Hindawi Publishing Corporation Chinese Journal of Mathematics Volume 2013, Article ID 107145, 7 pages http://dx.doi.org/10.1155/2013/107145 Research Article Incomplete -Fibonacci and -Lucas Numbers José L. Ramírez Instituto de Matematicas´ y sus Aplicaciones, Universidad Sergio Arboleda, Colombia Correspondence should be addressed to JoseL.Ram´ ´ırez;
[email protected] Received 10 July 2013; Accepted 11 September 2013 Academic Editors: B. Li and W. van der Hoek Copyright © 2013 JoseL.Ram´ ´ırez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define the incomplete k-Fibonacci and k-Lucas numbers; we study the recurrence relations and some properties of these numbers. 1. Introduction In [6],theauthorsdefinetheincompleteFibonacciandLucas -numbers. Also the authors define the incomplete bivariate Fibonacci numbers and their generalizations have many Fibonacci and Lucas -polynomials in [7]. interesting properties and applications to almost every field On the other hand, many kinds of generalizations of of science and art (e.g., see [1]). Fibonacci numbers are Fibonaccinumbershavebeenpresentedintheliterature.In defined by the recurrence relation particular, a generalization is the -Fibonacci Numbers. For any positive real number ,the-Fibonacci sequence, 0 =0, 1 =1, +1 = +−1,⩾1. (1) say {,}∈N, is defined recurrently by There exist a lot of properties about Fibonacci numbers. =0, =1, = + ,⩾1. In particular, there is a beautiful combinatorial identity to ,0 ,1 ,+1 , ,−1 (4) Fibonacci numbers [1] In [8], -Fibonacci numbers were found by studying ⌊(−1)/2⌋ −−1 = ∑ ( ). the recursive application of two geometrical transformations (2) =0 used in the four-triangle longest-edge (4TLE) partition.