A hybrid silicon-PDMS optofluidic platform for sensing applications Genni Testa,1,* Gianluca Persichetti,1 Pasqualina M. Sarro,2 and Romeo Bernini1 1Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council, (CNR), Via Diocleziano 328, 80124 Napoli, Italy 2DIMES-ECTM, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, The Netherlands *
[email protected] Abstract: A hybrid silicon-poly(dimethysiloxane) (PDMS) optofluidic platform for lab-on-a-chip applications is proposed. A liquid-core waveguide with a self-aligned solid-core waveguide and a microfluidic device are integrated with a multilayer approach, resulting in a three- dimensional device assembly. The optofluidic layer was fabricated with a hybrid silicon-polymer technology, whereas the microfluidic layer was fabricated with a soft lithography technique. The combination of different materials and fabrication processes allows a modular approach, enabling both the benefits from the high optical quality achievable with silicon technology and the low cost of polymer processing. The proposed chip has been tested for fluorescence measurements on Cy5 water solutions, demonstrating the possibility to obtain a limit of detection of 2.5 nM. ©2014 Optical Society of America OCIS codes: (130.0130) Integrated optics; (130.3990) Micro-optical devices; (280.4788) Optical sensing and sensors. References and links 1. B. Kuswandi, Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007). 2. K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis 30(S1 Suppl 1), S92–S100 (2009). 3. F. B. Myers and L.