Hindawi Publishing Corporation Chinese Journal of Mathematics Volume 2013, Article ID 107145, 7 pages http://dx.doi.org/10.1155/2013/107145

Research Article Incomplete π‘˜-Fibonacci and π‘˜-Lucas Numbers

JosΓ© L. RamΓ­rez

Instituto de MatematicasΒ΄ y sus Aplicaciones, Universidad Sergio Arboleda, Colombia

Correspondence should be addressed to JoseL.RamΒ΄ Β΄Δ±rez; [email protected]

Received 10 July 2013; Accepted 11 September 2013

Academic Editors: B. Li and W. van der Hoek

Copyright Β© 2013 JoseL.RamΒ΄ Β΄Δ±rez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define the incomplete k-Fibonacci and k-Lucas numbers; we study the recurrence relations and some properties of these numbers.

1. Introduction In [6],theauthorsdefinetheincompleteFibonacciandLucas 𝑝-numbers. Also the authors define the incomplete bivariate Fibonacci numbers and their generalizations have many Fibonacci and Lucas 𝑝- in [7]. interesting properties and applications to almost every field On the other hand, many kinds of generalizations of 𝐹 of science and art (e.g., see [1]). Fibonacci numbers 𝑛 are Fibonaccinumbershavebeenpresentedintheliterature.In defined by the particular, a generalization is the π‘˜-Fibonacci Numbers. For any positive real number π‘˜,theπ‘˜-Fibonacci sequence, 𝐹0 =0, 𝐹1 =1, 𝐹𝑛+1 =𝐹𝑛 +πΉπ‘›βˆ’1,𝑛⩾1. (1) say {πΉπ‘˜,𝑛}π‘›βˆˆN, is defined recurrently by There exist a lot of properties about Fibonacci numbers. 𝐹 =0, 𝐹 =1, 𝐹 =π‘˜πΉ +𝐹 ,𝑛⩾1. In particular, there is a beautiful combinatorial identity to π‘˜,0 π‘˜,1 π‘˜,𝑛+1 π‘˜,𝑛 π‘˜,π‘›βˆ’1 (4) Fibonacci numbers [1] In [8], π‘˜-Fibonacci numbers were found by studying ⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’π‘–βˆ’1 𝐹 = βˆ‘ ( ). the recursive application of two geometrical transformations 𝑛 𝑖 (2) 𝑖=0 used in the four-triangle longest-edge (4TLE) partition. These numbers have been studied in several papers; see8 [ – From (2), Filipponi [2] introduced the incomplete Fibonacci 14]. 𝐹 (𝑠) 𝐿 (𝑠) numbers 𝑛 and the incomplete Lucas numbers 𝑛 .They For any positive real number π‘˜,theπ‘˜-, say are defined by {𝐿 } π‘˜,𝑛 π‘›βˆˆN, is defined recurrently by 𝑠 π‘›βˆ’1βˆ’π‘— π‘›βˆ’1 𝐿 =2, 𝐿 =π‘˜, 𝐿 =π‘˜πΏ +𝐿 . 𝐹 (𝑠) = βˆ‘ ( ) (𝑛=1,2,3,...;0β‰€π‘ β‰€βŒŠ βŒ‹) , π‘˜,0 π‘˜,1 π‘˜,𝑛+1 π‘˜,𝑛 π‘˜,π‘›βˆ’1 (5) 𝑛 𝑗 2 𝑗=0 If π‘˜=1,wehavetheclassicalLucasnumbers.Moreover, 𝐿 =𝐹 +𝐹 ,𝑛⩾1 𝑠 𝑛 π‘›βˆ’π‘— 𝑛 π‘˜,𝑛 π‘˜,π‘›βˆ’1 π‘˜,𝑛+1 ;see[15]. 𝐿 (𝑠) = βˆ‘ ( ) (𝑛=1,2,3,...;0β‰€π‘ β‰€βŒŠ βŒ‹) . π‘˜ 𝑛 𝑗 In [12], the explicit formula to -Fibonacci numbers is 𝑗=0 π‘›βˆ’π‘— 2 ⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’π‘–βˆ’1 (3) 𝐹 = βˆ‘ ( )π‘˜π‘›βˆ’2π‘–βˆ’1, π‘˜,𝑛 𝑖 (6) 𝑖=0 Further in [3], generating functions of the incomplete Fibonacci and Lucas numbers are determined. In [4], Djord- and the explicit formula of π‘˜-Lucas numbers is jevicΒ΄ gave the incomplete generalized Fibonacci and Lucas βŒŠπ‘›/2βŒ‹ 𝑛 π‘›βˆ’π‘– numbers. In [5], DjordjevicΒ΄ and Srivastava defined incom- 𝐿 (π‘₯) = βˆ‘ ( )π‘˜π‘›βˆ’2i. π‘˜,𝑛 𝑖 (7) plete generalized Jacobsthal and Jacobsthal-Lucas numbers. 𝑖=0 π‘›βˆ’π‘– 2 Chinese Journal of Mathematics

From (6)and(7), we introduce the incomplete π‘˜- Proof. Use Definition 1 to rewrite the right-hand side of (11) Fibonacci and π‘˜-Lucas numbers and we obtain new recurrent as relations, new identities, and their generating functions. 𝑙+1 π‘›βˆ’π‘– 𝑙 π‘›βˆ’π‘–βˆ’1 π‘˜βˆ‘ ( )π‘˜π‘›βˆ’2𝑖 + βˆ‘ ( )π‘˜π‘›βˆ’2π‘–βˆ’1 𝑖 𝑖 𝑖=0 𝑖=0 2. The Incomplete π‘˜-Fibonacci Numbers 𝑙+1 π‘›βˆ’π‘– 𝑙+1 π‘›βˆ’π‘– = βˆ‘ ( )π‘˜π‘›βˆ’2𝑖+1 + βˆ‘ ( )π‘˜π‘›βˆ’2𝑖+1 Definition 1. The incomplete π‘˜-Fibonacci numbers are 𝑖 π‘–βˆ’1 defined by 𝑖=0 𝑖=1 𝑙+1 π‘›βˆ’π‘– π‘›βˆ’π‘– 𝑛 (13) =π‘˜π‘›βˆ’2𝑖+1 (βˆ‘ [( )+( )]) βˆ’ π‘˜π‘›+1 ( ) 𝑖 π‘–βˆ’1 βˆ’1 𝑙 𝑖=0 𝑙 π‘›βˆ’1βˆ’π‘– π‘›βˆ’2π‘–βˆ’1 π‘›βˆ’1 𝐹 = βˆ‘ ( )π‘˜ , 0β‰€π‘™β‰€βŒŠ βŒ‹. (8) π‘˜,𝑛 𝑖 2 𝑙+1 𝑖=0 π‘›βˆ’π‘–+1 = βˆ‘ ( )π‘˜π‘›βˆ’2𝑖+1 βˆ’0 𝑖 𝑖=0 π‘˜ 𝑙 In Table 1, some values of incomplete -Fibonacci num- =πΉπ‘˜,𝑛+2. bers are provided. We note that

Proposition 3. One has 𝐹⌊(π‘›βˆ’1)/2βŒ‹ =𝐹. 1,𝑛 𝑛 (9) 𝑠 𝑠 π‘›βˆ’π‘ βˆ’1 βˆ‘ ( ) 𝐹𝑙+𝑖 π‘˜π‘– =𝐹𝑙+𝑠 , 0≀𝑙≀ . 𝑖 π‘˜,𝑛+𝑖 π‘˜,𝑛+2𝑠 (14) 𝑖=0 2 π‘˜=1 For , we get incomplete Fibonacci numbers [2]. Proof (by induction on 𝑠). Sum (14)clearlyholdsfor𝑠=0and Some special cases of (8)are 𝑠=1(see (11)). Now suppose that the result is true for all 𝑗<𝑠+1;weproveitfor𝑠+1:

𝐹0 =π‘˜π‘›βˆ’1; (𝑛β‰₯1) , 𝑠+1 𝑠+1 π‘˜,𝑛 βˆ‘ ( )𝐹𝑙+𝑖 π‘˜π‘– 𝑖 π‘˜,𝑛+𝑖 1 π‘›βˆ’1 π‘›βˆ’3 𝑖=0 πΉπ‘˜,𝑛 =π‘˜ + (π‘›βˆ’2) π‘˜ ; (𝑛β‰₯3) 𝑠+1 𝑠 𝑠 𝑙+𝑖 𝑖 2 π‘›βˆ’1 π‘›βˆ’3 (π‘›βˆ’4)(π‘›βˆ’3) π‘›βˆ’5 = βˆ‘ [( )+( )] 𝐹 π‘˜ 𝐹 =π‘˜ + (π‘›βˆ’2) π‘˜ + π‘˜ ; (𝑛β‰₯5) 𝑖 π‘–βˆ’1 π‘˜,𝑛+𝑖 π‘˜,𝑛 2 𝑖=0

𝐹⌊(π‘›βˆ’1)/2βŒ‹ =𝐹 ; (𝑛β‰₯1) 𝑠+1 𝑠 𝑠+1 𝑠 π‘˜,𝑛 π‘˜,𝑛 = βˆ‘ ( )𝐹𝑙+𝑖 π‘˜π‘– + βˆ‘ ( )𝐹𝑙+𝑖 π‘˜π‘– 𝑖 π‘˜,𝑛+𝑖 π‘–βˆ’1 π‘˜,𝑛+𝑖 π‘›π‘˜ 𝑖=0 𝑖=0 ⌊(π‘›βˆ’3)/2βŒ‹ {𝐹 βˆ’ (𝑛 ) 𝐹 = π‘˜,𝑛 even (𝑛β‰₯3) . 𝑠 π‘˜,𝑛 { 2 𝑠 𝑠 𝐹 βˆ’1 (𝑛 ) =𝐹𝑙+𝑠 +( )𝐹𝑙+𝑠+1 π‘˜π‘ +1 + βˆ‘ ( )𝐹𝑙+𝑖+1 π‘˜π‘–+1 { π‘˜,𝑛 odd π‘˜,𝑛+2𝑠 𝑠+1 π‘˜,𝑛+𝑠+1 𝑖 π‘˜,𝑛+𝑖+1 (10) 𝑖=βˆ’1 𝑠 𝑠 𝑠 =𝐹𝑙+𝑠 +0+βˆ‘ ( )𝐹𝑙+𝑖+1 π‘˜π‘–+1 +( )𝐹𝑙 π‘˜,𝑛+2𝑠 𝑖 π‘˜,𝑛+𝑖+1 βˆ’1 π‘˜,𝑛 𝑙 𝑖=0 2.1. Some Recurrence Properties of the Numbers πΉπ‘˜,𝑛 Proposition 2. π‘˜ 𝑠 The recurrence relation of the incomplete - 𝑙+𝑠 𝑠 𝑙+𝑖+1 𝑖 𝑙 =πΉπ‘˜,𝑛+2𝑠 +π‘˜βˆ‘ ( )πΉπ‘˜,𝑛+𝑖+1π‘˜ +0 Fibonacci numbers πΉπ‘˜,𝑛 is 𝑖 𝑖=0

𝑙+𝑠 𝑙+𝑠+1 =πΉπ‘˜,𝑛+2𝑠 +π‘˜πΉπ‘˜,𝑛+2𝑠+1 𝑙+1 𝑙+1 𝑙 π‘›βˆ’2 πΉπ‘˜,𝑛+2 =π‘˜πΉπ‘˜,𝑛+1 +πΉπ‘˜,𝑛,0≀𝑙≀ . (11) 𝑙+𝑠+1 2 =πΉπ‘˜,𝑛+2𝑠+2. (15)

The relation (11) canbetransformedintothenonhomoge- neous recurrence relation Proposition 4. For 𝑛β‰₯2𝑙+2,

π‘ βˆ’1 𝑙 𝑙 𝑙 π‘›βˆ’1βˆ’π‘™ π‘›βˆ’1βˆ’2𝑙 βˆ‘πΉπ‘™ π‘˜π‘ βˆ’1βˆ’π‘– =𝐹𝑙+1 βˆ’π‘˜π‘ πΉπ‘™+1 . πΉπ‘˜,𝑛+2 =π‘˜πΉπ‘˜,𝑛+1 +πΉπ‘˜,𝑛 βˆ’( )π‘˜ . (12) π‘˜,𝑛+𝑖 π‘˜,𝑛+𝑠+1 π‘˜,𝑛+1 (16) 𝑙 𝑖=0 Chinese Journal of Mathematics 3

𝑙 Table 1: The numbers πΉπ‘˜,𝑛,for1⩽𝑛⩽10. n\l 01 2 3 4 11 2 k 2 3 k2 π‘˜ +1 3 4 k3 π‘˜ +2π‘˜ 4 2 4 2 5 k4 π‘˜ +3π‘˜ π‘˜ +3π‘˜ +1 5 3 5 3 6 k5 π‘˜ +4π‘˜ π‘˜ +4π‘˜ +3π‘˜ 6 4 6 4 2 6 4 2 7 k6 π‘˜ +5π‘˜ π‘˜ +5π‘˜ +6π‘˜ π‘˜ +5π‘˜ +6π‘˜ +1 7 5 7 5 3 7 5 3 8 k7 π‘˜ +6π‘˜ π‘˜ +6π‘˜ + 10π‘˜ π‘˜ +6π‘˜ + 10π‘˜ +4π‘˜ 8 6 8 6 4 8 6 4 2 8 6 4 2 9 k8 π‘˜ +7π‘˜ π‘˜ +7π‘˜ + 15π‘˜ π‘˜ +7π‘˜ + 15π‘˜ + 10π‘˜ π‘˜ +7π‘˜ + 15π‘˜ + 10π‘˜ +1 9 7 9 7 5 9 7 5 3 9 7 5 3 10 k9 π‘˜ +8π‘˜ π‘˜ +8π‘˜ + 21π‘˜ π‘˜ +8π‘˜ + 21π‘˜ + 20π‘˜ π‘˜ +8π‘˜ + 21π‘˜ + 20π‘˜ +5π‘˜

Proof(byinductionon𝑠). Sum (16) clearly holds for 𝑠=1 By deriving into the previous equation (respect to π‘˜), it is (see (11)). Now suppose that the result is true for all 𝑗<𝑠. obtained We prove it for 𝑠:

𝑠 π‘ βˆ’1 𝑙 π‘ βˆ’π‘– 𝑙 π‘ βˆ’π‘–βˆ’1 𝑙 βˆ‘πΉπ‘˜,𝑛+π‘–π‘˜ =π‘˜βˆ‘πΉπ‘˜,𝑛+π‘–π‘˜ +πΉπ‘˜,𝑛+𝑠 ⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’1βˆ’π‘– 𝑖=0 𝑖=0 𝐹 +π‘˜πΉσΈ€  = βˆ‘ (π‘›βˆ’2𝑖) ( )π‘˜π‘›βˆ’2π‘–βˆ’1 π‘˜,𝑛 π‘˜,𝑛 𝑖 =π‘˜(𝐹𝑙+1 βˆ’π‘˜π‘ πΉπ‘™+1 )+𝐹𝑙 𝑖=0 π‘˜,𝑛+𝑠+1 π‘˜,𝑛+1 π‘˜,𝑛+𝑠 (17) (22) 𝑙+1 𝑙 𝑠+1 𝑙+1 =(π‘˜πΉ +𝐹 )βˆ’π‘˜ 𝐹 ⌊(π‘›βˆ’1)/2βŒ‹ π‘˜,𝑛+𝑠+1 π‘˜,𝑛+𝑠 π‘˜,𝑛+1 π‘›βˆ’1βˆ’π‘– =𝑛𝐹 βˆ’2 βˆ‘ 𝑖( )π‘˜π‘›βˆ’2π‘–βˆ’1. π‘˜,𝑛 𝑖 𝑙+1 𝑠+1 𝑙+1 𝑖=0 =πΉπ‘˜,𝑛+𝑠+2 βˆ’π‘˜ πΉπ‘˜,𝑛+1.

Note that if π‘˜,in(4), is a real variable, then πΉπ‘˜,𝑛 =𝐹π‘₯,𝑛 and From Lemma 5, they correspond to the Fibonacci polynomials defined by 1 𝑛=0 { if 𝐹 (π‘₯) = π‘₯ 𝑛=1 𝑛+1 { if (18) 𝑛𝐿 βˆ’π‘˜πΉ π‘₯𝐹 (π‘₯) +𝐹 (π‘₯) 𝑛>1. 𝐹 +π‘˜( π‘˜,𝑛 π‘˜,𝑛 ) { 𝑛 π‘›βˆ’1 if π‘˜,𝑛 π‘˜2 +4 Lemma 5. One has (23) ⌊(π‘›βˆ’1)/2βŒ‹ σΈ€  𝑛𝐹𝑛+1 (π‘₯) βˆ’π‘₯𝐹𝑛 (π‘₯) +π‘›πΉπ‘›βˆ’1 (π‘₯) π‘›βˆ’1βˆ’π‘– 𝐹 (π‘₯) = =𝑛𝐹 βˆ’2 βˆ‘ 𝑖( )π‘˜π‘›βˆ’2π‘–βˆ’1. 𝑛 π‘₯2 +4 π‘˜,𝑛 𝑖 (19) 𝑖=0 𝑛𝐿 (π‘₯) βˆ’π‘₯𝐹 (π‘₯) = 𝑛 𝑛 . π‘₯2 +4 See Proposition 13 of [12]. From where, after some algebra (20)isobtained. Lemma 6. One has Proposition 7. One has ⌊(π‘›βˆ’1)/2βŒ‹ 2 π‘›βˆ’1βˆ’π‘– ((π‘˜ +4)π‘›βˆ’4)πΉπ‘˜,𝑛 βˆ’π‘›π‘˜πΏπ‘˜,𝑛 βˆ‘ 𝑖( )π‘˜π‘›βˆ’1βˆ’2𝑖 = . 𝑖 2 𝑖=0 2(π‘˜ +4) (20) 4𝐹 +π‘›π‘˜πΏ { π‘˜,𝑛 π‘˜,𝑛 { (𝑛 even) Proof. From (6)wehavethat ⌊(π‘›βˆ’1)/2βŒ‹ { 2(π‘˜2 +4) 𝑙 { βˆ‘ πΉπ‘˜,𝑛 = { 2 (24) ⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’1βˆ’π‘– {(π‘˜ +8)𝐹 +π‘›π‘˜πΏ π‘˜πΉ = βˆ‘ ( ) π‘˜π‘›βˆ’2𝑖. 𝑙=0 { π‘˜,𝑛 π‘˜,𝑛 (𝑛 ) . π‘˜,𝑛 𝑖 (21) 2 odd 𝑖=0 { 2(π‘˜ +4) 4 Chinese Journal of Mathematics

𝑙 Table 2: The numbers πΏπ‘˜,𝑛,for1⩽𝑛⩽9. n\l 01 2 3 4 1 k 2 2 2 π‘˜ π‘˜ +2 3 3 3 π‘˜ π‘˜ +3π‘˜ 4 4 2 4 2 4 π‘˜ π‘˜ +4π‘˜ π‘˜ +4π‘˜ +2 5 5 3 5 3 5 π‘˜ π‘˜ +5π‘˜ π‘˜ +5π‘˜ +5π‘˜ 6 6 4 6 4 2 6 4 2 6 π‘˜ π‘˜ +6π‘˜ π‘˜ +6π‘˜ +9π‘˜ π‘˜ +6π‘˜ +9π‘˜ +2 7 7 5 7 5 3 7 5 3 7 π‘˜ π‘˜ +7π‘˜ π‘˜ +7π‘˜ + 14π‘˜ π‘˜ +7π‘˜ + 14π‘˜ +7π‘˜ 8 8 6 8 6 4 8 6 4 2 8 6 4 2 8 π‘˜ π‘˜ +8π‘˜ π‘˜ +8π‘˜ + 20π‘˜ π‘˜ +8π‘˜ + 20π‘˜ + 16π‘˜ π‘˜ +8π‘˜ + 20π‘˜ + 16π‘˜ +2 9 9 7 9 7 5 9 7 5 3 9 7 5 3 9 π‘˜ π‘˜ +9π‘˜ π‘˜ +9π‘˜ + 27π‘˜ π‘˜ +9π‘˜ + 27π‘˜ + 30π‘˜ π‘˜ +9π‘˜ + 27π‘˜ + 30π‘˜ +9π‘˜

⌊(π‘›βˆ’1)/2βŒ‹ Proof π‘›βˆ’1 π‘›βˆ’1βˆ’π‘– = βˆ‘ (⌊ βŒ‹+1)( )π‘˜π‘›βˆ’1βˆ’2𝑖 𝑖 ⌊(π‘›βˆ’1)/2βŒ‹ 𝑖=0 2 𝑙 βˆ‘ πΉπ‘˜,𝑛 𝑙=0 ⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’1βˆ’π‘– βˆ’ βˆ‘ 𝑖( )π‘˜π‘›βˆ’1βˆ’2𝑖 𝑖 0 1 ⌊(π‘›βˆ’1)/2βŒ‹ 𝑖=0 =πΉπ‘˜,𝑛 +πΉπ‘˜,𝑛 +β‹…β‹…β‹…+πΉπ‘˜,𝑛

⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’1βˆ’0 π‘›βˆ’1 π‘›βˆ’1βˆ’π‘– π‘›βˆ’1βˆ’2𝑖 =( )π‘˜π‘›βˆ’1 =(⌊ βŒ‹+1)𝐹 βˆ’ βˆ‘ 𝑖( )π‘˜ . 0 π‘˜,𝑛 𝑖 2 𝑖=0 π‘›βˆ’1βˆ’0 π‘›βˆ’1βˆ’1 (25) +[( )π‘˜π‘›βˆ’1 +( )π‘˜π‘›βˆ’3] 0 1 From Lemma 6,(24)isobtained.

[ π‘˜ [ π‘›βˆ’1βˆ’0 π‘›βˆ’1βˆ’1 3. The Incomplete -Lucas Numbers +β‹…β‹…β‹…+[ ( )π‘˜π‘›βˆ’1 +( )π‘˜π‘›βˆ’3 [ 0 1 Definition 8. The incomplete π‘˜-Lucas numbers are defined by [ 𝑙 𝑛 π‘›βˆ’π‘– 𝑛 𝐿𝑙 = βˆ‘ ( )π‘˜π‘›βˆ’2𝑖, 0β‰€π‘™β‰€βŒŠ βŒ‹. π‘›βˆ’1 π‘˜,𝑛 π‘›βˆ’π‘– 𝑖 2 (26) π‘›βˆ’1βˆ’βŒŠ βŒ‹ 𝑖=0 2 ] π‘›βˆ’1βˆ’2⌊(π‘›βˆ’1)/2βŒ‹] +β‹…β‹…β‹…+( π‘›βˆ’1 )π‘˜ ] In Table 2,somenumbersofincompleteπ‘˜-Lucas numbers ⌊ βŒ‹ ] 2 are provided. ] We note that π‘›βˆ’1 π‘›βˆ’1βˆ’0 πΏβŒŠπ‘›/2βŒ‹ =𝐿 . =(⌊ βŒ‹+1)( )π‘˜π‘›βˆ’1 1,𝑛 𝑛 (27) 2 0 Some special cases of (26)are π‘›βˆ’1 π‘›βˆ’1βˆ’1 +⌊ βŒ‹( )π‘˜π‘›βˆ’3 𝐿0 =π‘˜π‘›; (𝑛β‰₯1) , 2 1 π‘˜,𝑛 𝐿1 =π‘˜π‘› +π‘›π‘˜π‘›βˆ’2; (𝑛β‰₯2) , π‘›βˆ’1 π‘˜,𝑛 π‘›βˆ’1βˆ’βŒŠ βŒ‹ 2 𝑛 (π‘›βˆ’3) π‘›βˆ’1βˆ’2⌊(π‘›βˆ’1)/2βŒ‹ 𝐿2 =π‘˜π‘› +π‘›π‘˜π‘›βˆ’2 + π‘˜π‘›βˆ’4; (𝑛β‰₯4) , +β‹…β‹…β‹…+( π‘›βˆ’1 )π‘˜ π‘˜,𝑛 2 ⌊ βŒ‹ (28) 2 βŒŠπ‘›/2βŒ‹ πΏπ‘˜,𝑛 =πΏπ‘˜,𝑛; (𝑛β‰₯1) ,

⌊(π‘›βˆ’1)/2βŒ‹ π‘›βˆ’1 π‘›βˆ’1βˆ’π‘– πΏπ‘˜,𝑛 βˆ’2 (𝑛 even) = βˆ‘ (⌊ βŒ‹+1βˆ’π‘–)( )π‘˜π‘›βˆ’1βˆ’2𝑖 𝐿⌊(π‘›βˆ’2)/2βŒ‹ ={ (𝑛β‰₯2) . 𝑖 π‘˜,𝑛 𝑖=0 2 πΏπ‘˜,𝑛 βˆ’π‘›π‘˜ (𝑛 odd) Chinese Journal of Mathematics 5

𝑙 3.1. Some Recurrence Properties of the Numbers πΏπ‘˜,𝑛 Proposition 12. One has

Proposition 9. One has 𝑠 𝑠 π‘›βˆ’π‘  βˆ‘ ( )𝐿𝑙+𝑖 π‘˜π‘– =𝐿𝑙+𝑠 ,0≀𝑙≀ . 𝑛 𝑖 π‘˜,𝑛+𝑖 π‘˜,𝑛+2𝑠 2 (37) 𝐿𝑙 =πΉπ‘™βˆ’1 +𝐹𝑙 ,0β‰€π‘™β‰€βŒŠβŒ‹. 𝑖=0 π‘˜,𝑛 π‘˜,π‘›βˆ’1 π‘˜,𝑛+1 2 (29) Proof. Using (29)and(14), we write Proof. By (8), rewrite the right-hand side of (29)as 𝑠 𝑠 π‘™βˆ’1 𝑙 𝑠 𝑠 π‘›βˆ’2βˆ’π‘– π‘›βˆ’π‘– βˆ‘ ( )𝐿𝑙+𝑖 π‘˜π‘– = βˆ‘ ( )[𝐹𝑙+π‘–βˆ’1 +𝐹𝑙+𝑖 ]π‘˜π‘– βˆ‘ ( )π‘˜π‘›βˆ’2βˆ’2𝑖 + βˆ‘ ( )π‘˜π‘›βˆ’2𝑖 𝑖 π‘˜,𝑛+𝑖 𝑖 π‘˜,𝑛+π‘–βˆ’1 π‘˜,𝑛+𝑖+1 𝑖 𝑖 𝑖=0 𝑖=0 𝑖=0 𝑖=0 𝑠 𝑠 𝑠 𝑠 𝑙 π‘›βˆ’1βˆ’π‘– 𝑙 π‘›βˆ’π‘– = βˆ‘ ( )𝐹𝑙+π‘–βˆ’1 π‘˜π‘– + βˆ‘ ( )𝐹𝑙+𝑖 π‘˜π‘– (38) = βˆ‘ ( )π‘˜π‘›βˆ’2𝑖 + βˆ‘ ( )π‘˜π‘›βˆ’2𝑖 𝑖 π‘˜,𝑛+π‘–βˆ’1 𝑖 π‘˜,𝑛+𝑖+1 π‘–βˆ’1 𝑖 𝑖=0 𝑖=0 𝑖=1 𝑖=0 =πΉπ‘™βˆ’1+𝑠 +𝐹𝑙+𝑠 =𝐿𝑙+𝑠 . 𝑙 π‘›βˆ’1βˆ’π‘– π‘›βˆ’π‘– π‘›βˆ’1 (30) π‘˜,π‘›βˆ’1+2𝑠 π‘˜,𝑛+1+2𝑠 π‘˜,𝑛+2𝑠 = βˆ‘ [( )+( )] π‘˜π‘›βˆ’2𝑖 βˆ’( ) π‘–βˆ’1 𝑖 βˆ’1 𝑖=0

𝑙 𝑛 π‘›βˆ’π‘– Proposition 13. For 𝑛β‰₯2𝑙+1, = βˆ‘ ( )π‘˜π‘›βˆ’2𝑖 +0 π‘›βˆ’π‘– 𝑖 𝑖=0 π‘ βˆ’1 𝑙 π‘ βˆ’1βˆ’π‘– 𝑙+1 𝑠 𝑙+1 𝑙 βˆ‘πΏπ‘˜,𝑛+π‘–π‘˜ =πΏπ‘˜,𝑛+𝑠+1 βˆ’π‘˜πΏπ‘˜,𝑛+1. (39) =πΏπ‘˜,𝑛. 𝑖=0

The proof can be done by using (31) and induction on 𝑠. Proposition 10. The recurrence relation of the incomplete π‘˜- Lemma 14. 𝑙 One has Lucas numbers πΏπ‘˜,𝑛 is βŒŠπ‘›/2βŒ‹ 𝑛 𝑛 π‘›βˆ’π‘– π‘›βˆ’2𝑖 𝑛 𝑙+1 𝑙+1 𝑙 βˆ‘ 𝑖 ( )π‘˜ = [πΏπ‘˜,𝑛 βˆ’π‘˜πΉπ‘˜,𝑛]. (40) πΏπ‘˜,𝑛+2 =π‘˜πΏπ‘˜,𝑛+1 +πΏπ‘˜,𝑛, 0β‰€π‘™β‰€βŒŠ βŒ‹. (31) π‘›βˆ’π‘– 𝑖 2 2 𝑖=0

The relation (31) canbetransformedintothenonhomoge- The proof is similar to Lemma 6. neous recurrence relation 𝑛 π‘›βˆ’π‘™ Proposition 15. One has 𝐿𝑙 =π‘˜πΏπ‘™ +𝐿𝑙 βˆ’ ( )π‘˜π‘›βˆ’2𝑙. π‘˜,𝑛+2 π‘˜,𝑛+1 π‘˜,𝑛 𝑙 (32) π‘›βˆ’π‘™ π‘›π‘˜ βŒŠπ‘›/2βŒ‹ { {πΏπ‘˜,𝑛 + πΉπ‘˜,𝑛 (𝑛 even) Proof. Using (29)and(11), we write βˆ‘ 𝐿𝑙 = 2 π‘˜,𝑛 {1 (41) 𝑙=0 (𝐿 +π‘›π‘˜πΉ ) (𝑛 ) . 𝑙+1 𝑙 𝑙+1 {2 π‘˜,𝑛 π‘˜,𝑛 odd πΏπ‘˜,𝑛+2 =πΉπ‘˜,𝑛+1 +πΉπ‘˜,𝑛+3 𝑙 π‘™βˆ’1 𝑙+1 𝑙 Proof. An argument analogous to that of the proof of =π‘˜πΉπ‘˜,𝑛 +πΉπ‘˜,π‘›βˆ’1 +π‘˜πΉπ‘˜,𝑛+2 +πΉπ‘˜,𝑛+1 (33) Proposition 7 yields 𝑙 𝑙+1 π‘™βˆ’1 𝑙 =π‘˜(πΉπ‘˜,𝑛 +πΉπ‘˜,𝑛+2)+πΉπ‘˜,π‘›βˆ’1 +πΉπ‘˜,𝑛+1 βŒŠπ‘›/2βŒ‹ 𝑛 βŒŠπ‘›/2βŒ‹ 𝑛 π‘›βˆ’π‘– βˆ‘ 𝐿𝑙 =(⌊ βŒ‹+1)𝐿 βˆ’ βˆ‘ 𝑖 ( )π‘˜π‘›βˆ’2𝑖. =π‘˜πΏπ‘™+1 +𝐿𝑙 . π‘˜,𝑛 2 π‘˜,𝑛 π‘›βˆ’π‘– 𝑖 (42) π‘˜,𝑛+1 π‘˜,𝑛 𝑙=0 𝑖=0

From Lemma 14,(41)isobtained. Proposition 11. One has π‘›βˆ’1 4. Generating Functions of the Incomplete π‘˜πΏπ‘™ =𝐹𝑙 βˆ’πΉπ‘™βˆ’2 , 0β‰€π‘™β‰€βŒŠ βŒ‹. π‘˜ π‘˜ π‘˜,𝑛 π‘˜,𝑛+2 π‘˜,π‘›βˆ’2 2 (34) -Fibonacci and - Proof. By (29), In this section, we give the generating functions of incomplete π‘˜-Fibonacci and π‘˜-Lucas numbers. 𝐹𝑙 =𝐿𝑙 βˆ’πΉπ‘™βˆ’1,πΉπ‘™βˆ’2 =πΏπ‘™βˆ’1 βˆ’πΉπ‘™βˆ’1, π‘˜,𝑛+2 π‘˜,𝑛+1 π‘˜,𝑛 π‘˜,π‘›βˆ’2 π‘˜,π‘›βˆ’1 π‘˜,𝑛 (35) ∞ Lemma 16 (see [3,page592]).Let {𝑠𝑛}𝑛=0 be a complex whence, from (31), sequence satisfying the following nonhomogeneous recurrence 𝑙 π‘™βˆ’2 𝑙 π‘™βˆ’1 𝑙 relation: πΉπ‘˜,𝑛+2 βˆ’πΉπ‘˜,π‘›βˆ’2 =πΏπ‘˜,𝑛+1 βˆ’πΏπ‘˜,π‘›βˆ’1 =π‘˜πΏπ‘˜,𝑛. (36)

𝑠𝑛 =π‘Žπ‘ π‘›βˆ’1 +π‘π‘ π‘›βˆ’2 +π‘Ÿπ‘› (𝑛>1) , (43) 6 Chinese Journal of Mathematics

where π‘Ž and 𝑏 are complex numbers and {π‘Ÿπ‘›} is a given complex Now let sequence. Then, the π‘ˆ(𝑑) of the sequence 𝑠 =𝐿𝑙 ,𝑠=𝐿𝑙 ,𝑠=𝐿𝑙 . {𝑠𝑛} is 0 π‘˜,2𝑙 1 π‘˜,2𝑙+1 𝑛 π‘˜,𝑛+2𝑙 (51) 𝐺 (𝑑) +𝑠 βˆ’π‘Ÿ +(𝑠 βˆ’π‘  π‘Žβˆ’π‘Ÿ)𝑑 Also let π‘ˆ (𝑑) = 0 0 1 0 1 , (44) 1βˆ’π‘Žπ‘‘βˆ’π‘π‘‘2 𝑛+2π‘™βˆ’2 π‘Ÿ =π‘Ÿ =0, π‘Ÿ =( )π‘˜π‘›+2π‘™βˆ’2. 0 1 𝑛 𝑛+π‘™βˆ’2 (52) where 𝐺(𝑑) denotes the generating function of {π‘Ÿπ‘›}. 2 The generating function of the sequence {π‘Ÿπ‘›} is 𝐺(𝑑) =𝑑 (2 βˆ’ Theorem 17. The generating function of the incomplete π‘˜- 𝑙+1 𝑙 𝑑)/(1 βˆ’ π‘˜π‘‘) (see [16,page355]).Thus,fromLemma 16,we Fibonacci numbers πΉπ‘˜,𝑛 is given by get the generating function π‘†π‘˜,𝑙(π‘₯) of sequence {𝑠𝑛}. ∞ 𝑙 𝑖 π‘…π‘˜,𝑙 (π‘₯) = βˆ‘πΉπ‘˜,𝑖𝑑 𝑖=0 5. Conclusion 2 In this paper, we introduce incomplete π‘˜-Fibonacci and 2𝑙+1 𝑑 =𝑑 [πΉπ‘˜,2𝑙+1 +(πΉπ‘˜,2𝑙+2 βˆ’π‘˜πΉπ‘˜,2𝑙+1)π‘‘βˆ’ ] π‘˜-Lucas numbers, and we obtain new identities. In [17], (1βˆ’π‘˜π‘‘)𝑙+1 the authors introduced the β„Ž(π‘₯)-Fibonacci polynomials. βˆ’1 That generalizes Catalan’s Fibonacci polynomials and the Γ—[1βˆ’π‘˜π‘‘βˆ’π‘‘2] . π‘˜-Fibonacci numbers. Let β„Ž(π‘₯) be a with real (45) coefficients. The β„Ž(π‘₯)-Fibonacci polynomials {πΉβ„Ž,𝑛(π‘₯)}π‘›βˆˆN are defined by the recurrence relation Proof. Let 𝑙 be a fixed positive integer. From (8)and(12), 𝑙 𝑙 𝑙 πΉπ‘˜,𝑛 =0for 0 ≀ 𝑛 < 2𝑙+1, πΉπ‘˜,2𝑙+1 =πΉπ‘˜,2𝑙+1,andπΉπ‘˜,2𝑙+2 = πΉβ„Ž,0 (π‘₯) =0, πΉβ„Ž,1 (π‘₯) =1, πΉπ‘˜,2𝑙+2,and (53) πΉβ„Ž,𝑛+1 (π‘₯) =β„Ž(π‘₯) πΉβ„Ž,𝑛 (π‘₯) +πΉβ„Ž,π‘›βˆ’1 (π‘₯) ,𝑛⩾1. π‘›βˆ’3βˆ’π‘™ 𝐹𝑙 =π‘˜πΉπ‘™ +𝐹𝑙 βˆ’( )π‘˜π‘›βˆ’3βˆ’2𝑙. π‘˜,𝑛 π‘˜,π‘›βˆ’1 π‘˜,π‘›βˆ’2 𝑙 (46) It would be interesting to study a definition of incomplete β„Ž(π‘₯)-Fibonacci polynomials and research their properties. Now let 𝑙 𝑙 𝑙 Acknowledgments 𝑠0 =πΉπ‘˜,2𝑙+1,𝑠1 =πΉπ‘˜,2𝑙+2,𝑠𝑛 =πΉπ‘˜,𝑛+2𝑙+1. (47) The author would like to thank the anonymous referees for Also let their helpful comments. The author was partially supported 𝑛+π‘™βˆ’2 π‘›βˆ’2 by Universidad Sergio Arboleda under Grant no. USA-II- π‘Ÿ0 =π‘Ÿ1 =0, π‘Ÿπ‘› =( )π‘˜ . (48) π‘›βˆ’2 2011-0059.

2 The generating function of the sequence {π‘Ÿπ‘›} is 𝐺(𝑑) =𝑑 /(1 βˆ’ 𝑙+1 References π‘˜π‘‘) (see [16,page355]).Thus,fromLemma 16,wegetthe generating function π‘…π‘˜,𝑙(π‘₯) of sequence {𝑠𝑛}. [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001. Theorem 18. The generating function of the incomplete π‘˜- [2] P.Filipponi, β€œIncomplete Fibonacci and Lucas numbers,” Rendi- 𝑙 Lucas numbers πΏπ‘˜,𝑛 is given by conti del Circolo Matematico di Palermo,vol.45,no.1,pp.37–56, 1996. ∞ Β΄ 𝑆 (π‘₯) = βˆ‘πΏπ‘™ 𝑑𝑖 [3] A. PinterΒ΄ and H. M. Srivastava, β€œGenerating functions of π‘˜,𝑙 π‘˜,𝑖 the incomplete Fibonacci and Lucas numbers,” Rendiconti del 𝑖=0 Circolo Matematico di Palermo,vol.48,no.3,pp.591–596,1999. 𝑑2 (2βˆ’π‘‘) [4] G. B. Djordjevic,Β΄ β€œGenerating functions of the incomplete gen- =𝑑2𝑙 [𝐿 +(𝐿 βˆ’π‘˜πΏ )π‘‘βˆ’ ] (49) π‘˜,2𝑙 π‘˜,2𝑙+1 π‘˜,2𝑙 𝑙+1 eralized Fibonacci and generalized Lucas numbers,” Fibonacci (1βˆ’π‘˜π‘‘) Quarterly,vol.42,no.2,pp.106–113,2004. 2 βˆ’1 [5] G. B. DjordjevicΒ΄ and H. M. Srivastava, β€œIncomplete generalized Γ—[1βˆ’π‘˜π‘‘βˆ’π‘‘ ] . Jacobsthal and Jacobsthal-Lucas numbers,” Mathematical and Computer Modelling,vol.42,no.9-10,pp.1049–1056,2005. Proof. Theproofofthistheoremissimilartotheproofof [6] D. Tasci and M. Cetin Firengiz, β€œIncomplete Fibonacci and Theorem 17.Let𝑙 be a fixed positive integer. From (26)and 𝑙 𝑙 𝑙 Lucas p-numbers,” Mathematical and Computer Modelling,vol. (32), πΏπ‘˜,𝑛 =0for 0≀𝑛<2𝑙, πΏπ‘˜,2𝑙 =πΏπ‘˜,2𝑙,andπΏπ‘˜,2𝑙+1 =πΏπ‘˜,2𝑙+1, 52, no. 9-10, pp. 1763–1770, 2010. and [7] D. Tasci, M. Cetin Firengiz, and N. Tuglu, β€œIncomplete bivariate Fibonaccu and Lucas p-polynomials,” Discrete Dynamics in 𝑙 𝑙 𝑙 π‘›βˆ’2 π‘›βˆ’2βˆ’π‘™ π‘›βˆ’2βˆ’2𝑙 𝐿 =π‘˜πΏ +𝐿 βˆ’ ( )π‘˜ . Nature and Society, vol. 2012, Article ID 840345, 11 pages, 2012. π‘˜,𝑛 π‘˜,π‘›βˆ’1 π‘˜,π‘›βˆ’2 π‘›βˆ’2βˆ’π‘™ π‘›βˆ’2βˆ’2𝑙 [8] S. FalconΒ΄ and A.Β΄ Plaza, β€œOn the Fibonacci k-numbers,” Chaos, (50) Solitons and Fractals,vol.32,no.5,pp.1615–1624,2007. Chinese Journal of Mathematics 7

[9] C. Bolat and H. Kose,Β¨ β€œOn the properties of k-Fibonacci numbers,” International Journal of Contemporary Mathematical Sciences, vol. 22, no. 5, pp. 1097–1105, 2010. [10] S. Falcon, β€œThe k-Fibonacci matrix and the Pascal matrix,” Central European Journal of Mathematics,vol.9,no.6,pp.1403– 1410, 2011. [11] S. FalconΒ΄ and A.Β΄ Plaza, β€œThe k-Fibonacci sequence and the Pascal 2-triangle,” Chaos, Solitons and Fractals,vol.33,no.1,pp. 38–49, 2007. [12] S. FalconΒ΄ and A.Β΄ Plaza, β€œOn k-Fibonacci sequences and polyno- mials and their derivatives,” Chaos, Solitons and Fractals,vol.39, no. 3, pp. 1005–1019, 2009. [13] J. RamΒ΄Δ±rez, β€œSome properties of convolved k-Fibonacci num- bers,” ISRN Combinatorics,vol.2013,ArticleID759641,5pages, 2013. [14] A. Salas, β€œAbout k-Fibonacci numbers and their associated numbers,” International Mathematical Forum,vol.50,no.6,pp. 2473–2479, 2011. [15] S. Falcon, β€œOn the k-Lucas numbers,” International Journal of Contemporary Mathematical Sciences,vol.21,no.6,pp.1039– 1050, 2011. [16] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press, Ellis Horwood Limited, Chichester, UK, John Wiley & Sons, New York, NY, USA, 1984. [17] A. Nalli and P. Haukkanen, β€œOn generalized Fibonacci and Lucas polynomials,” Chaos, Solitons and Fractals,vol.42,no.5, pp.3179–3186,2009. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

The Scientific International Journal of World Journal Differential Equations Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

International Journal of Advances in Combinatorics Mathematical Physics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

International Journal of Journal of Mathematics and Mathematical Discrete Mathematics Sciences

Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014