PROPERTIES of DRUG BLOCKADE of a LARGE CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM CHANNEL in CULTURED RAT HIPPOCAMPAL NEURONS by XUEPING WANG M.D

Total Page:16

File Type:pdf, Size:1020Kb

PROPERTIES of DRUG BLOCKADE of a LARGE CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM CHANNEL in CULTURED RAT HIPPOCAMPAL NEURONS by XUEPING WANG M.D PROPERTIES OF DRUG BLOCKADE OF A LARGE CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM CHANNEL IN CULTURED RAT HIPPOCAMPAL NEURONS by XUEPING WANG M.D. Beijing Medical University, 1984 M.Sc. Beijing Medical University, 1989 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA AUGUST 1991 ©XUEPING, WANG, 1991 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (Signature) Department of Pharmacology and Therapeutics Vancouver, Canada Date July 4th, 1992 DE-6 (2/88) ii ABSTRACT The objective of these experiments was to investigate the actions of a number of novel putative class III antiarrhythmic agents on the large conductance calcium-activated potassium channel (BKca) in cultured hippocampal neurons. The experiments were carried out in three steps. In the first set of experiments BKca channel, isolated from cultured rat hippocampal CA1 neuronal somatic membrane, was first identified and its physiological and pharmacological properties were characterized at a single channel level. This BKca channel had an average single channel conductance of 80 pS with physiological transmembrane K+ (140 mM inside and 5 mM outside). It was very selective to K+over Na+, a ratio of 100 to 7 was determined from this experiment. Calcium, at the internal side of the membrane, was necessary to activate the BKcaa channel. With low internal calcium concentration, depolarization could promote the rate of channel openings. An e-fold increase in p0 was found with 1 n M internal calcium and 15 mV depolarization. With 200 nM internal calcium, p0 was virtually independent of voltage. 0.1 mM external TEA showed fast blockade of this channel. Internal TEA and 4-AP (internal or external) showed no effect on BKca. In the second set of experiments, the actions of putative class III drugs on BKca was studied. The drugs were RP-62719, UK-68798, tedisamil (KC-8857) and risotilide (WY-48986) at concentrations 0.1 ~ 10uM. All these agents, applied both to the inside or to the outside of the patch membrane, resulted in the opening of the BKca channel to exhibit rapid flicking from open to nonconducting levels. This effect was dose-dependent and for KC-8857 and UK-68798 was evident at concentrations of 0.1 uM. The blocking rate constants were determined from a simple open channel blockade scheme and were not dependent on voltages. Single channel conductance and ionic selectivity were not affected by the drugs. The potencies for channel block of the drugs acting either externally or internally iii were in the order UK-68798>tedisamil>RP-62719> risotilide with UK-68798 reducing the mean open time of BKca by one-half at a concentration near 0.4/iM. In the final set of experiments, the thermodynamics associated with RP- 62719 block BKca channel was studied in order to better understand the molecular mechanisms of channel block. The Q10 associated with the channel mean open time was found to be 2.2 with 5 /iM RP-62719 at the inner surface of the patch membrane. The blocking and unblocking rate constants were determined using the simple open channel block scheme. Thermodynamic analysis, using transition rate theory, showed that the blocking rate constant was associated with a large increase in entropy. The relatively high temperature dependence for channel blockade was not consistent with a rate-limiting process established by simple diffusion of the agent to a channel blocking site. Channel block may involve conformational changes in the channel protein as a consequence of hydrophobic interactions between drug and channel sites. iv TABLE OF CONTENTS CHAPTER PAGE n ABSTRACT ii IV LIST OF TABLES vii V LIST OF FIGURES viii VI LIST OF LEGENDS x VH ACKNOWLEDGEMENT xii 1 INTRODUCTION 1 1.1 BACKGROUNDS OF SINGLE KCa CHANNEL STUDIES 1 1.1.1 KCa Classifications 1 1.1.2 BKCa Channels 2 1.1.2.1 BKca Channel Distributions and Function 2 1.1.2.2 Ca2+ Sensitivity and Selectivity of Ca2 + -Binding Sites 3 1.1.2.3 BKCa Channel Voltage Dependence 5 1.1.2.4 BKca Channel Selectivity and Conductance 5 1.1.2.5 BKCa Channel Gating Kinetics 6 1.1.2.6 BKCa Channel Pharmacology 7 2+ 2+ 1.1.2.6.1 Na + , Ca and Ba Blockade of BKCa 7 1.1.2.6.2 TEA Blockade of BKCa 8 1.1.2.6.3 Toxin Blockade of BKCa 8 1.1.3 SKCa Channels 10 1.1.3.1 SKfja Channels Distributions and Function 10 1.1.3.2 SKca Conductance and Calcium Dependence 11 TABLE OF CONTENTS (CONT'S) CHAPTER PAGE 1.1.3.3 SKCa Channel Pharmacology 11 1.1.4 Ca2+-activated K+ Currents in Hippocampal Neurons 12 1.2 SEQUENTIAL OPEN CHANNEL BLOCKADE MODEL 12 1.3 PATCH CLAMP TECHNIQUE 13 1.4 SYNTHETIC CLASS III ANTIARRHYTHMIC DRUGS 14 1.5 THERMODYNAMIC ANALYSIS 15 2 METHODS 19 2.1 CELL CULTURE PREPARATION 19 2.2 ELECTROPHYSIOLOGY 20 2.2.1 Glass and Pipettes 20 2.2.2 Mechanical Setup 21 2.2.3 Single Channel Patch-Clamp Configurations 21 2.2.4 Solutions Used 22 2.2.5 Recordings 25 2.2.6 Analysis Procedures 25 2.3 TEMPERATURE STUDIES 30 2.3.1 Equations for Thermodynamic Studies 31 3 RESULTS 33 3.1 IDENTIFICATION AND PROPERTIES OF SINGLE Krja CHANNELS 33 IN CULTURED RATCAl HIPPOCAMPAL NEURONS 3.1.1 Identification: Selectivity and Channel Conductance 33 3.1.2 Calcium Dependence 38 3.1.3 Voltage Dependence 39 vi TABLE OF CONTENTS (CONT'S) CHAPTER PAGE 3.1.4 Channel Kinetics 46 3.1.5 Pharmacology of BKCa Channel 49 3.2 ACTIONS OF ANTIARRHYTHMIC AGENTS ON BKCa 52 CHANNELS: SINGLE CHANNEL ANALYSIS 3.2.1 Inside-out Experiments 55 3.2.2 Outside-out Patch Experiments 63 3.3 THERMODYNAMIC STUDIES 69 3.3.1 Temperature Dependence of KCa Channel 72 3.3.2 Temperature Dependence of Drug Actions 79 4 DISCUSSION 91 4.1 BKCa CHANNEL PROPERTIES 91 4.2 OPEN CHANNEL BLOCKADE AS THE MECHANISM OF 92 CLASS III ANTIARRHYTHMICS BLOCK BKCa CHANNELS 4.3 MOLECULAR MECHANISM OF RP-62719 BLOCKADE 95 OF BKCa CHANNELS 5 REFERENCES 101 vii LIST OF TABLES TABLE PAGE Chemical Components of Solutions Used for Cell- 23 Attached and Excised Patch-Clamp Single Channel Studies Normalized Mean Open Time, Onward (Blocking) 68 Rate Constants for Drugs Transition State and Associated State 90 Thermodynamic Parameters viii LIST OF FIGURES FIGURE PAGE 1 Chemical Structures of Drugs Used for Experiments 24 2 Typical Records of Unitary Currents Passing 34 Through BKca in the Somatic Membrane of the Cultured Rat Hippocampal Neurons. 3 Current-Voltage Plots: KCa Channel Conductance 36 and Ion Selectivity 4 Calcium Dependency of BKCa Channel Behaviour 40 5 Calcium Dependency of BKCa Channel Kinetics 42-44 6 Voltage Dependence of BKCa 47 7 Kinetic Analysis of m 50 8 Effect of TEA on BKCa 53 9 Effect of RP-62719 on BKCa 56 10 Effect of RP-62719 on BKCa Channel Kinetics and 58 Current Amplitude 11 TO'-Drug Concentration Relationships 61 12 Voltage Dependence of RP-62719 Effect on BKCa 64 13 Effect of UK-68798, Tedisamil and Risotilide on 66 BKCa Channels 14 Effect of Drugs on BKCa at V = 0 mV; Outside-Out 70 Experiments 15 Temperature Dependence of BKCa Single-Channel 73 Currents 16 Temperature Dependence of BKCa Channel Mean 75 Open Time ix LIST OF FIGURES (Cont's) FIGURE PAGE 17 Effect of Temperature on BKrja Channel Kinetics 77 and Single-Channel Current Amplitudes 18 Temperature Dependence of RP-62719 Effects on 80 BKca Channel Behaviour 19 Temperature Dependence of RP-62719 Effects on 82 BKrja Channel Kinetics 20 Temperature Dependence of RP-62719 Effects on 84 BKfja Channel Mean Open Time (T0) 21 Arrhenius Plot for k2 87 X LIST OF LEGENDS FIGURE PAGE 2 Typical Records of Unitary Currents Passing 35 Through Kfja in the Somatic Membrane of the Cultured Rat Hippocampal Neurons 3 Current-Voltage Plots: KQ3 Channel Conductance 37 and Ion Selectivity 4 Calcium Dependency of BKCa Channel Behaviour 41 5 Calcium Dependency of BKfja Channel Kinetics 45 6 Voltage Dependence of BKca 48 7 Kinetic Analysis of BKCa 51 8 Effect of TEA on BKCa 54 9 Effect of RP-62719 on BKCa 57 10 Effect of RP-62719 on BKCa Channel Kinetics and 59 Single-Channel Current Amplitude 11 To'- Drug Concentration Relationships 62 12 Voltage Dependence of RP-62719 Effect on BKCa 65 13 Effect of UK-68798, Tedisamil and Risotilide on 67 BKfja Channel Behaviour 14 Effect of Drugs on BKCa at V = 0 mV; outside-out 71 Experiments 15 Temperature Dependence of BKfja Single-Channel 74 Currents in Control Solution 16 Temperature Dependence of BKCa Channel Mean 76 Open Time (To) 17 Effect of Temperature on BKca Channel Kinetics 78 and Single-channel Current Amplitude 18 Temperature Dependence of RP-62719 Effect on 81 BKfja Channel Behaviour xi LIST OF LEGENDS (Cont's) FIGURE PAGE 19 Temperature Dependence of RP-62719 Effect on 83 BKCa Channel Kinetics 20 Temperature Dependence of RP-62719 Effect on 85 BKCa Channel Mean Open Time (T0) 21 Arrhenius Plot for k2 88 xii ACKNOWLEDGMENTS: I would like to express my sincere appreciation to Dr.
Recommended publications
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • Download Article (PDF)
    Open Life Sci. 2018; 13: 335–339 Mini-Review Zhe An, Guang Yang, Xuanxuan Liu, Zhongfan Zhang, Guohui Liu* New progress in understanding the cellular mechanisms of anti-arrhythmic drugs https://doi.org/10.1515/biol-2018-0041 arrhythmia still require drugs to terminate the episode; Received May 4, 2018; accepted June 8, 2018 some symptomatic supraventricular and ventricular Abstract: Antiarrhythmic drugs are widely used, however, premature beats need to be controlled with drugs and to their efficacy is moderate and they can have serious prevent recurrence. In addition, some patients cannot be side effects. Even if catheter ablation is effective for the placed on ICDs or have radiofrequency ablation performed treatment of atrial fibrillation and ventricular tachycardia, due to economic limitation. To enable clinicians and antiarrhythmic drugs are still important tools for the pharmacists to rationally evaluate antiarrhythmic drugs, treatment of arrhythmia. Despite efforts, the development various antiarrhythmic drugs are briefly discussed. of antiarrhythmic drugs is still slow due to the limited Furthermore, we reviewed emerging antiarrhythmic drugs understanding of the role of various ionic currents. This currently undergoing clinical investigation or already review summarizes the new targets and mechanisms of approved for clinical use. antiarrhythmic drugs. Keywords: Antiarrhythmic drugs; New targets; 2 Classification of anti-arrhythmic Mechanism drugs According to the electrophysiology and mechanism of action of Purkinje fiber in vitro, antiarrhythmic drugs can 1 Introduction generally be divided into four categories: Class I sodium channel blockers, including three subclasses of A, B, Arrhythmia is a common and dangerous cardiovascular C. Type IA is a modest blockade of sodium channels, disease [1].
    [Show full text]
  • ANTIARRHYTHMIC DRUGS Geoffrey W
    Chapter 24 ANTIARRHYTHMIC DRUGS Geoffrey W. Abbott and Roberto Levi HISTORICAL PERSPECTIVE BASIC PHARMACOLOGY Singh-Vaughan Williams Classification of Antiarrhythmic Drugs HISTORICAL PERSPECTIVE Sodium Channels and Class I Antiarrhythmic Drugs β Receptors and Class II Antiarrhythmics Potassium Channels and Class III Antiarrhythmic Drugs The heart, and more specifically the heartbeat, has through- Calcium Channels and Class IV Antiarrhythmics out history served as an indicator of well-being and disease, CLINICAL PHARMACOLOGY both to the physician and to the patient. Through one’s own Categories of Arrhythmogenic Mechanisms heartbeat, one can feel the physiologic manifestations of joy, CLINICAL APPLICATION thrills, fear, and passion; the rigors of a sprint or long- Class I—Sodium Channel Blockers distance run; the instantaneous effects of medications, recre- Class II—β Blockers ational drugs, or toxins; the adrenaline of a rollercoaster ride Class III—Potassium Channel Blockers or a penalty shootout in a World Cup final. Although the Class IV—Calcium Channel Blockers complexities of the heart continue to humble the scientists EMERGING DEVELOPMENTS and physicians who study it, the heart is unique in that, Molecular Genetics of Arrhythmias despite the complexity of its physiology and the richness of hERG Drug Interactions both visceral and romantic imagery associated with it, its Gene Therapy Guided by Molecular Genetics of Inherited function can be distilled down to that of a simple pump, the Arrhythmias function and dysfunction of which
    [Show full text]
  • New Antiarrhythmic Agents for Atrial Fibrillation
    REVIEW New antiarrhythmic agents for atrial fibrillation Anirban Choudhury2 Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical and Gregory YH Lip†1 practice, with an incidence that increases twofold every decade after 55 years of age. †Author for correspondence Despite recent advances in our understanding of the mechanisms of AF, effective treatment †1University Department of Medicine, City Hospital, remains difficult in many patients. Pharmacotherapy remains the mainstay of treatment and Birmingham, B18 7QH, UK includes ventricular rate control as well as restoration and maintenance of sinus rhythm. In Tel.: +44 121 5075080 the light of studies demonstrating safety concerns with class IC agents, class III agents such Fax: +44 121 554 4083 [email protected] as sotalol and amiodarone have become the preferred and most commonly used drugs. 2University Department Unfortunately, a plethora of side effects often limits the long-term use of amiodarone. of Medicine, City Hospital, Thus, there have been many recent developments in antiarrhythmic drug therapy for AF Birmingham, B18 7QH, UK that have gained more interest, particularly with the recent debate over rate versus rhythm Tel.: +44 121 5075080 Fax: +44 121 554 4083 control. It is hoped that the availability of the newer agents will at least provide a greater choice of therapies and improve our management of this common arrhythmia. Atrial fibrillation (AF) is the most common many existing ones have significant side effects arrhythmia encountered in clinical practice [1]. It and limitations of efficacy. affects 5% of the population above the age of 65 years and 10% above 75 years [2].
    [Show full text]
  • TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub
    US 20200187851A1TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0187851 A1 Offenbacher et al. (43 ) Pub . Date : Jun . 18 , 2020 ( 54 ) PERIODONTAL DISEASE STRATIFICATION (52 ) U.S. CI. AND USES THEREOF CPC A61B 5/4552 (2013.01 ) ; G16H 20/10 ( 71) Applicant: The University of North Carolina at ( 2018.01) ; A61B 5/7275 ( 2013.01) ; A61B Chapel Hill , Chapel Hill , NC (US ) 5/7264 ( 2013.01 ) ( 72 ) Inventors: Steven Offenbacher, Chapel Hill , NC (US ) ; Thiago Morelli , Durham , NC ( 57 ) ABSTRACT (US ) ; Kevin Lee Moss, Graham , NC ( US ) ; James Douglas Beck , Chapel Described herein are methods of classifying periodontal Hill , NC (US ) patients and individual teeth . For example , disclosed is a method of diagnosing periodontal disease and / or risk of ( 21) Appl. No .: 16 /713,874 tooth loss in a subject that involves classifying teeth into one of 7 classes of periodontal disease. The method can include ( 22 ) Filed : Dec. 13 , 2019 the step of performing a dental examination on a patient and Related U.S. Application Data determining a periodontal profile class ( PPC ) . The method can further include the step of determining for each tooth a ( 60 ) Provisional application No.62 / 780,675 , filed on Dec. Tooth Profile Class ( TPC ) . The PPC and TPC can be used 17 , 2018 together to generate a composite risk score for an individual, which is referred to herein as the Index of Periodontal Risk Publication Classification ( IPR ) . In some embodiments , each stage of the disclosed (51 ) Int. Cl. PPC system is characterized by unique single nucleotide A61B 5/00 ( 2006.01 ) polymorphisms (SNPs ) associated with unique pathways , G16H 20/10 ( 2006.01 ) identifying unique druggable targets for each stage .
    [Show full text]
  • Antianginal and Anti-Ischaemic Eycacy of Tedisamil, a Potassium Channel Blocker Heart: First Published As 10.1136/Heart.83.2.167 on 1 February 2000
    Heart 2000;83:167–171 167 Antianginal and anti-ischaemic eYcacy of tedisamil, a potassium channel blocker Heart: first published as 10.1136/heart.83.2.167 on 1 February 2000. Downloaded from K M Fox, J R Henderson, J C Kaski, A Sachse, L Kuester, S Wonnacott, on behalf of the Third Clinical European Studies in Angina and Revascularisation (CESAR 3) Investigators Abstract Objective—To determine the eYcacy and safety of the potassium channel blocker tedisamil ver- sus placebo in the treatment of patients with stable angina. Design—Prospective, double blind, placebo controlled study. 203 patients first completed a seven day placebo run in. They were then randomised to receive 50 mg, 100 mg or 150 mg tedis- amil twice daily, or placebo. Treadmill exercise testing was carried out at baseline and after 14 days of double blind treatment. Main outcome measures—Primary eYcacy parameters were an increase in total exercise dura- tion and a reduction of the sum of ST segment depression using six ECG leads at maximum workload at trough (12 hours after last medication). Secondary aims included increase in exercise time to onset of 0.1 mV ST segment depression, increase in exercise time to onset of any anginal pain, and reduction in ST segment depression in any of the six specified leads at maximum work- load. These were all at trough. The same parameters were also assessed at peak concentrations (two hours after administration). Overall attacks of angina and the use of short acting nitrates were assessed from patient diaries. Results—Tedisamil led to a dose dependent prolongation of exercise duration (significant at all concentrations), an eVect that was greater at peak than at trough.
    [Show full text]
  • Comparison of the Effects of DC031050, a Class III Antiarrhythmic Agent, on Herg Channel and Three Neuronal Potassium Channels
    npg Acta Pharmacologica Sinica (2012) 33: 728–736 © 2012 CPS and SIMM All rights reserved 1671-4083/12 $32.00 www.nature.com/aps Original Article Comparison of the effects of DC031050, a class III antiarrhythmic agent, on hERG channel and three neuronal potassium channels Ping LI1, Hai-feng SUN1, Ping-zheng ZHOU1, Chao-ying MA2, Guo-yuan HU1, Hua-liang JIANG1, Min LI1, Hong LIU1, *, Zhao- bing GAO1, * 1State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; 2Life Science and Engineering College of Southwest Jiaotong University, Chengdu 610031, China Aim: This study was conducted to test the selectivity of DC031050 on cardiac and neuronal potassium channels. Methods: Human ether-à-go-go related gene (hERG), KCNQ and Kv1.2 channels were expressed in CHO cells. The delayed rectifier potassium current (IK) was recorded from dissociated hippocampal pyramidal neurons of neonatal rats. Whole-cell voltage patch clamp was used to record the voltage-activated potassium currents. Drug-containing solution was delivered using a RSC-100 Rapid Solution Changer. Results: Both DC031050 and dofetilide potently inhibited hERG currents with IC50 values of 2.3±1.0 and 17.9±1.2 nmol/L, respectively. DC031050 inhibited the IK current with an IC50 value of 2.7±1.5 μmol/L, which was >1000 times the concentration required to inhibit hERG current. DC031050 at 3 μmol/L did not significantly affect the voltage-dependence of the steady activation, steady inactivation of IK, or the rate of IK from inactivation. Intracellular application of DC031050 (5 μmol/L) was insufficient to inhibit IK.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Supplemental Data
    DMD #74179 Supplemental Data Assessing the risk of drug-induced cholestasis using unbound intrahepatic concentrations Julia Riede, Birk Poller, Jörg Huwyler, Gian Camenisch Drug Metabolism and Disposition Calculation of pharmacokinetic parameters: The absorption rate constant (ka) was calculated based on eq. 1 and 2 [1]: 푘 푙푛( 푎) 푘푒 푇푚푎푥 = (1) 푘푎−푘푒 푙푛⁡(2) 푘푒 = (2) 푇1/2 where Tmax is the time to reach the maximum plasma concentration, ke is the elimination rate constant and T1/2 is the elimination half-life. The fraction absorbed and escaping gut metabolism (Fa x Fg) was calculated based on eq. 3 and 4 [1]: 퐹 퐹푎 × 퐹 = (3) 퐹ℎ 퐶퐿ℎ 퐹ℎ = 1 − (4) 푄ℎ where F represents the oral bioavailabilty, Fh is the fraction escaping hepatic clearance, CLh is the hepatic blood clearance and Qh is the hepatic blood flow (1.45 l/min). Pharmacokinetic parameters required for the calculations and literature references for all 18 compounds are summarized in Supplemental Table 2. Human in vitro BSEP inhibition: Ki values from Hirano et al., 2005 [2] were converted to IC50 values according to eq. 5, assuming competitive inhibition [3]: [푆] 퐼퐶50 = 퐾 × (1 + ) (5) 퐾푚 where the substrate concentration of taurocholate [S] = 3 µM and Michealis-Menten constant (Km) for BSEP-mediated taurocholate transport = 4.64 µM [2]. 1 DMD #74179 SUPPLEMENTAL TABLE 1: Hepatic in vivo and in vitro Kpuu in rat in vitro in vivo Drug ECM Hepatic process clearances [4] compound class PSinf,act PSinf,pas CLint.met CLint.sec Kpuu Kpuu Kp fuliver fup fub [ml/min/kg] Atorvastatin 4 2935.3
    [Show full text]
  • Safety and Efficacy of Intravenously Administered Tedisamil for Rapid
    Journal of the American College of Cardiology Vol. 44, No. 1, 2004 © 2004 by the American College of Cardiology Foundation ISSN 0735-1097/04/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2004.03.047 Safety and Efficacy of Intravenously Administered Tedisamil for Rapid Conversion of Recent-Onset Atrial Fibrillation or Atrial Flutter Stefan H. Hohnloser, MD,* Paul Dorian, MD,† Matthias Straub, MD,‡ Katrin Beckmann,‡ Peter Kowey, MD§ Frankfurt and Hannover, Germany; Toronto, Canada; and Wynnewood, Pennsylvania OBJECTIVES The goal of the present study was to assess the efficacy and safety of intravenous tedisamil, a new antiarrhythmic compound, for conversion of recent-onset atrial fibrillation (AF) or atrial flutter (AFL) to normal sinus rhythm (NSR). BACKGROUND Tedisamil is a novel antiarrhythmic drug with predominantly class III activity. Its efficacy and safety for conversion of recent onset AF or AFL to NSR is not known. METHODS This was a multicenter, double-blind, randomized, placebo-controlled, sequential ascending dose-group trial. A total of 201 patients with symptomatic AF or AFL of 3 to 48 h duration were enrolled in a two-stage study. During stage 1, patients were randomized to receive tedisamil at 0.4 mg/kg body weight or matching placebo; during stage 2, patients received tedisamil at 0.6 mg/kg body weight or matching placebo. Treatments were given as single intravenous infusions. The primary study end point consisted of the percentage of patients converting to NSR for at least 60 s within 2.5 h. RESULTS Of 175 patients representing the intention-to-treat sample, conversion to NSR was observed in 41% (25/61) of the tedisamil 0.4 mg/kg group, 51% (27 of 53) of the tedisamil 0.6 mg/kg group, and 7% (4/59) of the placebo group (p Ͻ 0.001 for both tedisamil groups vs.
    [Show full text]
  • BP501T. MEDICINAL CHEMISTRY – II (Theory)
    BP501T. MEDICINAL CHEMISTRY – II (Theory) UNIT- III Notes Author Details Dr. Sidhartha Sankar Kar Assistant Professor Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha. Course Content: UNIT- III 10 Hours Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*) Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcainide hydrochloride, Amiodarone, Sotalol. Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan. 1 ANTI-ARRHYTHMIC DRUGS Introduction Cardiac arrhythmias remain a major source of morbidity and mortality in developed countries. Cardiac arrhythmia is a disturbance in the conduction of impulse through the myocardial tissue. These cardiac arrhythmias may be caused from disorders in pacemaker function of the sinoatrial node thereby resulting into tachycardia, bradycardia, cardiac arrest, atrial flutter, atrial fibrillation and ventricular fibrillation. Hence, the antiarrhythmic agents are also termed as ‘antidysrhythmic drugs’ or
    [Show full text]
  • Pharmaabkommen A1 E
    Annex I - Pharmaceutical substances, which are free of duty_______________________________________________ Pharmaceutical substances which are Annex I free of duty CAS RN Name 136470-78-5 abacavir 129639-79-8 abafungin 792921-10-9 abagovomab 65195-55-3 abamectin 90402-40-7 abanoquil 183849-43-6 abaperidone 183552-38-7 abarelixe 332348-12-6 abatacept 143653-53-6 abciximab 111841-85-1 abecarnil 167362-48-3 abetimus 154229-19-3 abiraterone 137882-98-5 abitesartan 96566-25-5 ablukast 178535-93-8 abrineurin 91017-58-2 abunidazole 2627-69-2 acadesine 77337-76-9 acamprosate 55485-20-6 acaprazine 56180-94-0 acarbose 514-50-1 acebrochol 26976-72-7 aceburic acid 37517-30-9 acebutolol 32795-44-1 acecainide 77-66-7 acecarbromal 827-61-2 aceclidine 89796-99-6 aceclofenac 77-46-3 acedapsone 127-60-6 acediasulfone sodium 556-08-1 acedoben 80595-73-9 acefluranol 10072-48-7 acefurtiamine 70788-27-1 acefylline clofibrol 18428-63-2 acefylline piperazine 642-83-1 aceglatone 2490-97-3 aceglutamide 110042-95-0 acemannan 53164-05-9 acemetacin 131-48-6 aceneuramic acid 152-72-7 acenocoumarol 807-31-8 aceperone 61-00-7 acepromazine 13461-01-3 aceprometazine 42465-20-3 acequinoline 33665-90-6 acesulfame 118-57-0 acetaminosalol 97-44-9 acetarsol 59-66-5 acetazolamide 3031-48-9 acetergamine 299-89-8 acetiamine 2260-08-4 acetiromate 968-81-0 acetohexamide 546-88-3 acetohydroxamic acid 2751-68-0 acetophenazine 1 / 135 (As of: 1.4.2013) Annex I - Pharmaceutical substances, which are free of duty_______________________________________________ CAS RN Name 25333-77-1 acetorphine
    [Show full text]