The Plant Kingdom's Most Unusual Talents

Total Page:16

File Type:pdf, Size:1020Kb

The Plant Kingdom's Most Unusual Talents The Plant Kingdom's Most Unusual Talents Plants do not just laze about, soaking up rays. They shift around, hunt, eat, attack--and defend themselves Wikim Plants seem so passive. Tree branches bow to the wind, losing their leaves. Lettuce just sits there as snails help themselves to a free salad bar. And grass lets everyone walk all over it. But all that apparent listlessness is deceptive. In truth, plants are incredibly active members of their communities. Plants move on their own all the time—creeping, digging, reaching, blooming. However, most of the action happens too slowly for our eyes to see unaided. In his 1995 documentary series The Private Life of Plants, David Attenborough and his crew created beautiful time-lapse videos to showcase plants' hidden mobility. Climbing jungle vines race one another up tree trunks, stretching towards the sunlight. The thorny bramble whips from side to side, shoving competing plants out of the way to expand its territory. A spindly orange vine known as dodder is a particularly striking example of dynamic plant life. Dodder is a parasite—it lives off of other plants. Instead of waiting around for a suitable host, the vine hunts one down.Conseulo De Moraes of Penn State University planted a young dodder near a tomato plant and continuously filmed the pair for several days. Her time-lapse video reveals a growing dodder flailing around, tasting the air like a snake, until it finally brushes the tomato's stem and begins to encircle its victim. Eventually it would sink tiny nozzles into the tomato plant to suck out vital juices. De Moraes discovered something surprising about the dodder: it can smell. The vine sniffs out its hosts, growing toward telltale chemicals released by its neighbors. And it is picky. Dodder prefers juicy tomato plants to slender wheat and healthy plants to sick plants. Tel Aviv University biologist Daniel Chamovitz discusses dodder and many other fascinating plants in his upcoming book, What A Plant Knows, an excerpt from which appears in the May issue of Scientific American. Dodder is hardly the only plant whose mobility and abilities would surprise most people. The plant kingdom is full of unusual talents that are more common than biologists first realized. The Venus flytrap is only one of several different kinds of carnivorous plants that have developed astonighing ways to catch and digest insects and other small animals. Almost all plants have evolved chemical defenses against herbivores and many plants recognize when their neighbors are under attack, preparing for battle themselves. Alpine buttercups track the sun's arc over the course of a day to keep their blossoms warm and appealing to heat-seeking pollinators. The telegraph plant swivels its leaves to maximize exposure to sunlight, adjusting so quickly that you can see the leaves moves in real time. Some plants may even distinguish between family and strangers, sharing resources only with the former. Like most organisms, plants sense and respond to their environments. To appreciate just how sensible plants are, we have to look at the world—or even smell the world—from their perspective. The spindly orange vine as knows as Dodder (Cuscuta pentagona) is a parasite plant. Time-lapse video reveals that a dodder seedling twirls through the air, sniffing volatile chemicals released by neighboring plants in search for a suitable host. When it finds one, dodder entwines its victim and inserts nozzles into the host’s stem, siphoning vital nutrients. The workings of the trap mechanism in Dionaea are complex and depend on changes in the osmotic potential of the cells in the hinge. The traps close when one or other of the trigger hairs is touched more than once in quick succession; if nothing is caught, traps reopen after about a day. Once an insect is trapped, flaps close tighter to squash it, and enzymes are secreted to digest the prey. Mucilage is secreted to seal the margins of the trap. Some days later, after the insect is digested, the trap reopens. The traps are unusual in that they spring shut. Similar traps are found in the aquatic genus Aldovandra (also in the family Droseraceae), but these only catch minute aquatic animals. Most species of Drosera (sundews) also catch insects, but by using sticky hairs that cover the leaf, after which the leaf slowly coils over the insect before digesting it. Codariocalyx motorius known as the telegraph plant is a tropical Asian shrub, one of a few plants capable of rapid movement. This plant is famous for its movement of small, lateral leaflets at speeds rapid enough to be perceivable with the naked eye. This is possibly a strategy to maximise light by tracking the sun. Each leaf is equipped with a hinge that permits it to be moved to receive more sunlight, but the weight of these leaves means the plant must expend a lot of energy in moving it. To optimise its movement, each large leaf has two small leaflets at its base. These move constantly along an elliptical path, sampling the intensity of sunlight, and directing the large leaf to the area of most intensity. Another hypothesis has been offered that the rapid movements are intended to deter potential predators. The flowers of the alpine snow buttercup Ranunculus adoneus track the sun's movement from early morning until mid-afternoon. Individual blooms last up to a week: younger female stage flowers show greater solar tracking fidelity than older hermaphrodite or dehisced flowers. Flowers aligned parallel to the sun's rays reach mean internal temperatures several degrees Celsius above ambient air temperature. As a flower's angle of deviation from the sun increases beyond 45 degrees, internal flower temperature is significantly reduced. Fly pollinators are seen disproportionately often on flowers aligned with the sun; this is due, in part, to their greater residence time on tracking flowers. Fly visitation is important to fecundity. When flies were excluded from flowers, some selfed seeds were matured, but total seed production was much less than in either handoutcrossed or open-pollinated flowers. Flowers that were tethered at random angles to prevent solar tracking set fewer, smaller seeds than unmanipulated control flowers. Reductions in seed weight were statistically consistent at different times in the season, but tethering influenced seed number per flower most strongly in the early season. Effects of tethering on maternal reproduction could be due to either pollinator diserimination, post-pollination developmental processes, or both. In a second series of experiments using fluorescent dye particles as pollen analogs, tethered donor flowers dispersed dye to as many recipients as paired control flowers, suggesting that solar tracking fidelity may have little effect upon this component of male reproduction. The sensitive plant is popular in cultivation around the world, and is enjoyed by many as a curiosity due to its highly touch-sensitive leaves. Robert Hooke (English scientist famous for his microscopy work, 1635-1703) was one of the first people to investigate the movements of Mimosa pudica, and at that time it had been suggested that plants had nerves and tissues similar to those in animals. It was later discovered that the leaves fold as a result of the internal movement of water, and the mechanics of the process are now well-documented. A stimulus, such as touch or air movement, triggers certain areas of the stem to release chemicals, which cause water to move out of cell vacuoles and leads to cell collapse. This rapid plant movement is thought to act as a defence against herbivores, which may be deterred by the dramatic response, or if they are small, may be dislodged as the leaves collapse. CLINGY CREEPER: The wild cucumber's (Sicyos angulatus) spidering tendrils, which grab onto fences and other plants for support, are super-sensers. Most people cannot feel the weight of a string weighing less than 2 grams. But the tendrils of the wild cucumber respond to the touch of a string weighing only 0.25 grams and immediately start twirling around the tiny thread. ZERO GRAVITY: Like most plants, morning glories (Ipomea nil) usually grow up towards the sun. But this strain of morning glory, called Shidare asagao, has lost its balance – it has lost its ability to sense gravity. It doesn’t know where ―up‖ is. Hence the vines of this morning glory fall down, making for a beautiful ornamental plant. FAMILY VALUES: In lab experiments, researchers have shown that a weedy beach plant known as sea rocket (Cakile) recognizes its siblings and restrains its root growth in their presence. The idea is that siblings benefit from sharing nutrients and helping each other pass on genes they have in common. When planted near strangers, however, sea rocket grows as many roots as possible, since there is no benefit to helping out an unrelated plant. Sea rocket probably identifies family based on chemicals that roots secrete into the soil. MOLECULAR MEMORY: Common bread wheat (Triticum aestivum), also known as ―winter wheat," only flowers and makes grain following a cold winter. If winter snows do not blanket the sprouts, they never flower. But if prior to planting, farmers keep the seeds in the freezer for a while, then the sprouts will flower even in the absence of snow. In other words, the plants remember their exposure to the cold. How do they encode this memory? The cold induces characteristic changes in the pattern of molecules hitched to DNA, a process known as epigenetics that in turn modifies gene expression. RISE AND SHINE: Irises bloom in the spring and early summer. They know that the time for flowering has arrived because they can sense that the days are getting longer and the nights are getting shorter.
Recommended publications
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • Traditional Honey Production and Bee Flora of Espiye, Turkey Mustafa
    Bangladesh J. Plant Taxon. 25(1): 79-91, 2018 (June) © 2018 Bangladesh Association of Plant Taxonomists TRADITIONAL HONEY PRODUCTION AND BEE FLORA OF ESPIYE, TURKEY 1 2 3 MUSTAFA KARAKÖSE, RIDVAN POLAT , M. OLIUR RAHMAN AND UĞUR ÇAKILCIOĞLU Giresun University, Espiye Vocational School, Giresun, Turkey Keywords: Bee flora; Honeybee; Espiye; Turkey. Abstract This paper presents potential honey bee plants in Espiye (Giresun) which can be considered as a guide for beekeepers and researchers. A total of 149 taxa belonging to 125 genara and 48 families were recorded as pollen and nectary sources for honey bee colonies at Espiye (Giresun) region. Among the recorded taxa 58 were Phanerophytes, 57 taxa Hemicryptophytes, 19 taxa Therophytes, 13 taxa Cryptophytes and 2 taxa Chamaephytes. Updated nomenclature along with the families, local names, life form, flowering period and ecological status have been furnished under 94 herbs, 28 shrubs and 27 trees. Introduction Turkey is one of the countries where the honey production is at the highest level in the World (Özturk and Erkan, 2010). In the recent past, the forest area in Turkey has increased from 20.2 million/ ha to 22.3 million/ha between 1973 and 2015 (OGM, 2013-2015). Very recently, the Forest General Directorate has started to implementing the honey action plan to promote honey production and contribute to rural development (OGM, 2013-2015). As part of the action plan, up to 356 honey forests have been established and now, Turkey is in the second row in the world’s honey production and beekeeping.Turkey produces 92% of the world’s pine honey, specifically in its West Mediterranean and South Aegean regions.
    [Show full text]
  • Vol: Ii (1938) of “Flora of Assam”
    Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works.
    [Show full text]
  • Desmodium Gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit
    Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560 064, Karnataka, India b Department of Botany, Physiological Ecology of Plants, University of Tübingen, D-7400, Tübingen, Auf der Morgenstelle 1, Germany c Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Fax: 004773591852. E-mail: [email protected] * Author for correspondence and reprint request Z. Naturforsch. 55c, 638-642 (2000); received January 18/March 20, 2000 Oscillations, Video Imaging, Ion Movements The rhythmic leaflet movements of the plantDesmodium gyrans (L.f.) DC slow down in the presence of a static magnetic field. The leaflet positions were digitally retrieved from sequential CCD camera images of the moving leaflets. The experiments were performed under constant light (ca. 500 lux) and temperature (about 20 °C) conditions. The period of the leaflet was then around 5 min. Leaflets moving up and down in a magnetic field of approximately 50 mT flux density increased the period by about 10% due to a slower motion in the “up” position. Since during this position a rapid change of the extracellular potentials of the pulvinus occurs, it is proposed that the effects are mediated via the electric processes in the pulvinus tissue. Introduction the motor cells of the pulvinus. When direct cur­ Although ultradian rhythms of the lateral leaf­ rents (DC) of strength 10 to 100 ^xA was applied lets in the plant Desmodium gyrans have been for 10 sec to the tip of lateral leaflets, the phase of studied intensively, its functional significance still the rhythm was delayed.
    [Show full text]
  • Plants That Bite Back. Carolina Beach State Park: an Environmental Education Learning Experience Designed for the Middle Grades
    DOCUMENT RESUME ED 376 026 SE 054 367 AUTHOR Wahab, Phoebe TITLE Plants that Bite Back. Carolina Beach State Park: An Environmental Education Learning Experience Designed for the Middle Grades. INSTITUTION North Carolina State Dept. of Environment, Health, and Natural Resources, Raleigh. Div. of Parks and Recreation. PUB DATE 93 ::OTE 131p.; For other Environmental Education Learning Experiences, see SE 054 364-371. AVAILABLE FROMNorth Carolina Division of Parks and Recreation, P.O. Box 27687, Raleigh, NC 27611-7687. PUB TYPE Guides Classroom Use Teaching Guides (For Teacher)(052) EDRS PRICE MF01/PC06 Plus Postage. DESCRIPTORS Botany; Conservation (Environment); *Endangered Species; *Environmental Education; Experiential Learning; Field Trips; Intermediate Grades; Junior High Schools; Middle Schools; Natural Resources; Outdoor Activities; *Outdoor Education; Plant Growth; Plants (Botany); Teaching Guides IDENTIFIERS *Biological Adaptations; *Carnivorous Plants; Natural Resources Management; Nature; North Carolina; State Parks ABSTRACT This learning packet, one in a series of eight, was developed by the Carolina Beach State Park in North Carolina for the middle grades to teach about carnivorous plants. Loose-leaf pages are presented in 10 sections that contain:(1) introductions to the North Carolina State Park System, the Carolina Beach State Park, the park's activity packet, and how plants eat;(2) a summary of the activities that includes major concepts and objectives covered; (3) four pre-visit activities on carnivorous plants;(4) three
    [Show full text]
  • ORCHIDS Lincoln Park Conservatory and Gardens Docent Training March 14, 2020
    ORCHIDS Lincoln Park Conservatory and Gardens Docent Training March 14, 2020 Contents Title Page 1. Essential Orchids 1 2. Essential Carnivorous Plants 4 3. Orchid Room Highlights 6 4. History of Orchids 8 5. Orchids and their Pollinators 11 6. Orchids 17 7. What are Bromeliads 21 8. Bromeliads 24 9. Epiphytic Cacti 25 10. Tropical Cacti 27 11. Carnivorous Plants 29 12. Carnivorous Plants 2 33 13. Ant Plants 35 14. Ant Plants 2 37 15. Vanilla Orchid 36 16. Goldfish vs. Koi 39 Reading assignments supplement each week’s lectures. Please read before the lecture. This page intentionally left blank Essential Orchids Orchids are one of the oldest and largest families in the plant kingdom with over 25,000 species worldwide. Through the millions of years of their existence, they developed complex relationships with their pollinators, animal communities, and environment in general. Today, orchids are now among the most widely grown and popular flowering potted plants in the world. With modern scientific cultivation, there are over 100,000 varieties of orchids and the number is increasing. However, in the wild populations are declining; many orchids are on the endangered lists, and almost all collecting of orchids is banned. What Makes an Orchid an Orchid? All orchids share three basic characteristics: ● Three sepals ● Three petals. In most orchids, one of these is highly modified and called a lip, or labellum. These are easy to see in most of the common orchids, and act as a landing pad for insect pollinators. ● A column. In most flowers the male (stamen) and female (pistil) reproductive structures are separate.
    [Show full text]
  • Abstract Introduction
    Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 PRELIMINARY SCREENING OF TELEGRAPH (CODARIOCALYX MOTORIUS) PLANT EXTRACT FOR SKIN WHITENING PROPERTY AND CYTOTOXICITY ACTIVITY K.N. Wijesekara, 1W.S de Silva Department of Biotechnology, Faculty of Science, Horizon Campus, Sri Lanka [email protected] ABSTRACT A perfect skin can be remained as a control was 478.800757±3.1567 µg/ml. dream if it does not maintain properly, Value of inhibition of tyrosinase was therefore most of the young women are significantly higher than to positive tempting to skin whitening products that control. The IC50 value of cytotoxicity can be composed of harmful chemicals activity for methanolic extract of leaves that cause dullness, uneven skin tone or of Telegraph plant was 1516.0538± acne breakout instead of making skin 2.407µg/ml. This analysis was revealed healthy and blooming. Natural products IC50 value of methanolic extract is are safe for consumption and will work nontoxic toxic to brine shrimps. on skin naturally and effectively by Therefore, it can be concluded that balancing skin tone and eliminating Codariocalyx motorius leaves possess harmful effects. This study was carried highly active antityrosinase substances out to determine skin whitening property which can be consumed for remedy of and cytotoxicity activity of Codariocalyx healthy and brighten skin. motorius.
    [Show full text]
  • The Arts of Science in the Contact Zone: a Satirical Picture
    Sria Chatterjee The Arts of Science in the Contact Zone: A Satirical Picture Abstract This chapter focusses on a print by the artist Gaganendranath Tagore done in 1922, which features the biophysicist Jagadish Chandra Bose and his experiments in plant science. Considering the overlapping networks of art, science, and nationalist politics within a particular sphere in early twentieth-century British India, the chapter explores the connec- tions between human and non-human contact zones as well as questions around religion and science and the politics of colonial knowledge be- tween the metropole and the colony. Keywords Art and Science, Expanded Contact Zone, Plants, Caricature, Nationalism, Politics Chatterjee, Sria. 2021. “The Arts of Science in the Contact Zone: A Satirical Picture.” 181 In Reading Objects in the Contact Zone, edited by Eva-Maria Troelenberg, Kerstin Schankweiler, and Anna Sophia Messner, 181–187. Heidelberg Studies on Transculturality 9. Heidelberg: Heidelberg University Publishing. DOI: https://doi.org/110.17885/heiup.766. c10423 SRIA ChatteRJEE The object I focus on in this short essay is a black and white print by Gaganendranath Tagore (1867–1938) from a portfolio of “satirical pic- tures” published in 1921 by Thacker and Spink titled Reform Screams. While the portfolio serves to establish a context of political feeling and social reform in pre-independence India through satire, the print I have chosen allows for access into a contact zone that is not only geo- graphic but also one that lies between human and non-human worlds (à⏵Expanded Contact Zone). In this image, Gaganendranath depicts the Indian scientist Jagadish Chandra Bose (1858–1937) who pioneered the investigation of radio waves and experiments in plant science.
    [Show full text]
  • Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium Gyrans
    Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560 064, Karnataka, India b Department of Botany, Physiological Ecology of Plants, University of Tübingen, D-7400, Tübingen, Auf der Morgenstelle 1, Germany c Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Fax: 004773591852. E-mail: [email protected] * Author for correspondence and reprint request Z. Naturforsch. 55c, 638-642 (2000); received January 18/March 20, 2000 Oscillations, Video Imaging, Ion Movements The rhythmic leaflet movements of the plantDesmodium gyrans (L.f.) DC slow down in the presence of a static magnetic field. The leaflet positions were digitally retrieved from sequential CCD camera images of the moving leaflets. The experiments were performed under constant light (ca. 500 lux) and temperature (about 20 °C) conditions. The period of the leaflet was then around 5 min. Leaflets moving up and down in a magnetic field of approximately 50 mT flux density increased the period by about 10% due to a slower motion in the “up” position. Since during this position a rapid change of the extracellular potentials of the pulvinus occurs, it is proposed that the effects are mediated via the electric processes in the pulvinus tissue. Introduction the motor cells of the pulvinus. When direct cur­ Although ultradian rhythms of the lateral leaf­ rents (DC) of strength 10 to 100 ^xA was applied lets in the plant Desmodium gyrans have been for 10 sec to the tip of lateral leaflets, the phase of studied intensively, its functional significance still the rhythm was delayed.
    [Show full text]
  • Page 1 植物研究雜誌 J. Jpn. Bot. 79; 101-139 (2004) Taxonomy And
    植物研究雑誌 J. J. Jpn. Bo t. 79: 79: 101-139(2004) Taxonomy and Distribution of Desmodium and Related Genera (Leguminosae) (Leguminosae) in Malesia (1) Hiroyoshi Hiroyoshi OHASHI Botanical Botanical Garden ,Graduate School of Science ,Tohoku University ,Sendai , 980-0862 JAPAN (Received (Received on November 8,2003) A taxonomic and phytogeographic account of Desmodium and its related genera in Malesia Malesia is presented as a precursory of treatment these genera for the Fl ora Malesiana. Sixty-four Sixty-four species in 13 genera 訂 'e recognized: Aphyllodium (3 spp よ Codariocalyx (3 spp よDendrolobium (8 spp よDesmodiastrum (1 sp よDesmodium (35 spp. of which 27 native native to Malesia and 8 introduced from America) , Hanslia (2 spp よHegnera (l sp よ Hylodesmum (4 spp よ Monarthrocarpus (1 sp よ Ohwia (1 sp よ Phyllodium (3 spp よ Tadehagi Tadehagi (l sp.) , and Trifidacanthus (1 sp.). They 訂 e enumerated with keys to genera , species species and infraspecific taxa ,selected synonyms and bibliography related to the Malesian Malesian flora ,representative specimens , and distribution. Of the 56 species native to Malesia Malesia eight (14 %)訂 e endemic to the region; 29 (52 %)訂 e distributed in Malesia and continental continental Asia but not in Australia; 11 (20 %) are common in Malesia and Australia but not not in continental Asia; and eight (14 %) are found in all these areas. Based on the dis- tribution tribution analysis ,a differentiation pattem of the species in these genera in Malesia is presumed. presumed. This This paper is divided into two parts. Aphyllodium ,Codariocalyx ,Dendrolobium , Desmodiastrum , and Desmodium are treated in the first p訂t.
    [Show full text]
  • Chemical Reactions and Equations 01
    Chapter Chemical Reactions 01 and Equations WORKSHEET - 1 Introduction to Chemical Reactions I. 1. b) 2. a) 3. a) 4. a) 5. c) II. 1. exothermic 2. iron oxide 3. reactants 4. precipitate 5. hydrogen gas III. 1. 2NH3 + 3CuO 3Cu + N2 + 3H2O 2. Al2(SO4)3 + 6NaOH 2Al(OH)3 + 3Na2SO4 3. 4Fe + 3O2 2Fe2O3 4. 2NaOH + H2SO4 Na2SO4 + 2H2O 5. MnO2 + 4HCl MnCl2 + Cl2 + 2H2O I V. 1. It is because sunlight is absorbed in this process. 2. a) Precipitate formation b) Evolution of gas 3. a) Hydrogen gas is evolved. b) It is an exothermic reaction. 4. a) Reaction of iron with copper sulphate: Fe + CuSO4 FeSO4 + Cu (Blue) (Green) b) Reaction of quicklime with water: CaO + H2O Ca(OH)2 + Heat V. 1. • By writing the state symbols of each component. • By indicating evolution of gas (↑) or precipitate formation (↓). • By writing the number of molecules of each component in a balanced equation. • By indicating colour change. • By indicating the release or absorption of heat. 2. a) BaCl2(aq) + Na2SO4(aq) BaSO4(s) + 2NaCl(aq) b) 2Fe + 3H2O(g) Fe2O3(s) + 3H2(g) 3. a) Large amount of heat is released. b) The gas evolved (CO2) turns lime water milky. c) The solution will change colour from purple to colourless. TM A DDITION LA PR CTICEA SCIENCE-10 1 WORKSHEET - 2 Types of Chemical Reactions I. 1. Decomposition reaction 2. Catalyst 3. Platinum 4. Potassium 5. Slaked lime II. 1. Yes 2. No 3. Yes 4. Yes 5. No III. 1. CO2 2. Fe 2O3 3. Cl2 4.
    [Show full text]
  • Mechanism for Rapid Passive-Dynamic Prey Capture in a Pitcher Plant
    Bauer, U. , Paulin, M., Robert, D., & Sutton, G. P. (2015). Mechanism for rapid passive-dynamic prey capture in a pitcher plant. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 11384-11389. https://doi.org/10.1073/pnas.1510060112 Peer reviewed version Link to published version (if available): 10.1073/pnas.1510060112 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ BIOLOGICAL SCIENCES: Plant Biology Mechanism for rapid passive-dynamic prey capture in a pitcher plant Short title: Passive-dynamic pitcher plant trap Ulrike Bauer a,b , Marion Paulin c, Daniel Robert a, Gregory P. Sutton a aSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK bDepartment of Biology, Universiti Brunei Darussalam, Tungku Link, Gadong 1410, Brunei Darussalam cÉcole Nationale Supérieure d’Agronomie de Toulouse, Avenue de l’Agrobiopole, B.P. 32607 Auzeville-Tolosane, 31326 Castanet-Tolosan Cédex Corresponding author: Ulrike Bauer School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK phone: +44 117 39 41296 email: [email protected] keywords: Carnivorous plants, biomechanics, trapping mechanism, torsion spring, wax crystals Abstract Plants use rapid movements to disperse seed, spores or pollen, and catch animal prey. Most rapid release mechanisms only work once, and if repeatable, regaining the pre-release state is a slow and costly process.
    [Show full text]