QN Seminar 2013

Total Page:16

File Type:pdf, Size:1020Kb

QN Seminar 2013 QN Seminar 2013 Abstract 18 December 2013 Coherent Oscillations in a Si/SiGe Quantum Dot Hybrid Qubit Mark Eriksson, Universit of Wisconsin-Madison I will discuss measurement and manipulation of the recently proposed quantum dot hybrid qubit, in these experiments formed in a Si/SiGe double quantum dot. X-rotations on the Bloch sphere are performed by pulsing a gate voltage so that the detuning of a double quantum dot makes the (1,2) and (2,1) occupation ground states degenerate [2]. The resulting rotations occur at approximately 5 GHz and reveal an experimentally measured visibility greater than 80%. Z-rotations on the Bloch sphere are performed by pulsing a gate voltage away from the (1,2)-(2,1) degeneracy point, resulting in oscillations at a rate of approximately 10 * GHz and a measured visibility greater than 85%. The T2 time at this detuning is greater than 15 ns, many times longer than the 100 ps gate operation time. Methods for future improvements of the oscillation visibility will be discussed. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. [1] Z. Shi, et al., Phys. Rev. Lett. 108, 140503 (2012). [2] Teck Seng Koh, et al., Phys. Rev. Lett. 109, 250503 (2012). Abstract 11 December 2013 Microscopic Origin of the 0.7-Anomaly in Quantum Point Contacts Stefan Ludwig, Ludwig-Maximilians-Universität, München Quantum point contacts are the fundamental building blocks of semiconducting quantum circuits. The conductance of such a one-dimensional constriction can be controlled by gate voltages and is quantized in units of GQ = 2e2=h. However, the conductance also exhibits an unexpected shoulder at ' 0:7GQ, known as the ’0.7- anomaly’ [1], whose origin is still subject to controversial discussions. The most prominent proposed theoretical explanations exclude each other: one has evoked spontaneous spin polarization [2] and the other one the formation of a quasi-bound state leading to the Kondo effect [3,4]. In this talk I present an alternative approach based on our experiments and numerical calculations, performed in Jan von Delft’s group. We evoke no assumptions beyond experimental evidences. Our model offers a detailed microscopic explanation for both the 0.7-anomaly and the zero-bias peak accompanying it: their common origin is a pronounced maximum in the local density of states at the bottom of the lowest onedimensional subband of the point contact, which causes an anomalous enhancement of the back-scattering rate and the magnetic spin susceptibility. We find that the 0.7-anomaly is a Fermi-liquid feature while neither spontaneous spin polarization nor a bound state are needed for its explanation [5]. Characterization of Qubit Dephasing by Landau-Zener Interferometry If time permits, I will then present some fairly new data on a two-electron charge qubit defined in a double quantum dot. We have performed Landau-Zener interferometry and established it as a straightforward tool to fully characterize a qubit and its dephasing environment [6]. It is, e. g., possible to determine the characteristic time scales T2 (coherence time) and T? 2 (ensemble average dephasing) individually and without the need of pulsed gate measurements. References [1] Thomas, K. J. et al, Phys. Rev. Lett. 77, 135 (1996). [2] Reilly, D. J. et al., Phys. Rev. Lett. 89, 246801 (2002). [3] Cronenwett, S. M. et al., Phys. Rev. Lett. 88, 226805 (2002). [4] Meir, Y., et al., Phys. Rev. Lett. 89, 196802 (2002) [5] Bauer, F., et al., Nature 501, 73 (2013). [6] Forster, F. et al., arXiv:1309.5907 (2013). Abstract 4 December 2013 Modern 3D optical and electron microscopy for mapping neuronal circuits Kevin Briggman, NINDS/NIH The neuronal circuitry of the retina is the first stage in the processing of visual information by vertebrate brains. The retina transduces photons into chemical and electrical signals and is capable of encoding visual information across an extreme dynamic range from single photon responses in the dark to near saturating conditions on a bright sunny day. In addition, the retina encodes spatial and temporal patterns of light including the presence of edges, color opponency, and the direction of motion. However, how retinal neurons actually perform these sophisticated computations is not well understood. The major problem is that we simply do not comprehensively know the anatomical synaptic connectivity of neurons in the retina. This is in large part due to the disparate length scales involved; the neurites (including dendrites and axons) of neurons can be as thin as 50 nm and yet extend over many millimeters. The tortuous trajectories of these processes in the nervous system necessitate the ability to acquire large volumes at high resolution in all 3 spatial dimensions. High lateral (x-y) resolutions of 5-10 nm are easily achieved in scanning electron microscopes, but the major challenge has been to repeatedly cut tens of thousands of thin sections (each at least <50 nm) from a block of tissue. Historically, tissue sectioning is performed manually using an ultramicrotome which is tedious, error-prone and is limited to, at best, 50 nm sections. We have therefore automated both image acquisition and sectioning by developing a serial block-face scanning electron microscopy (SBEM) technique. This method allows us to image large 3-dimensional EM datasets, typically hundreds of microns on a side, at nearly isotropic voxel resolutions of 12 x 12 x 25 nm3. I will discuss the technical aspects of SBEM in relation to other current volume electron microscopy techniques and present how we have used this technique to reconstruct the connectivity of the mouse retina. In particular, I will stress the power of combining large-scale functional recordings of neurons with subsequent anatomical reconstruction of neuronal circuits. I will also discuss our efforts to automate the analysis of large (multi- terabyte) 3D EM datasets. Abstract 27 November 2013 Quantum Annealing and the D-Wave Devices Matthias Troyer, ETH Zürich, and Microsoft Research Quantum annealing - a finite temperature version of the quantum adiabatic algorithm - combines the classical technology of slow thermal cooling with quantum mechanical tunneling, to try bring a physical system towards its ground state. The Canadian company D-Wave systems has recently built and sold programmable devices that are designed to use this effect to find solutions to optimization problems. I will present results of experiments designed to shed light on crucial questions about these controversial devices: are these devices quantum or classical? Are they faster than classical devices? What is their potential? Abstract 13 November 2013 Josephson junction-based coherent caloritronic nanocircuits Francesco Giazotto, NEST, Instituto Nanoscienze-CN & Scuola Normale Superiore, Pisa, Italy The Josephson effect [1] represents perhaps the prototype of macroscopic phase coherence and is at the basis of the most widespread interferometer, i.e., the superconducting quantum interference device (SQUID) [2]. Yet, in analogy to electric interference, Maki and Griffin [3] predicted in 1965 that thermal current flowing through a temperature-biased Josephson tunnel junction is a stationary periodic function of the quantum phase difference between the superconductors. The interplay between quasiparticles and Cooper pairs condensate is at the origin of such phase-dependent heat current, and is unique to Josephson junctions. In this scenario, a temperature-biased SQUID would allow heat currents to interfere [4, 5] thus implementing the thermal version of the electric Josephson interferometer. In this presentation we shall initially report the first experimental realization of a heat interferometer [6,7]. We investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel- coupled to each other through a thermal `modulator' [5] in the form of a DC-SQUID. Heat transport in the system is found to be phase dependent, in agreement with the original prediction. Besides offering remarkable insight into thermal transport in Josephson junctions, our results represent a significant step toward phase- coherent mastering of heat in solid-state nanocircuits, and pave the way to the design of novel-concept coherent caloritronic devices, for instance, heat transistors, thermal splitters and diodes [8] which exploit phase-dependent heat transfer peculiar to the Josephson effect. In this latter context, we shall also present the concept for a further development of a Josephson heat interferometer based on a double superconducting loop [9] which allows, in principle, enhanced control over heat transport. We shall finally conclude presenting experimental results on the first prototypical quantum diffractor for thermal flux [10]. Specifically, thermal diffraction manifests itself with a peculiar modulation of the electron temperature in a small metallic electrode nearby-contacted to a Josephson junction when sweeping the magnetic flux Φ [11]. Remarkably, the observed temperature dependence exhibits Φ-symmetry and a clear reminiscence with a Fraunhofer-like modulation pattern, as expected fingerprints for a quantum diffraction phenomenon. Our results confirm a pristine prediction of quantum heat transport and, joined with double- junction heat interferometry demonstrated in [6], exemplify the complementary and conclusive proof of the existence of phase-dependent thermal currents in Josephson-coupled superconductors. This approach combined with well-known methods for phase-biasing superconducting circuits provides with a novel tool for mastering heat fluxes at the nanoscale. References [1] B. D. Josephson, Phys. Lett. 1, 251 (1962) [2] J. Clarke and A. I. Braginski, The SQUID Handbook (Wiley-VCH, 2004) [3] K. Maki and A. Griffin, Phys. Rev. Lett. 15, 921 (1965) [4] G. D. Guttman, E. Ben-Jacob, and J. Bergman, Phys. Rev. B 57, 2717 (1998) [5] F. Giazotto and M. J.
Recommended publications
  • Measuring Sharp Spectral Edges to High Optical Density M
    Measuring Sharp Spectral Edges to High Optical Density M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, Omega Optical, Brattleboro, VT ABSTRACT passband. For a dielectric stack of a given number of layers, reducing ripple at the transmission peak causes a decrease in Interference filters have improved over the years. Sharp the edge steepness. This tradeoff can be countered by increas- spectral edges (> 1 db/nm) reach high optical density (OD ing the total number of layers, but then other factors such as > 8) in a few nm. In-situ optical monitoring to within 0.1 % the length of the deposition and stress in the films become error enables these levels of performance. Due to limitations more important. Film stress (especially in thick >10 micron related to f-number and resolution bandwidth, post-deposition stacks) can be large enough to warp the substrate [2, 3], while testing in typical spectrophotometers cannot reveal the qual- exceedingly long deposition times reduce manufacturability ity of today’s filters. Laser based measurements at selected and increase cost. wavelengths prove that blocking above OD8 to OD9 is manufacturable with high yield. This paper compares mod- Once a design is developed and deposited on a substrate, the eled spectra and laser based measurements. manufacturer is faced with the limitations of the test equip- ment at hand. Most thin-film companies are equipped with INTRODUCTION scanning spectrometers which employ a grating or prism The advances in thin-film design software and automated, and slits. While convenient, the nature of these scanners computer-driven deposition systems have made it possible introduces a wavelength broadening of the measurement to create the most demanding optical filters.
    [Show full text]
  • A Tunable Atomic Line Filter Without Sacrificing Transmission Based On
    Optik 148 (2017) 244–250 Contents lists available at ScienceDirect Optik j ournal homepage: www.elsevier.de/ijleo Original research article A tunable atomic line filter without sacrificing transmission based on the combination of selective pump and magnetic field a,b b,∗ b b a Shuangqiang Liu , Enming Zhao , Diyou Liu , Hanyang Li , Weimin Sun a College of Science, Harbin Engineering University, Harbin 150080, China b Key Lab of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150080, China a r t i c l e i n f o a b s t r a c t Article history: This paper presents a theoretical model of an atomic line filter based on optical anisotropy Received 19 May 2017 which is induced by the combination of the selective pump and an external magnetic field. Accepted 5 September 2017 By analyzing the pumping process, we carefully elucidated the influence of the selective pump and magnetic field on the pumping process, and furthermore on the tunability and PACS: peak transmission of the filter. Different from the previously reported filter, our numerical 42.79.Ci results suggest that this type of filter has a large-scale tunability at the transmission peak 33.55.+b position without sacrificing transmission, which is very important in free-space optical 42.25.Ja communication and lidar systems subjected to large Doppler shift. 42.62.Fi © 2017 Published by Elsevier GmbH. Keywords: Atomic line filter Large-scale tunablity Optical anisotropy Selective optical pumping 1. Introduction Atomic line filters (ALF), which feature high transmission, narrow bandwidth, and excellent out-of-band rejection [1], are crucial components in laser system [2], free-space optical communication [3], lidar system operation [4–6], space remote sensing [7], narrowband quantum light generation [8–10], laser frequency stabilization [11–13], and quantum key distri- bution [14].
    [Show full text]
  • Inaugural-Dissertation
    I NAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Diplom-Chemiker Helmut Kronemayer aus Mannheim Tag der mündlichen Prüfung: 16. November 2007 Laser-based temperature diagnostics in practical combustion systems Laserbasierte Verfahren zur Temperaturmessung in technischen Verbrennungssystemen Gutachter: Prof. Dr. Jürgen Wolfrum Prof. Dr. Christof Schulz Abstract Today’s energy supply relies on the combustion of fossil fuels. This results in emissions of toxic pollutants and green-house gases that most likely influence the global climate. Hence, there is a large need for developing efficient combustion processes with low emissions. In order to achieve this, quantitative measurement techniques are required that allow accurate probing of important quantities, such as e.g. the gas temperature, in practical combustion devices. Diagnostic techniques: Thermocouples or other techniques requiring thermal contact are widely used for temperature measurements. Unfortunately, the investigated system is influenced by probe measurements. In order to overcome these drawbacks, laser-based thermometry methods have been developed, that are introduced and compared in this work. A recently invented multi-line technique based on laser-induced fluorescence (LIF) excitation spectra of nitric oxide (NO) was thoroughly investigated within this thesis. Numerical and experimental studies were conducted to identify ideal spectral excitation and detection strategies. The laser system was improved such that twice the laser energy as before (3 mJ) at 225 nm is available. New detection filters were selected that enable efficient (85%) NO-LIF detection while blocking scattered laser light by a factor of 107, which is an improvement by two orders of magnitude.
    [Show full text]
  • Frequency Measurement of the 6P3/2 → 7S1/2 Transition of Thallium
    PHYSICAL REVIEW A 88, 062513 (2013) Frequency measurement of the 6P3/2 → 7S1/2 transition of thallium Nang-Chian Shie,1 Chun-Yu Chang,2 Wen-Feng Hsieh,1 Yi-Wei Liu,3,4 and Jow-Tsong Shy2,3,4,* 1Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 30050 Hsinchu, Taiwan 2Institute of Photonics Technologies, National Tsing Hua University, 30013 Hsinchu, Taiwan 3Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan 4Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (Received 9 October 2013; published 30 December 2013) 203 205 The saturated absorption spectrum of the 6P3/2 → 7S1/2 transition of Tl and Tl in a hollow cathode lamp has been observed with a frequency-doubled 1070 nm Nd : GdVO4 laser. The third-derivative spectrum of the hyperfine components are obtained using the wavelength modulation spectroscopy and used to stabilize the laser frequency. The analysis of the error signal shows that the frequency stability reaches 30 kHz at 1 s averaging time. Such a frequency-stabilized light source at 535 nm can be used for laser cooling of thallium and for investigating the parity non-conservation effect in thallium. The absolute frequencies of hyperfine components are measured with an accuracy of 30 MHz using a precision wavelength meter. Including the pressure shift correction, the center of gravity of the transition frequency is determined to an accuracy of 22 MHz for both isotopes. Meanwhile, the isotope shift derived is in good agreement with earlier measurement. DOI: 10.1103/PhysRevA.88.062513 PACS number(s): 32.10.Fn, 32.30.−r I.
    [Show full text]
  • Ministry of Defence Acronyms and Abbreviations
    Acronym Long Title 1ACC No. 1 Air Control Centre 1SL First Sea Lord 200D Second OOD 200W Second 00W 2C Second Customer 2C (CL) Second Customer (Core Leadership) 2C (PM) Second Customer (Pivotal Management) 2CMG Customer 2 Management Group 2IC Second in Command 2Lt Second Lieutenant 2nd PUS Second Permanent Under Secretary of State 2SL Second Sea Lord 2SL/CNH Second Sea Lord Commander in Chief Naval Home Command 3GL Third Generation Language 3IC Third in Command 3PL Third Party Logistics 3PN Third Party Nationals 4C Co‐operation Co‐ordination Communication Control 4GL Fourth Generation Language A&A Alteration & Addition A&A Approval and Authorisation A&AEW Avionics And Air Electronic Warfare A&E Assurance and Evaluations A&ER Ammunition and Explosives Regulations A&F Assessment and Feedback A&RP Activity & Resource Planning A&SD Arms and Service Director A/AS Advanced/Advanced Supplementary A/D conv Analogue/ Digital Conversion A/G Air‐to‐Ground A/G/A Air Ground Air A/R As Required A/S Anti‐Submarine A/S or AS Anti Submarine A/WST Avionic/Weapons, Systems Trainer A3*G Acquisition 3‐Star Group A3I Accelerated Architecture Acquisition Initiative A3P Advanced Avionics Architectures and Packaging AA Acceptance Authority AA Active Adjunct AA Administering Authority AA Administrative Assistant AA Air Adviser AA Air Attache AA Air‐to‐Air AA Alternative Assumption AA Anti‐Aircraft AA Application Administrator AA Area Administrator AA Australian Army AAA Anti‐Aircraft Artillery AAA Automatic Anti‐Aircraft AAAD Airborne Anti‐Armour Defence Acronym
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,058,110 B2 Zhao Et A]
    US007058110B2 (12) United States Patent (10) Patent N0.: US 7,058,110 B2 Zhao et a]. (45) Date of Patent: Jun. 6, 2006 (54) EXCITED STATE ATOMIC LINE FILTERS 6,009,111 A * 12/1999 CorWin et a1. .............. .. 372/32 (75) Inventors: Zhong-Quan Zhao, San Diego, CA * Cited by examiner (US); Michael Joseph Lefebvre, Del Mar; _CA (Us); Damel H‘ Leshe’ Primary ExamineriMinsun Oh Harvey Enclmtas’ CA (Us) Assistant ExamineriDung (Michael) T. Nguyen ( 73 ) A sslgnee' : CIZXGJSH)T E t erpnses' C Orp . ’ S an D'lego’ (74) Attorney, Agent, or Firmilohn R. Ross ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (57) ABSTRACT U.S.C. 154(b) by 364 days. ( 21 ) APP 1, N0.: 10/682 , 567 An excited state atomic line ?lter. The P resent invention solves the problem of lack of ground state resonant lines in 22 Filed: Oct. 9, 2003 at Waveleng ths substantiall y lon g er than those of visible light. Atomic line ?lters of the Faraday or Voigt crossed (65) PI‘iOI‘ PllbliCatiOIl Data polarizer type are provided in Which alkali metal atomic Us 2005/0078729 A1 Apr 14 2005 vapor in a vapor cell is excited With a pump beam to an ' ’ intermediate excited state Where a resonant absorption line, (51) Int_ CL at a desired Wavelength, is available. A magnetic ?eld is Hols 3/22 (200601) applied to the cell producing a polarization rotation for (52) U 5 Cl 372/56, 372/32 polarized light at Wavelengths near the resonant absorption (58) Fi'el'd 0 """ " ’ 372/56 lines.
    [Show full text]
  • Theoretical Investigation of Induced-Dichroism-Excited Atomic Line Filter
    Theoretical Investigation of Induced-Dichroism-Excited Atomic Line Filter Yun-Dong Zhang*, Xu-Tao Sun, Zhu-Song He, Ping Yuan Institute of Optoelectronics, Harbin Institute of Technology, State Key Laboratory of Tunable Laser Technology, Harbin150001, China Abstract: A theoretical model for the Laser induced dispersion optical filter (LIDOF) is presented. The filter has a higher transmission and a narrower line width than excited-state Faraday anomalous dispersion optical-filter (ESFADOF). The theoretical treatment is valid for different atoms LIDOF systems. Keywords: LIDOF, polarizability, transmission 1. Introduction Narrowband filters with a wide field of view and high transmission play a key role in free space communication, lidar and communication under water and so on. Comparing with the Faraday anomalous dispersion optical filter (FADOF)[1-4], the Laser induced dispersion optical filter (LIDOF) does not need an external magnetic field, and has higher transmission with narrower linewidth at excited state operation. Their merits are better than that of excited-state- FADOF, and have a broaden application in the future. Laser-induced dispersion optical filter (LIDOF) was first described and experimentally studied by R.I.Billmers et al in 1995[5]. However, at present, it has not a perfectly theoretical model of the LIDOF. In this paper, the semi-classical theory was utilized to theoretically analyze LIDOF, and the model was given. By solving the density matrix equations, we gained the system induced susceptibility, and eventually the transmission spectra were gained. The theoretical model is in universality, adapting to different atoms LIFOF systems. 2. Theoretical consideration As working media of LIDOF are gaseous, it needs an optical pumping source.
    [Show full text]
  • Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System
    Computer Science & Engineering, Phase: Theor. Proj. Tec. Rep. on Comp. Vol. 1, Ver. 1, 1– 50 Proj. No. TXU001347562 Ext. on 01 Oct 2007 ————————————————————— Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System By Philip Baback Alipour 1 , 2 , ∗ , † 1-Category of Computer Sciences, Laboratory of Systems Technology, Research, Design & Development, Elm Tree Farm, Wallingfen Lane, Newport, Brough, HU15 1RF, UK 2- Computer Science & Engineering Departments, University of Hull, Cottingham Road, Hull Campus, East Yorkshire, HU6 7RX, UK Abstract —– This paper focuses on super helical memory system’s design, ‘Engi- neering, Architectural and Satellite Communications’ as a theoretical approach of an invention-model to ‘store time-data’ in terms of anticipating the best memory location ever for data/time. The current release entails three concepts: 1- the in-depth theo- retical physics engineering of the chip, including its, 2- architectural concept based on very large scale integration (VLSI) methods, and 3- the time-data versus data-time algorithm. The ‘Parallel Time Varying & Data Super-helical Access Memory’ (PTVD- SHAM), possesses a waterfall effect in its architecture dealing with the process of potential-difference output-switch into diverse logic and quantum states described as ‘Boolean logic & image-logic’, respectively. Quantum dot computational methods are explained by utilizing coiled carbon nanotubes (CCNTs) and carbon nanotube field effect transistors (CNFETs) in the chip’s architecture. Quantum confinement, cate- gorized quantum well substrate, and B-field flux involvements are discussed in theory. Multi-access of coherent sequences of ‘qubit addressing’ in any magnitude, gained as pre-defined, here e.g., the ‘big notation’ asymptotically confined into singularity O while possessing a magnitude of for the orientation of array displacement.
    [Show full text]
  • Applications to Laser-Induced Breakdown Spectroscopy for Analysis of Aerosols and Single Particles
    INVESTIGATION OF PHYSICAL AND SPECTRAL CHARACTERISTICS OF LASER-INDUCED PLASMAS: APPLICATIONS TO LASER-INDUCED BREAKDOWN SPECTROSCOPY FOR ANALYSIS OF AEROSOLS AND SINGLE PARTICLES By VINCENT PAUL HOHREITER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Vincent Paul Hohreiter ACKNOWLEDGMENTS I would like to briefly and generally acknowledge everyone—family, friends, labmates, colleagues—who helped me make this dissertation happen. Specifically I would like to thank my parents, Vaughn and Christine Hohreiter, who—beyond their constant love and support—always accepted, fostered, and encouraged my academic progress and misgivings alike. Additionally I owe a debt of gratitude to my advisor, Dr. David Hahn, without whose rigorous academic lead and unwavering personal support I most likely would have abandoned doctoral study years ago. Finally, I would like to thank my wife, Dr. Aline Gubrium, who has inspired me with both love and a tenaciously organized and diligent work ethic. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT......................................................................................................................
    [Show full text]
  • The Detection of Transient Optical Events at Narrowband Visible Wavelengths
    OPTICAL EVENTS AT NARROWBAND VISIBLE WAVELENGTHS The Detection of Transient Optical Events at Narrowband Visible Wavelengths Peter F. Bythrow and Douglas A. Oursler Remote sensing of optical transients represents a paradigmatic shift in approach to the detection and identification of anthropogenic terrestrial events. For the most part, short-lived optical events lasting from tens of milliseconds to a few seconds are either undetectable or ignored by most current satellite remote sensing systems. The work described in this article shows that by disregarding transient data, important information about the event source is discarded. This oversight is significant, since the desired information regarding the source may be gleaned within seconds of event onset. These data give an observer the opportunity to rapidly evaluate and respond. Work to date has focused on high-speed, high-resolution imaging at narrowband visible wavelengths that simultaneously captures transient histories and suppresses background clutter from reflected sunlight. Experiments conducted at Cape Canaveral, Florida, have used a high-speed digital camera system and a narrow band-pass filter centered at 589 nm. These experiments have resulted in characterization of the ignition flash and initial plume signature from several large rocket boosters while suppressing daylight background clutter. (Keywords: Fraunhoffer filter, Optical transients, Remote sensing.) INTRODUCTION As viewed from space, the Earth’s surface is dotted milliseconds to a few seconds. Because of sensor or by short-lived optical emission events. These events mission design, those events are either undetectable range in intensity and duration from modest anthro- or ignored by most current satellite remote sensing pogenic events such as rocket launches and the det- systems.
    [Show full text]
  • The Effects of Saturation and Velocity Selective Population in Two-Step 6S1/2 →6P3/2 →6D5/2 Laser Excitation in Cesium ⁎ Vlasta Horvatic B, , Tiffany L
    Spectrochimica Acta Part B 61 (2006) 1260–1269 www.elsevier.com/locate/sab The effects of saturation and velocity selective population in two-step 6S1/2 →6P3/2 →6D5/2 laser excitation in cesium ⁎ Vlasta Horvatic b, , Tiffany L. Correll a, Nicoló Omenetto a, Cedomil Vadla b, James D. Winefordner a a Department of Chemistry, University of Florida, Gainesville, FL 32611, USA b Institute of Physics, 10000 Zagreb, Croatia Received 17 July 2006; accepted 12 October 2006 Abstract Excited states population distributions created by two-step 6S1/2 →6P3/2 →6D5/2 laser excitation in room temperature cesium vapor were quantitatively analyzed applying absorption and saturation spectroscopy. A simple method for the determination of the excited state population in a single excitation step that is based on the measurements of the saturated and unsaturated absorption coefficients was proposed and tested. It was shown that only ≈2% of the ground state population could be transferred to the first excited state by pumping the Doppler broadened line with a single-mode narrow-line laser. With complete saturation of the second excitation step, the population amounting to only ≈1% of the ground state can be eventually created in the 6D5/2 state. The fluorescence intensity emerging at 7P3/2 →6S1/2 transition, subsequent to the radiative decay of 6D5/2 population to the 7P3/2 state, was used to assess the efficiency of the population transfer in the chosen two-step excitation scheme. The limitations imposed on the sensitivity of such resonance fluorescence detector caused by velocity-selective excitation in the first excitation step were pointed out and the way to overcome this obstacle is proposed.
    [Show full text]
  • FORREFERENCE Ttottobetakenfroidthisroot
    NASA Conference Publication 3314 NASA-CP-3314 19960003449 Second Annual Research Center for Optical Physics (RCOP)Forum Editedby FrankAllarioandDoyleTemple FORREFERENCE ttOTTOBETAKENFROIdTHISROOt# , ! .¢_nZ 6 1995 ....r " '[ l r_V '::_ ...;: +'':':'_:"_';CHCE;'l, lTE_ ,,. i.:_-'.?; ;".,',S.;,_ .... ,';f,!;.'.i Proceedings of a forum jointly sponsored by the National Aeronautics and Space Administration, Washington, D.C., and Hampton University, Hampton, Virginia, and held in Hampton, Virginia September 23-24, 1994 October 1995 NASA Technical Library 3 1176 01422 8291 NASA Conference Publication 3314 Second Annual Research Center for Optical Physics (RCOP) Forum Edited by Frank Allario Langley ResearchCenter ° Hampton, Virginia Doyle Temple Hampton University • Hampton, Virginia Proceedings of a forum jointly sponsored by the National Aeronautics and Space Administration, Washington, D.C., and Hampton University, Hampton, Virginia, and held in Hampton, Virginia September 23-24, 1994 National Aeronautics and Space Administration Langley ResearchCenter * Hampton, Virginia 23681-0001 October 1995 This publication is available from the following sources: NASA Centerfor AeroSpace Information NationalTechnical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA22161-2171 (301) 621-0390 (703) 487-4650 EXECUTIVE SUMMARY The Research Center for Optical Physics (RCOP) held its Second Annual Forum on September 23-24, 1994. The forum consisted of two days of technical sessions with invitedtalks,submittedtalks,andastudentpostersession.Dr.DemetriusVenable, Executive Vice President and Provost, delivered the welcome and opening remarks. He gave a brief history of the research programs in the physics department and their relationship to RCOP. Following the openingremarks, Dr. Frank AUario,Chairman of the Technical Advisory Committee, gave the technical overview of the collaboration between RCOP and NASA Langley; Dr.
    [Show full text]