevoie de hrană pentru a trăi şi a se dezvolta, o regiune are nevoie de energie pentru a se dezvolta din punct de vedere economic şi social. Pentru a ilustra diversitatea de modalităţi în care se poate asigura necesarul de energie al unei zone, a fost ales exemplul regiunii Las Vegas din statul Nevada, S.U.A., o regiune aridă, izolată şi înapoiată din punct de vedere economic, în care de-a lungul timpului s-au valorificat diverse resurse locale în vederea producerii de energie. În figurile alăturate sunt prezentate celebrul marcaj amplasat la intrarea în Las Vegas şi o imagine aeriană care sugerează nivelul ridicat al consumului de energie în Las Vegas. Las Vegas - imagine aeriană nocturnă https://en.wikipedia.org/wiki/File:Las_Vegas_at_night_(9118927988).jpg Intrarea în Las Vegas https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Welcome_to_Fabulous_Las_Vega s.jpg/788px-Welcome_to_Fabulous_Las_Vegas.jpg Statul Nevada, face parte din grupul statelor montane, alături de Montana, Idaho, Wyoming, Colorado, New Mexico, Utah şi Arizona. În perioada în care se puneau bazele expansiunii regiunii Las Vegas, statele montane reprezentau o zonă nedezvoltată. Acest teritoriu care reprezintă o pondere semnificativă din suprafaţa SUA, producea în acea perioadă, sub 5 % din electricitatea consumată în SUA. Această zonă, din jurul Munţilor Stâncoşi, este evidenţiată pe harta prezentată în imaginea alăturată. Zona statelor montane din SUA https://upload.wikimedia.org/wikipedia/commons/c/c5/US_map- Observaţie: Statele evidenţiate prin culoare uniformă sunt Mountain_states.png întotdeauna incluse în zona montană, în timp ce statele evidenţiate prin haşurare (Arizona în stânga şi New Observaţie: Nevada (regiunea evidenţiată) este statul din Mexico în dreapta) sunt considerate cel mai adesea, dar SUA cu cel mai redus nivel de precipitaţii anuale, iar nu întotdeauna, ca făcând parte din această zonă.
    [Show full text]