Miniaturization of Computer Mouse As a Wearable Device

Total Page:16

File Type:pdf, Size:1020Kb

Miniaturization of Computer Mouse As a Wearable Device MINIATURIZATION OF COMPUTER MOUSE AS A WEARABLE DEVICE by Ooha Reddy Manda, B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Engineering December 2017 Committee Members: Qingkay Yu, Chair Yihong Maggie Chen Ravi Droopad COPYRIGHT by Ooha Reddy Manda 2017 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work, I, Ooha Reddy Manda, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION I would like to dedicate this dissertation to my family for all the guidance, encouragement and support throughout my life. I also dedicate this report to my friends for their constant help and support. ACKNOWLEDGEMENTS I would like to express my gratitude to all who helped me during the wring of this thesis at Texas State. First, I would like to express my deep gratitude to Dr. Qingkai Yu, my Supervisor, for his continuous support and encouragement, for his patience, and motivation. He also provides me with an excellent atmosphere for conducting this research project. Without his consistent and illuminating instruction, this thesis could not have reached its present form. I would also like to express my heartfelt gratitude to my thesis committee members: Dr. Ravi Droopad and Dr. Maggie Chen for their insightful comments and constructive comments in the early version of the work. I owe a special debt of gratitude to Dr. Vishu Viswanthan, Graduate Advisor of Engineering, and Dr. Stan McClellan, the Director of Ingram School of Engineering, for providing facility support. I would like to thank Ms. Sarah Rivas, Ms. Carla Batey in Ingram School of Engineering and Department Engineering Technology for their kind help. I would also like to thank Dr. William Stapleton for his continuous support during my research. Finally, I express my gratitude to my parents, family and friends for providing me with their continuous encouragement and support throughout my years of study and through the process of researching and writing this thesis. This accomplishment would v not have been possible without them. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.................................................................................v LIST OF TABLES ............................................................................................. ix LIST OF FIGURES .............................................................................................x LIST OF ABBREVIATION ............................................................................ xiii ABSTRACT .................................................................................................... xiv CHAPTER 1. INTRODUCTION ........................................................................................... 1 1.1 Background ................................................................................. 1 1.2 Previous Wearable Computer Mouse ......................................... 5 1.2.1 Mycestro ........................................................................... 5 1.2.2 Maestro Gesture Glove ..................................................... 5 1.3 Thesis Focus ............................................................................... 6 1.4 Research Contribution ................................................................ 7 1.5 Organization of Thesis Report ................................................... 7 2. LITERATURE REVIEW ................................................................................ 8 2.1 Mouse ......................................................................................... 8 2.1.1 Main Functions ................................................................. 8 2.1.2 Advantages ....................................................................... 8 2.1.3 Disadvantages ................................................................... 9 2.1.4 Uses .................................................................................. 9 2.2 Ergonomics ................................................................................ 9 2.2.1 Importance of Ergonomics ............................................... 9 2.3 Guidelines for Designing the Workplace ................................. 10 2.4 Ergonomic Mouse .................................................................... 11 2.4.1 Previous Designs ............................................................ 12 2.5 Wearable Technology .............................................................. 16 vii 2.5.1 Basic Design of Wearable Devices ................................. 17 2.5.2 Challenges to Wearable Technology .............................. 18 2.5.3 Advantages of Wearable Devices ................................... 18 2.5.4 Disadvantages of Wearable Devices .............................. 19 2.5.5 Applications of Wearable Devices ................................. 20 2.6 Touchscreen ............................................................................. 23 2.6.1 Types of Touchscreen ..................................................... 24 3. METHODOLOGY ........................................................................................ 33 3.1 Introduction .............................................................................. 33 3.2 Initial Approach ........................................................................ 33 3.2.1 Block Diagram ................................................................ 33 3.2.2 Hardware Design ............................................................ 33 3.3 Proposed Approach ................................................................... 38 3.3.1 Block Diagram ................................................................ 38 3.3.2 Hardware Design ............................................................ 39 3.4 Design Procedure ..................................................................... 48 3.5 Software Implementation ......................................................... 49 3.6 PCB Circuit .............................................................................. 52 4. RESULTS ...................................................................................................... 53 4.1 Performance Characteristics ..................................................... 53 4.1.1 Discharge Profile ............................................................ 53 4.2 Design Criteria of a Wearable Device ...................................... 53 4.3 Design Specifications ............................................................... 56 4.4 Design Drawings ...................................................................... 57 4.5 Design Output ........................................................................... 57 4.6 Comparison over the Existing Wearable Mouse Designs......... 59 4.6.1 Maestro Gesture Glove Mouse ....................................... 59 4.6.2 Mycestro Mouse ............................................................. 59 4.7 Final Design .............................................................................. 60 5. CONCLUSION AND FUTURE SCOPE ...................................................... 61 5.1 Conclusion ................................................................................ 61 5.2 Power Consumption of each Component ................................. 62 5.3 Future Work .............................................................................. 62 APPENDIX .......................................................................................................63 REFERENCES ..................................................................................................93 viii LIST OF TABLES Table Page 1. Examples of Ergonomic Mouse with its Disadvantages ........................................ 3 2. Key Numbers .........................................................................................................35 3. Electrical Parameters of RN42 ..............................................................................45 4. Comparison over Maestro Gesture Glove Mouse .................................................59 5. Comparison over Mycestro Mouse .......................................................................59 ix LIST OF FIGURES Figure Page 1. Wearable Device Market Value from 2010 to 2018........................................4 2. Mycestro Mouse ..............................................................................................5 3. Maestro Gesture Glove ....................................................................................6 4. USA Today Poll on Wearable Devices ...........................................................6 5. Evoluent Vertical Mouse ...............................................................................12 6. 3M Ergonomic Mouse ...................................................................................13 7. Logitech Trackball Mouse .............................................................................14 8. Pad N’ Click Gel Pads ...................................................................................15
Recommended publications
  • Presents: BEGINNING COMPUTER BASICS
    Presents: BEGINNING COMPUTER BASICS By Angie Harris Adapted from the Texas State Library’s TEAL for All Texans Student Resources Manual Beginning Computer Basics Topics Introducing the Computer Basic Computer Equipment Meet Your Desktop Goals and Objectives • Be introduced to basic components of the computer • Learn common computer terms • Become familiar with basic computer hardware and software • Become familiar with the computer mouse and keyboard • Learn about the desktop Introducing the Computer What is a Computer? An electronic device that accepts input, processes data, provides storage and retrieval and provides output for the user. You can use a computer to type documents, send email, browse the internet, handle spreadsheets, do presentations, play games, and more. Hardware/Software A computer is made up of only two components: hardware and software. Anything you buy for your computer can be classified as either hardware or software. Hardware: is any part of your computer that has a physical structure. If you can touch it, it is hardware. Software: the brains of the computer, is any set of instructions that tells the hardware what to do and helps the user accomplish a certain task Hardware Hardware consists of two components, input and output devices. – Input Device An input device allows us to put information into the computer. Examples include: Mouse, keyboard, microphone, flash drive or scanner – Output Devices An output device displays (or puts out) information from a computer in either a visual or auditory format. Examples include: Monitor, Speakers, headphones or printer Basic Computer Equipment Monitor Speakers Console Printer Keyboard Mouse Console Console: The console, or system unit, is the heart of your computer.
    [Show full text]
  • Motion and Context Sensing Techniques for Pen Computing
    Motion and Context Sensing Techniques for Pen Computing Ken Hinckley1, Xiang ‘Anthony’ Chen1,2, and Hrvoje Benko1 * Microsoft Research, Redmond, WA, USA1 and Carnegie Mellon University Dept. of Computer Science2 ABSTRACT We explore techniques for a slender and untethered stylus prototype enhanced with a full suite of inertial sensors (three-axis accelerometer, gyroscope, and magnetometer). We present a taxonomy of enhanced stylus input techniques and consider a number of novel possibilities that combine motion sensors with pen stroke and touchscreen inputs on a pen + touch slate. These Fig. 1 Our wireless prototype has accelerometer, gyro, and inertial sensors enable motion-gesture inputs, as well sensing the magnetometer sensors in a ~19 cm Χ 11.5 mm diameter stylus. context of how the user is holding or using the stylus, even when Our system employs a custom pen augmented with inertial the pen is not in contact with the tablet screen. Our initial results sensors (accelerometer, gyro, and magnetometer, each a 3-axis suggest that sensor-enhanced stylus input offers a potentially rich sensor, for nine total sensing dimensions) as well as a low-power modality to augment interaction with slate computers. radio. Our stylus prototype also thus supports fully untethered Keywords: Stylus, motion sensing, sensors, pen+touch, pen input operation in a slender profile with no protrusions (Fig. 1). This allows us to explore numerous interactive possibilities that were Index Terms: H.5.2 Information Interfaces & Presentation: Input cumbersome in previous systems: our prototype supports direct input on tablet displays, allows pen tilting and other motions far 1 INTRODUCTION from the digitizer, and uses a thin, light, and wireless stylus.
    [Show full text]
  • Evaluating the Effect of Four Different Pointing Device Designs on Upper Extremity Posture and Muscle Activity During Mousing Tasks
    Applied Ergonomics 47 (2015) 259e264 Contents lists available at ScienceDirect Applied Ergonomics journal homepage: www.elsevier.com/locate/apergo Evaluating the effect of four different pointing device designs on upper extremity posture and muscle activity during mousing tasks * Michael Y.C. Lin a, Justin G. Young b, Jack T. Dennerlein a, c, a Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA b Department of Industrial & Manufacturing Engineering, Kettering University, 1700 University Avenue, Flint, MI 48504, USA c Department of Physical Therapy, Movements, and Rehabilitation Sciences, Bouve College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA article info abstract Article history: The goal of this study was to evaluate the effect of different types of computer pointing devices and Received 10 January 2014 placements on posture and muscle activity of the hand and arm. A repeated measures laboratory study Accepted 3 October 2014 with 12 adults (6 females, 6 males) was conducted. Participants completed two mouse-intensive tasks Available online while using a conventional mouse, a trackball, a stand-alone touchpad, and a rollermouse. A motion analysis system and an electromyography system monitored right upper extremity postures and muscle Keywords: activity, respectively. The rollermouse condition was associated with a more neutral hand posture (lower Pointing device inter-fingertip spread and greater finger flexion) along with significantly lower forearm extensor muscle Computer tasks fi Musculoskeletal disorders activity. The touchpad and rollermouse, which were centrally located, were associated with signi cantly more neutral shoulder postures, reduced ulnar deviation, and lower forearm extensor muscle activities than other types of pointing devices.
    [Show full text]
  • A Comparison of Human-Computer User Interface Methods: the Effectiveness of Touch Interface Compared to Mouse
    A comparison of human-computer user interface methods: The effectiveness of touch interface compared to mouse Item Type Thesis or dissertation Authors Muncey, Andrew Citation Muncey, A. (2014). A comparison of human-computer user interface methods: The effectiveness of touch interface compared to mouse. (Master's thesis). University of Chester, United Kingdom. Publisher University of Chester Download date 01/10/2021 18:48:22 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/615928 A comparison of human-computer user interface methods: The effectiveness of touch interface compared to mouse Andrew Muncey MSc Information Systems 2014 Abstract This dissertation examines the effectiveness of a touch user interface when compared with that of a traditional mouse. The effectiveness of a second hand, used to hold a touch interface is also considered. Following an investigation into existing research in the domain of touch based user interfaces, an experiment was designed to evaluate the effectiveness of selection, dragging and gesture based input tasks undertaken with both a mouse and using a touch interface. Additionally operation of the touch interface when the device was held in the hand was compared to operation when the touch interface was situated horizontally on a desk, to determine the impact of bimanual operation. The findings suggest that there is little variation in usability between a touch device held in the hand and situated on a desk, but that the touch interface provides an improved experience for an end user over that of a mouse based interface not only for selection as previous researches had indicated, but also for dragging and gesture interaction based input.
    [Show full text]
  • 2019 Streamlight® Tactical Catalog
    CELEBRATING 45 YEARS SOLVING LIGHTING PROBLEMS. INTRODUCING NEW PRODUCTS. ® 90 IT’S WHAT WE DO. PROTAC Since 1973, Streamlight has delivered effective, efficient high-performance lighting solutions. The latest technology delivers unmatched performance, unheard of durability and incredible value. We’ve earned our reputation one customer at a time. And we’re not about to let up now. SIEGE ® X USB 2 GET MORE INFO AT: STREAMLIGHT.COM / 800-523 –7488 / 610-631-0600 TLR-8 ® G RAIL-MOUNTED LIGHT TLR-6 ® NON-LASER TLR-6 ® FOR SIG SAUER P365 PROTAC ® RAIL MOUNT HL-X LASER BANDIT ® PRO USB HEADLAMP TLR-VIR ® II SPECIALTY PRODUCT TL-RACKER ™ FOREND LIGHT 3 STREAMLIGHT TLRs THE WIDEST RANGE OF WEAPON-MOUNTED LIGHTS Streamlight produces a full line of weapon-mounted lights with the features that law enforcement, conceal & carry, and sportsmen need: high-lumen, laser, and IR. Models to fit long guns and full-size and compact pistols. LIGHT ONLY LIGHT ONLY COMPACT & FULL FRAME PISTOLS UNIVERSAL RAIL-MOUNT MODELS TLR-7® TLR-1 HL® TLR-1® TLR-3® WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR TLR-1®s WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW SUB-COMPACT & COMPACT PISTOLS TRIGGER GUARD & TLR-6® NON-LASER TLR-7® TLR-3® RAIL-MOUNT MODELS WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW LONG GUN / AR SHOTGUN FOREND & RAIL-MOUNT MODELS TLR-1 HL® PROTAC® RAIL MOUNT 1 PROTAC® T L R -1 HP L® TL-RACKER™ (Long Gun Kit) PROTAC® RAIL MOUNT 2 RAIL MOUNT HL-X (Long Gun Kit) WHITE LIGHT ILLUMINATOR/FOREND WHITE LIGHT ILLUMINATOR WHITE
    [Show full text]
  • Evans, Gareth; Blenkhorn, Paul a Head Operated Joystick
    DOCUMENT RESUME ED 430 330 EC 307 177 AUTHOR Evans, Gareth; Blenkhorn, Paul TITLE A Head Operated Joystick--Experience with Use. PUB DATE 1999-03-00 NOTE 6p. PUB TYPE Reports Descriptive (141) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Accessibility (for Disabled); *Assistive Devices (for Disabled); *Input Output Devices; *Severe Disabilities; Use Studies IDENTIFIERS *Joysticks ABSTRACT This paper describes the development and evaluation of a low-cost head-operated joystick for computer users with disabilities that prevent them from using a conventional hand-operated computer mouse and/or keyboard. The paper focuses on three issues: first, the style of head movement required by the device; second, whether a head-operated device should work as an absolute positioning device or as a joystick; and, third, the accuracy required by the device. It finds that the device's "nose following" style of head movement is more accepted by users than alternatives; that users also preferred the joystick relative pointing device over absolute positioning devices; and that users did not notice inaccuracies inherent in the device's design, thus allowing production at a lower cost. (DB) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS ert BEEN GRANTED BY r1) el") EXPERIENCE WITHUSE ans A HEADOPERATEDJOYSTICK - TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Gareth Evans and PaulBlenkhorn 1 Manchester, UK, [email protected] of Computation, UMIST, Technology for DisabledPeople Unit, Department Introduction computer mouse and/orkeyboard, may use a head- Computer users who cannot use aconventional hand-operated computer and, by using anon-screen keyboard, totype operated mouse or joystickin order to control their user's head movements aretranslated into mouse pointer information.
    [Show full text]
  • The Keyboard and Mouse Are Examples Of
    The Keyboard And Mouse Are Examples Of Atypical Ram dispelling his sikas overqualified unequivocally. Inhumed and epideictic Irwin still reinterred his storax first-hand. Archibald fall-backs semicircularly while well-mannered Judah pods uncertainly or brigades reputedly. Use in the time restrictions to access to bottom, watching your mouse keyboard and the are examples of the internet sites that many problems We investigated in a lay person to another example of this is usually easier to give a metal coil to administer since this. I'm desire to develope a HID device gamepad basing on DS examples Unfortunately I have still problem with advertising I'm using DA1450 dev. It cannot enter. Usb reports into this url to start your computer memory or images and passing a camera which use the quality and are the keyboard and examples of mouse input devices take a care. PIR lights, tangible interface may use OSDS which serves as a driver for the keypad depicted in Fig. Most hp products have code usually blue or number. Solved Devices 1 A Keyboard And Mouse Are Examples Of. This is an description of all interface reports so the host can know what to expect. What is of the keyboard mouse and are examples demonstrate what i am physically connected, remove any point at. We use cookies to first you a smart experience. Including keyboard mouse touch pad single supplement and. What are examples. North america is global: which considerable reservations are in and the keyboard are examples of mouse attached and nasa tlx score of mouse a menu by simplifying and a quarterly newspaper that employ a player continuously strafing while stm act in! These are operated by a computer and more.
    [Show full text]
  • Efficient Sound Card Based Experimention at Different Levels of Natural Science Education
    MPTL16 –HSCI ‘2011 Ljubljana 15-17 September 2011 EFFICIENT SOUND CARD BASED EXPERIMENTION AT DIFFERENT LEVELS OF NATURAL SCIENCE EDUCATION Zoltan Gingl, Robert Mingesz and János Mellár, Department of Technical Informatics, University of Szeged Balazs Lupsic and Katalin Kopasz, Department of Experimental Physics, University of Szeged Abstract Sound cards, which count as standard equipment in today’s computers, can be turned into measurement tools, making experimentation very efficient and cheap. The chief difficulties to overcome are the lack of proper hardware interfacing and processing software. Sound-card experimentation becomes really viable only if we demonstrate how to connect different sensors to the sound card and provide suitable open-source software to support the experiments. In our talk, we shall present a few applications of sound cards in measurements: photogates, stopwatches and an example of temperature measurement and registration. We also provide the software for these applications. 1. Introduction Physics and other natural science education can’t be effective without properly designed, efficient, transparent and informative experiments. Using traditional instrumentation and experimental tools are important from the historical point of view, however most schools and universities run out of these, while modern measurement techniques should also play an important role and of course can be much more efficient. Today’s advanced, widely available and economic electronic solutions allow us to use sensors, digital equipments and personal computers to build wide variety of instruments and experimental setups, measure and display various physical quantities in real time, help students to understand more easily the physical phenomena and their description. There are a broad range of computer controlled experimentation tools, data acquisition devices and displaying, analysing software on the market, but they are either too expensive or not flexible and efficient enough in most cases, probably can only be used for demonstration experiments.
    [Show full text]
  • KSPC (Keystrokes Per Character) As a Characteristic of Text Entry Techniques
    KSPC (Keystrokes per Character) as a Characteristic of Text Entry Techniques I. Scott MacKenzie Dept. of Computer Science York University Toronto, Ontario, Canada M3J 1P3 +1 416 736 2100 WQEGOIR^MI$EGQSVK Abstract. KSPC is the number of keystrokes, on average, to generate each character of text in a given language using a given text entry technique. We systematically describe the calculation of KSPC and provide examples across a variety of text entry techniques. Values for English range from about 10 for methods using only cursor keys and a SELECT key to about 0.5 for word prediction techniques. It is demonstrated that KSPC is useful for a priori analyses, thereby supporting the characterisation and comparison of text entry methods before labour-intensive implementations and evaluations. 1 Introduction An important research area in mobile computing is the development of efficient means of text entry. Interest is fueled by trends such as text messaging on mobile phones, two-way paging, and mobile web and email access. Coincident with this is the continued call in HCI for methods and models to make systems design tractable at the design and analysis stage [5]. This paper addresses these two themes. We propose a measure to characterise text entry techniques. It is calculated a priori, using a language model and a keystroke-level description of the technique. The measure is used to characterise and compare methods at the design stage, thus facilitating analyses prior to labour-intensive implementations and evaluations. 2 Keystrokes per Character (KSPC) KSPC is an acronym for keystrokes per character. It is the number of keystrokes required, on average, to generate a character of text for a given text entry technique in a given language.
    [Show full text]
  • International Journal of Computer Sciences and Engineering Open Access Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693
    International Journal of Computer Sciences and Engineering Open Access Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693 Green Virtual Mouse Using OpenCV Manne Vamshi Krishna1*, Gopu Abhishek Reddy2, B. Prasanthi3, M. Sreevani4 1,2,3,4Dept. of Computer Science, Mahatma Gandhi Institute of Technology, Hyderabad, India Corresponding Author: [email protected] Tel:+91 8297574773 DOI: https://doi.org/10.26438/ijcse/v7i4.575580 | Available online at: www.ijcseonline.org Accepted: 11/Apr/2019, Published: 30/Apr/2019 Abstract--- There has been a greater development of virtual technologies in the recent arena. Some of them increased the computing performances of the functioning systems. One of those highly used virtualized technology is the virtual mouse. The moments that the mouse detects are converted into the pointer movements on a display that enables the management of Graphical User Interface (GUI) on a computer platform. This paper advocates an approach for Human-Computer Interaction (HCI) where a real-time camera is used in handling the cursor movements. The Virtual mouse colour recognition program acquires real-time images continuously which will then go through a series of filtration and transformation. As the process completes the program will apply an image processing technique to capture the coordinates of the position of the targeted colours from the changed frames. Then a set of different combinations of functions are operated and then by analyzing the set of different colours thereby a program will execute the mouse function and then it is translated as an actual mouse for user’s machine. Keywords-Virtual Mouse, Graphical User Interface, Colour Recognition, Human-Computer Interaction, Calibration Phase, Recognition Phase I.
    [Show full text]
  • Smyle-Mouse-User-Guide-2019-10
    USER GUIDE October 3, 2019 PERCEPTIVE DEVICES LLC [email protected] Contents 1) Introduction...................................................................................................................................................................................... 2 2) Start up and Calibration .............................................................................................................................................................. 3 3) Operating Instructions - Overview .......................................................................................................................................... 4 a) Head / Face Mouse Mode ................................................................................................................................................... 4 b) Adaptive Switch Mode .......................................................................................................................................................... 5 4) User Interface Overview ............................................................................................................................................................... 6 a) Main Window ........................................................................................................................................................................... 6 b) Click Options Window .........................................................................................................................................................
    [Show full text]
  • Gotomypc® User Guide
    GoToMyPC® User Guide GoToMyPC GoToMyPC Pro GoToMyPC Corporate Citrix Online 6500 Hollister Avenue • Goleta CA 93117 +1-805-690-6400 • Fax: +1-805-690-6471 © 2009 Citrix Online, LLC. All rights reserved. GoToMyPC® User Guide Contents Welcome ........................................................................................... 4 Getting Started .................................................................................. 1 System Requirements ....................................................................... 1 Notes on Installation and Feature Access ............................................. 1 Versions of GoToMyPC ...................................................................... 1 Mac Users .................................................................................... 1 Upgrade Information ......................................................................... 2 Useful GoToMyPC Terms .................................................................... 4 Features ......................................................................................... 5 Set Up a Host Computer .................................................................... 6 Create Your Account (first-time users) .............................................. 6 Set Up a Host PC ........................................................................... 7 Leaving the Host Computer Accessible................................................. 8 Managing Billing and Account Information ........................................ 9 Change Your
    [Show full text]