Leucoraja Erinacea)

Total Page:16

File Type:pdf, Size:1020Kb

Leucoraja Erinacea) bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424594; this version posted April 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Intergenerational microbial transmission in the little skate (Leucoraja erinacea) 2 Running Title: Microbial transmission in the little skate 3 Katelyn Mika,1,2* Alexander S. Okamoto,3* Neil H. Shubin,1 David B. Mark Welch4 4 1Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA 5 2Genetic Medicine, University of Chicago, Chicago, USA 6 3Human Evolutionary Biology, Harvard University, Cambridge, MA, USA 7 4Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine 8 Biological Laboratory, Woods Hole, MA, USA 9 *These authors contributed equally to this work. 10 11 Correspondence should be addressed to K.M. ([email protected]). 12 900 E 57th St, Culver Hall 108 OBA 13 University of Chicago 14 Chicago, IL 60637-1428 15 Phone: 773-834-4774 16 17 18 19 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424594; this version posted April 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 26 Background 27 Microbial transmission from parent to offspring is hypothesized to be universal in vertebrates. 28 However, evidence for this is limited as many evolutionarily important clades remain 29 unexamined. Chondrichthyes, as one of the earliest–branching vertebrate lineages, provides an 30 opportunity to investigate the phylogenetic breadth of this hypothesis. The little skate, Leucoraja 31 erinacea, is an important model for this clade, yet little is known about its microbiome 32 composition and establishment. 33 Methods 34 To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S 35 rRNA amplicon sequencing to characterize the microbial communities associated with the skin, 36 gill, and egg capsule of the little skate, at six points during ontogeny. Community composition 37 was analyzed using the QIIME2 and PiCRUSt2 pipelines and microbial continuity between 38 stages was tracked using FEAST. 39 Results 40 We identify site-specific microbiomes dominated by the bacterial phyla Proteobacteria and 41 Bacteroidetes, a composition similar to, but distinct from, that of other chondrichthyans. Our 42 data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly 43 on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the 44 offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin 45 and gill communities later diverge as the internal gills and skin denticles develop. 46 Conclusions 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424594; this version posted April 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 47 Our study is the first exploration of the chondrichthyan microbiome throughout ontogeny and 48 provides the first evidence of vertical transmission in this group, which may be the primary 49 mechanism for the signature of phylosymbiosis previously observed in elasmobranchs. 50 51 Introduction 52 Host-associated microbial communities are often species and tissue-specific due to complex 53 local interactions between hosts and microbes [1, 2]. Species can acquire their microbiomes 54 through three possible processes: horizontal microbial transmission between conspecifics, 55 vertical microbial transmission from parents to offspring, or similar environmental sourcing 56 across the host species [3]. In the first case, microbes can be horizontally transferred between 57 conspecifics during social interactions and sexual behaviors, potentially homogenizing the 58 bacterial communities across the host population. Alternatively, vertical transmission allows 59 parents to directly provision their progeny with symbiotic microbial taxa [4]. Lastly, microbes 60 can be recruited from the surrounding environment through the host’s contact with fluids, 61 substrates, or diet, allowing for rapid changes in community composition in response to external 62 conditions over the lifespan of an individual. The relative contributions of these transmission 63 modes likely covary with life history, balancing the need for intergenerational continuity of 64 genomic information with the capacity for rapid environmental responsiveness. 65 66 Next-generation sequencing has facilitated the characterization of a broad range of microbiomes 67 across an increasing diversity of host species; nonetheless, many important marine clades remain 68 understudied. Chondrichthyans—the earliest branching of the extant, jawed-vertebrate lineages 69 —constitute one of the major divisions of vertebrates [5]. To date, only a limited number of 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424594; this version posted April 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 70 metagenomic studies of chondrichthyan microbiomes have been conducted [6–12]. Existing 71 studies of chondrichthyan species belonging to subclass Elasmobranchii, which includes sharks, 72 skates, rays, and guitarfish, are skewed towards the skin or gut microbiota of pelagic sharks [6– 73 10, 12], with the remaining focusing on the skin of select ray species [10, 11]. These datasets 74 show that elasmobranch skin microbiomes differ from the surrounding environment and are 75 primarily dominated by the phyla Proteobacteria and Bacteroidetes, similar to the skin 76 microbiomes of other marine species [13–15]. However, this work is limited to adult 77 elasmobranchs, providing no direct information on juvenile microbiota or intergenerational 78 transmission in chondrichthyans. 79 80 In some clades, microbiome composition closely tracts host phylogeny over evolutionary time, 81 resulting in long-term eco-evolutionary relationships known as phylosymbiosis [3]. Previous 82 research has identified signatures of phylosymbiosis in elasmobranchs by showing a correlation 83 between host phylogenetic distance and the taxonomic composition of the microbiome [10]. Of 84 the three processes of transmission described, horizontal transmission has the most limited 85 explanatory potential for this finding as chondrichthyan species are largely asocial with 86 aggregations driven primarily by environmental factors or reproduction [16, 17]. Vertical 87 transmission or environmental sourcing are more promising potential mechanisms to explain the 88 signature of phylosymbiosis. Data on environmental sourcing in chondrichthyans are limited [8, 89 11] and can be difficult to acquire, while vertical transmission has been unexplored. Given the 90 lack of data and the hypothesis that vertical transmission is universal in vertebrates [4], we 91 investigated the potential for vertical transmission in the model chondrichthyan, the little skate 92 (Leucoraja erinacea). 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424594; this version posted April 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 93 94 Oviparity is present in almost half of chondrichthyans and may be the plesiomorphic 95 reproductive mode for this clade [5, 18]. Like other skates (family: Rajidae), little skates are egg- 96 laying elasmobranchs that protect their embryos inside egg capsules, colloquially known as a 97 mermaid’s purses [19]. Development of the egg capsule starts in the nidamental organ where the 98 posterior half is formed before the fertilized egg is deposited into the capsule, at which point the 99 capsule is rapidly sealed shut [20]. These capsules are then laid on the seafloor and the embryos 100 develop inside for months to years depending upon the temperature [21, 22] and species [23]. 101 While initially sealed to the environment, slits at the anterior and posterior ends of egg capsule 102 open up late in development allowing seawater to flow through [24]. The potential effects of this 103 environmental shift on the microbiome and development are unknown. Upon hatching, juvenile 104 skates are self-sufficient, with no known parental care [5]. These life history traits–long 105 embryonic development and lack of parental care–pose potential obstacles to vertical microbial 106 transmission in members of this clade. Thus, skates can be a powerful system for testing vertical 107 transmission because confounding parental sources are minimized and any transmitted microbial 108 community must be stable over a substantial period of time. 109 110 The little skate is a model system for research in embryology and development [22, 25–28] with 111 a sequenced genome [29].
Recommended publications
  • The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
    THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….……….
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Microbiome Exploration of Deep-Sea Carnivorous Cladorhizidae Sponges
    Microbiome exploration of deep-sea carnivorous Cladorhizidae sponges by Joost Theo Petra Verhoeven A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology Memorial University of Newfoundland March 2019 St. John’s, Newfoundland and Labrador ABSTRACT Members of the sponge family Cladorhizidae are unique in having replaced the typical filter-feeding strategy of sponges by a predatory lifestyle, capturing and digesting small prey. These carnivorous sponges are found in many different environments, but are particularly abundant in deep waters, where they constitute a substantial component of the benthos. Sponges are known to host a wide range of microbial associates (microbiome) important for host health, but the extent of the microbiome in carnivorous sponges has never been extensively investigated and their importance is poorly understood. In this thesis, the microbiome of two deep-sea carnivorous sponge species (Chondrocladia grandis and Cladorhiza oxeata) is investigated for the first time, leveraging recent advances in high-throughput sequencing and through custom developed bioinformatic and molecular methods. Microbiome analyses showed that the carnivorous sponges co-occur with microorganisms and large differences in the composition and type of associations were observed between sponge species. Tissues of C. grandis hosted diverse bacterial communities, similar in composition between individuals, in stark contrast to C. oxeata where low microbial diversity was found with a high host-to-host variability. In C. grandis the microbiome was not homogeneous throughout the host tissue, and significant shifts occured within community members across anatomical regions, with the enrichment of specific bacterial taxa in particular anatomical niches, indicating a potential symbiotic role of such taxa within processes like prey digestion and chemolithoautotrophy.
    [Show full text]
  • APP201895 APP201895__Appli
    APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Mycoplasmosis and Upper Respiratory Tract Disease of Tortoises: a Review and Update Elliott R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The Veterinary Journal 201 (2014) 257–264 Contents lists available at ScienceDirect The Veterinary Journal journal homepage: www.elsevier.com/locate/tvjl Review Mycoplasmosis and upper respiratory tract disease of tortoises: A review and update Elliott R. Jacobson a,*, Mary B. Brown b, Lori D. Wendland b, Daniel R. Brown b, Paul A. Klein c, Mary M. Christopher d, Kristin H. Berry e a Department of Small Animal Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA b Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA c Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA d Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA e US Geological Survey, Western Ecological Research Center, Riverside, CA 92518, USA ARTICLE INFO ABSTRACT Article history: Tortoise mycoplasmosis is one of the most extensively characterized infectious diseases of chelonians. Accepted 30 May 2014 A 1989 outbreak of upper respiratory tract disease (URTD) in free-ranging Agassiz’s desert tortoises (Gopherus agassizii) brought together an investigative team of researchers, diagnosticians, pathologists, immunolo- Keywords: gists and clinicians from multiple institutions and
    [Show full text]
  • The Slow Dynamics of Mycoplasma Infections in a Tortoise Host Reveal
    Epidemiology and Infection The slow dynamics of mycoplasma infections in a tortoise host reveal heterogeneity cambridge.org/hyg pertinent to pathogen transmission and monitoring Original Paper 1,2 1 3 2 2 Cite this article: Aiello CM, Esque TC, Nussear C. M. Aiello , T. C. Esque , K. E. Nussear , P. G. Emblidge and P. J. Hudson KE, Emblidge PG, Hudson PJ (2019). The slow 1 dynamics of mycoplasma infections in a US Geological Survey, Western Ecological Research Center, Las Vegas Field Station, Henderson, NV 89074, USA; tortoise host reveal heterogeneity pertinent to 2Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA pathogen transmission and monitoring. 16802, USA and 3Department of Geography, University of Nevada, Reno, NV 89557, USA Epidemiology and Infection 147,e12,1–10. https://doi.org/10.1017/S0950268818002613 Abstract Received: 11 April 2018 The epidemiology of infectious diseases depends on many characteristics of disease progres- Revised: 29 June 2018 sion, as well as the consistency of these processes across hosts. Longitudinal studies of infec- Accepted: 25 August 2018 tion can thus inform disease monitoring and management, but can be challenging in wildlife, Key words: particularly for long-lived hosts and persistent infections. Numerous tortoise species of con- Chronic infection; Gopherus agassizii; host servation concern can be infected by pathogenic mycoplasmas that cause a chronic upper resistance; infectiousness; reptile pathogens respiratory tract disease (URTD). Yet, a lack of detailed data describing tortoise responses Author for correspondence: to mycoplasma infections obscures our understanding of URTDs role in host ecology. We C. M. Aiello, E-mail: christinamaiello@gmail.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Supplementary Information
    Supplementary Information Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats Caroline Utermann 1, Martina Blümel 1, Kathrin Busch 2, Larissa Buedenbender 1, Yaping Lin 3,4, Bradley A. Haltli 5, Russell G. Kerr 5, Elizabeta Briski 3, Ute Hentschel 2,6, Deniz Tasdemir 1,6* 1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany 2 Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 3 Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 4 Chinese Academy of Sciences, Research Center for Eco-Environmental Sciences, 18 Shuangqing Rd., Haidian District, Beijing, 100085, China 5 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada 6 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, Kiel 24118, Germany * Corresponding author: Deniz Tasdemir ([email protected]) This document includes: Supplementary Figures S1-S11 Figure S1. Genotyping of C. intestinalis with the mitochondrial marker gene COX3-ND1. Figure S2. Influence of the quality filtering steps on the total number of observed read pairs from amplicon sequencing. Figure S3. Rarefaction curves of OTU abundances for C. intestinalis and seawater samples. Figure S4. Multivariate ordination plots of the bacterial community associated with C. intestinalis. Figure S5. Across sample type and geographic origin comparison of the C. intestinalis associated microbiome.
    [Show full text]
  • Iscr of Rhodobacter Sphaeroides Functions As
    ORIGINAL RESEARCH IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein Bernhard Remes1, Benjamin D. Eisenhardt1, Vasundara Srinivasan2 & Gabriele Klug1 1Institut fu¨ r Mikrobiologie und Molekularbiologie, IFZ, Justus-Liebig-Universita¨ t, 35392 Giessen, Germany 2LOEWE-Zentrum fu¨ r Synthetische Mikrobiologie, Philipps Universita¨ t Marburg, 35043 Marburg, Germany Keywords Abstract Fe–S proteins, iron, Iron-Rhodo-box, iron- – sulfur cluster, IscR, Rhodobacter sphaeroides. IscR proteins are known as transcriptional regulators for Fe S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the pro- Correspondence duct of the first gene in the isc-suf operon. A major role of IscR in R. sphaer- Gabriele Klug, Heinrich-Buff-Ring 26, 35392 oides iron-dependent regulation was suggested in a bioinformatic study Giessen, Germany. Tel: (+49) 641 99 355 42; (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding Fax: (+49) 641 99 355 49; E-mail: gabriele. site in the upstream regions of several iron uptake genes, named Iron-Rhodo- [email protected] box. Most known IscR proteins have Fe–S clusters featuring (Cys)3(His)1 liga- tion. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys – Funding Information residue and it was considered unlikely that they can ligate an Fe S cluster. In This work was supported by the German this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor Research Foundation (Kl563/25) and by the of the Fe–S cluster status of the cell was analyzed.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Upper Respiratory Pathogens of Chelonians: a Snotty Turtle
    8/21/15 Upper Respiratory Pathogens of Chelonians: A Snotty Turtle Matt Allender, DVM, MS, PhD, Dipl. ACZM University of Illinois Illinois Fall Conference 2015 Pathogens o Ranavirus o Herpes o Mycoplasma General Host Type Species Iridovirus Insects Tipula iridescent virus Chloriridovirus Insects Mosquito iridescent virus Lymphocystivirus Fish Lymphocystivirus disease virus 1 Ranavirus Fish, Amphibians, Reptiles Frog Virus 3 Megalocystivirus Fish Infectious spleen and kidney necrosis virus 1 8/21/15 Ranavirus: Chelonian Significance o Emerging disease in wild and captive chelonia around the world. o Clinical signs include dyspnea, ocular, nasal and oral discharges, and death. 2 8/21/15 Prevalence 20032004 2015 Numerous cases State Species Reference Florida Gopher tortoise Westhouse et al. Florida Box turtle Johnson et al. North Carolina Eastern box turtle DeVoe et al., Allender et al. Tennessee Eastern box turtle Allender et al. Pennsylvania Eastern box turtle Johnson et al. Snapping turtle USGS Maryland Eastern box turtle USGS, Mao? Tortoise Mao? Rhode Island Painted turtle USGS Kentucky Eastern box turtle Ruder et al. Georgia Burmese Star tortoise Johnson et al. New York Eastern Box turtle Johnson et al. Texas Eastern box turtle Johnson et al. Massachusetts Eastern box turtle Allender Virginia Eastern box turtle Allender et al. Indiana Eastern box turtle Johnson pers. comm. Alabama Eastern box turtle Allender et al. Ranavirus: Clinical Signs o Present with sudden onset of severe illness or sudden death with no signs o Rhinitis, conjuctivitis,
    [Show full text]