Origin of the Elements. Isotopes and Atomic Weights
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monitored Natural Attenuation of Inorganic Contaminants in Ground
Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium EPA/600/R-10/093 September 2010 Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium Edited by Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 and Richard T. Wilkin Ground Water and Ecosystems Restoration Division Ada, Oklahoma 74820 Project Officer Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development managed portions of the technical work described here under EPA Contract No. 68-C-02-092 to Dynamac Corporation, Ada, Oklahoma (David Burden, Project Officer) through funds provided by the U.S. Environmental Protection Agency’s Office of Air and Radiation and Office of Solid Waste and Emergency Response. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. All research projects making conclusions or recommendations based on environmental data and funded by the U.S. Environmental Protection Agency are required to participate in the Agency Quality Assurance Program. This project did not involve the collection or use of environmental data and, as such, did not require a Quality Assurance Plan. -
Lithium Isotope Fractionation During Uptake by Gibbsite
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 168 (2015) 133–150 www.elsevier.com/locate/gca Lithium isotope fractionation during uptake by gibbsite Josh Wimpenny a,⇑, Christopher A. Colla a, Ping Yu b, Qing-Zhu Yin a, James R. Rustad a, William H. Casey a,c a Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, CA 95616, United States b The Keck NMR Facility, University of California, One Shields Avenue, Davis, CA 95616, United States c Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States Received 5 November 2014; accepted in revised form 8 July 2015; available online 15 July 2015 Abstract The intercalation of lithium from solution into the six-membered l2-oxo rings on the basal planes of gibbsite is well-constrained chemically. The product is a lithiated layered-double hydroxide solid that forms via in situ phase change. The reaction has well established kinetics and is associated with a distinct swelling of the gibbsite as counter ions enter the interlayer to balance the charge of lithiation. Lithium reacts to fill a fixed and well identifiable crystallographic site and has no solvation waters. Our lithium-isotope data shows that 6Li is favored during this intercalation and that the À À solid-solution fractionation depends on temperature, electrolyte concentration and counter ion identity (whether Cl ,NO3 À or ClO4 ). We find that the amount of isotopic fractionation between solid and solution (DLisolid-solution) varies with the amount of lithium taken up into the gibbsite structure, which itself depends upon the extent of conversion and also varies À À À with electrolyte concentration and in the counter ion in the order: ClO4 <NO3 <Cl . -
Paul Scherrer Institut
C^ZOOCt^ CO l 9 19 icht r r — — l-Be £3tobe I J Paul Scherrer Institut Labor für Werkstoffe und nukleare Verfahren Programm Entsorgung Chemistry of the Rectox Sensitive Elements Literature Review D.Suter Paul Scherrer Institut Telefon 056/99 2111 Würenlingen und Villigen Telex82 7414psich CH-5232 Villigen PSI Telefax 056/982327 PSI CH PSI-Bericht Nr. 113 Chemistry of the Redox Sensitive Elements Literature Review Daniel Suter Wiirenlingen and Villigen, October 1991 Preface In the framework of its Waste Management Programme the Paul Scherrer Institute is performing work to increase the understanding of radionuclide transport in the geosphere. These investigations arc performed in close cooperation with, and with the financial support of, NAGRA. The present report is issued simultaneously as a PSI report and a NAGRA NTB. TABLE OF CONTENTS Summary 2 Zusammenfassung 3 Resume 4 1. Introduction 5 2. Redox Conditions 8 3. Selenium 11 3.1 Solution Chemistry 11 3.2 Sorption Studies 13 3.3 Geochemistry 15 3.4 Experiments 18 3.5 Analytical Methods 20 4. Technetium 26 4.1 Solution Chemistry 26 4.2 Sorption Studies 29 4.3 Geochemistry 31 4.4 Experiments 32 4.5 Analytical Methods 33 5. Palladium 35 5.1 Solution Chemistry 35 5.2 Sorption Studies 36 5.3. Geochemistry 37 5.4 Experiments 38 5.5 Analytical Methods 39 6. Tin 42 6.1 Solution Chemistry 42 6.2 Sorption Studies 42 6.3 Geochemistry 43 6.4 Experiments 44 6.5 Analytical Methods 44 7. Neptunium 46 7.1 Solution Chemistry 46 7.2 Sorption Studies 48 7.3 Geochemistry 49 7.4 Experiments 51 7.5 Analytical Methods 51 8. -
UNIT 1 SUMMARY MATTER – Anything That Has Mass and Takes up Space
UNIT 1 SUMMARY MATTER – Anything that has mass and takes up space Other examples? PARTICLE – a single atom or groups of atoms that are bonded together and function as one unit Matter is found in phases or states: GAS • Indefinite shape and volume • Straight-line motion LIQUID • Indefinite shape, definite volume • Rolling motion SOLID • Definite shape and volume • Vibrating motion TYPES OF MATTER PURE SUBSTANCE – Matter where all the particles are identical He NaCl C12H22O11 There are two types of pure substances: ELEMENT • Made from only one type of atom • Cannot be broken into simpler substances by chemical means • Found on the Periodic Table Other examples? Gold Sulfur Helium Sodium COMPOUND • Made from two or more atoms joined together by chemical bonds • Can be broken down into simpler substances by chemical means (by breaking chemical bonds) Water Salt Sugar Other examples? Water Compound ↓ electricity Hydrogen and Oxygen ↓ electricity ↓ electricity Hydrogen and Oxygen Elements Salt Compound ↓ electricity Sodium and Chlorine ↓ electricity ↓ electricity Sodium and Chlorine Elements In CHEMICAL SEPARATION METHODS (e.g. electrolysis), chemical bonds are broken and/or formed. MIXTURE – Matter with different types of particles (elements and/or compounds) There are two types of mixtures: HETEROGENEOUS – Has distinct parts with different properties HOMOGENEOUS – Has same properties throughout (uniform composition) Air Jell-O Steel Brass SOLUTION – A homogenous mixture CLASSIFICATION OF MATTER CHANGES IN MATTER PHYSICAL CHANGE – One that -
12 Natural Isotopes of Elements Other Than H, C, O
12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al). -
Name Midterm Review
NAME MIDTERM REVIEW 1. During a laboratory activity, a student combined two solutions. In the laboratory report, the student wrote “A yellow color appeared.” The statement represents the student’s recorded A) conclusion B) observation C) hypothesis D) inference 2. Which of the following statements contained in a student's laboratory report is a conclusion? A) A gas is evolved. B) The gas is insoluble in water. C) The gas is hydrogen. D) The gas burns in air. 3. The diagram below represents a portion of a 100-milliliter graduated cylinder. What is the reading of the meniscus? A) 35.0 mL B) 36.0 mL C) 44.0 mL D) 45.0 mL 4. An aluminum sample has a mass of 80.01 g and a density of 2.70 g/cm3. According to the data, to what number of significant figures should the calculated volume of the aluminum sample be expressed? A) 1 B) 2 C) 3 D) 4 5. A student in a laboratory determined the boiling point of a substance to be 71.8°C. The accepted value for the boiling point of this substance is 70.2°C. What is the percent error of the student's measurement? A) 1.60% B) 2.28% C) 2.23% D) 160.% MIDTERM REVIEW 6. Base your answer to the following question on the information below. A method used by ancient Egyptians to obtain copper metal from copper(I) sulfide ore was heating the ore in the presence of air. Later, copper was mixed with tin to produce a useful alloy called bronze. -
(A) Two Stable Isotopes of Lithium and Have Respective Abundances of And
NCERT Solution for Class 12 Physics :Chapter 13 Nuclei Q.13.1 (a) Two stable isotopes of lithium and have respective abundances of and . These isotopes have masses and , respectively. Find the atomic mass of lithium. Answer: Mass of the two stable isotopes and their respective abundances are and and and . m=6.940934 u Q. 13.1(b) Boron has two stable isotopes, and . Their respective masses are and , and the atomic mass of boron is 10.811 u. Find the abundances of and . Answer: The atomic mass of boron is 10.811 u Mass of the two stable isotopes are and respectively Let the two isotopes have abundances x% and (100-x)% Aakash Institute Therefore the abundance of is 19.89% and that of is 80.11% Q. 13.2 The three stable isotopes of neon: and have respective abundances of , and . The atomic masses of the three isotopes are respectively. Obtain the average atomic mass of neon. Answer: The atomic masses of the three isotopes are 19.99 u(m 1 ), 20.99 u(m 2 ) and 21.99u(m 3 ) Their respective abundances are 90.51%(p 1 ), 0.27%(p 2 ) and 9.22%(p 3 ) The average atomic mass of neon is 20.1771 u. Q. 13.3 Obtain the binding energy( in MeV ) of a nitrogen nucleus , given m Answer: m n = 1.00866 u m p = 1.00727 u Atomic mass of Nitrogen m= 14.00307 u Mass defect m=7 m n +7 m p - m m=7Aakash 1.00866+7 1.00727 - 14.00307 Institute m=0.10844 Now 1u is equivalent to 931.5 MeV E b =0.10844 931.5 E b =101.01186 MeV Therefore binding energy of a Nitrogen nucleus is 101.01186 MeV. -
Lithium Isotope Separation a Review of Possible Techniques
Canadian Fusion Fuels Technology Project Lithium Isotope Separation A Review of Possible Techniques Authors E.A. Symons Atomic Energy of Canada Limited CFFTP GENERAL CFFTP Report Number s Cross R< Report Number February 1985 CFFTP-G-85036 f AECL-8 The Canadian Fusion Fuels Technology Project represents part of Canada's overall effort in fusion development. The focus for CFFTP is tritium and tritium technology. The project is funded by the governments of Canada and Ontario, and by Ontario Hydro. The Project is managed by Ontario Hydro. CFFTP will sponsor research, development and studies to extend existing experience and capability gained in handling tritium as part of the CANDU fission program. It is planned that this work will be in full collaboration and serve the needs of international fusion programs. LITHIUM ISOTOPE SEPARATION: A REVIEW OF POSSIBLE TECHNIQUES Report No. CFFTP-G-85036 Cross Ref. Report No. AECL-8708 February, 1985 by E.A. Symons CFFTP GENERAL •C - Copyright Ontario Hydro, Canada - (1985) Enquiries about Copyright and reproduction should be addressed to: Program Manager, CFFTP 2700 Lakeshore Road West Mississauga, Ontario L5J 1K3 LITHIUM ISOTOPE SEPARATION: A REVIEW OF POSSIBLE TECHNIQUES Report No. OFFTP-G-85036 Cross-Ref Report No. AECL-87O8 February, 1985 by E.A. Symons (x. Prepared by: 0 E.A. Symons Physical Chemistry Branch Chemistry and Materials Division Atomic Energy of Canada Limited Reviewed by: D.P. Dautovich Manager - Technology Development Canadian Fusion Fuels Technology Project Approved by: T.S. Drolet Project Manager Canadian Fusion Fuels Technology Project ii ACKNOWLEDGEMENT This report has been prepared under Element 4 (Lithium Compound Chemistry) of the Fusion Breeder Blanket Program, which is jointly funded by AECL and CFFTP. -
NUCLEAR GEOMETRY: from HYDROGEN to BORON Alexander I
Materials Physics and Mechanics 45 (2020) 132-149 Received: March 11, 2020 NUCLEAR GEOMETRY: FROM HYDROGEN TO BORON Alexander I. Melker St. Petersburg Academy of Sciences on Strength Problems, Peter the Great St. Petersburg Polytechnic University Polytekhnicheskaya 29, 195251, St. Petersburg, Russian Federation e-mail: [email protected] Abstract. Possible ways of nuclear synthesis in the range from hydrogen to boron are studied. The geometric model of these nuclei is suggested. The basis for this model is the analogy 4 4 between tetrahedral fullerene C4 and helium 2He . It is assumed that a nucleus of helium 2He has the form of a tetrahedron, where: 1) All the apices are equivalent and therefore they are protons, 2) Each neutron in a nucleus decomposes into a proton and three negatively charged particles having the charge ⅓ of that of an electron, 3) Interaction of the negative particles creates a special electronic pattern, which symmetry does not coincide with that of protons one, but determines it. On the basis of the postulates, the structure of other nuclei has been designed using geometric modeling. For hydrogen, deuterium, tritium and helium 3, a point, a linear and a plane structure respectively have been obtained. Helium 4 has tetrahedral symmetry. Then there was transition from three-fold symmetry prisms (lithium 6 and 7) to five-fold symmetry (boron 10 and 11) through four-fold one (beryllium 8, 9, 10). The nuclear electron patterns are more complex; their polyhedrons resemble the electron pairs arrangement at the valence shells of molecules. Keywords: beryllium, boron, deuterium, graph representation, helium, hydrogen, lithium, nuclear electron, nuclear geometry 1. -
Nuclear Mass and Stability
CHAPTER 3 Nuclear Mass and Stability Contents 3.1. Patterns of nuclear stability 41 3.2. Neutron to proton ratio 43 3.3. Mass defect 45 3.4. Binding energy 47 3.5. Nuclear radius 48 3.6. Semiempirical mass equation 50 3.7. Valley of $-stability 51 3.8. The missing elements: 43Tc and 61Pm 53 3.8.1. Promethium 53 3.8.2. Technetium 54 3.9. Other modes of instability 56 3.10. Exercises 56 3.11. Literature 57 3.1. Patterns of nuclear stability There are approximately 275 different nuclei which have shown no evidence of radioactive decay and, hence, are said to be stable with respect to radioactive decay. When these nuclei are compared for their constituent nucleons, we find that approximately 60% of them have both an even number of protons and an even number of neutrons (even-even nuclei). The remaining 40% are about equally divided between those that have an even number of protons and an odd number of neutrons (even-odd nuclei) and those with an odd number of protons and an even number of neutrons (odd-even nuclei). There are only 5 stable nuclei known which have both 2 6 10 14 an odd number of protons and odd number of neutrons (odd-odd nuclei); 1H, 3Li, 5B, 7N, and 50 23V. It is significant that the first stable odd-odd nuclei are abundant in the very light elements 2 (the low abundance of 1H has a special explanation, see Ch. 17). The last nuclide is found in low isotopic abundance (0.25%) and we cannot be certain that this nuclide is not unstable to radioactive decay with extremely long half-life. -
Technetium Behavior and Recovery in Soil
NAY O 5 1996 TECHNETIUM BEHAVIOR AND RECOVERY IN SOIL George E. Meinken December, 1 995 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thcreof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Brookhaven National Laboratory Building 801, Medical Department P.O. Box 5000 Upton, NY 1 1973-5000 (516) 344-4453;FAX: (516) 344-5962 MASTER TECHNETIUM BEHAVIOR AND RECOVERY IN SOIL Thesis Project for the Degree of Master of Science in Environmental Technology George E. Meinken December, 1995 Acknowledgments I would like to acknowledge the helpful guidance of New York lnstitute of Technology professors, Dr. S. Greenwald and Dr. W. Graner throughout the course of this program and thesis. The work undertaken in this thesis would not have been possible without the many helpful people at Brookhaven National Laboratory. Dr. A.J. Francis and Cleveland Dodge suggested the project for the thesis and provided valuable guidance and financial support throughout the work. -
Future Supply of Medical Radioisotopes for the UK Report 2014
Future Supply of Medical Radioisotopes for the UK Report 2014 Report prepared by: British Nuclear Medicine Society and Science & Technology Facilities Council. December 2014 1 Preface Technetium-99m (99mTc) is the principal radioisotope used in medical diagnostics worldwide. Current estimates are that 99mTc is used in 30 million procedures per year globally and accounts for 80 to 85% of all diagnostic investigations using Nuclear Medicine techniques. Its 6-hour physical half-life and the 140 keV photopeak makes it ideally suited to medical imaging using conventional gamma cameras. 99mTc is derived from its parent element molybdenum-99 (99Mo) that has a physical half-life of 66 hours. At present 99Mo is derived almost exclusively from the fission of uranium-235 targets (using primarily highly-enriched uranium) irradiated in a small number of research nuclear reactors. A global shortage of 99Mo in 2008/09 exposed vulnerabilities in the supply chain of medical radioisotopes. In response, and at the request of member states, the Organization of Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) assembled a response team and in April 2009 formed a High-Level Group on the security of supply of Medical Radioisotopes (HLG-MR). The HLG-MR terms of reference are: to review the total 99Mo supply chain from uranium procurement for targets to patient delivery; to identify weak points and issues in the supply chain in the short, medium and long-term; to recommend options to address vulnerabilities to help ensure stable and secure supply of radioisotopes. The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g.