MADRAS: Multi-Architecture Binary Rewriting Tool Technical Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The “Stabs” Debug Format
The \stabs" debug format Julia Menapace, Jim Kingdon, David MacKenzie Cygnus Support Cygnus Support Revision TEXinfo 2017-08-23.19 Copyright c 1992{2021 Free Software Foundation, Inc. Contributed by Cygnus Support. Written by Julia Menapace, Jim Kingdon, and David MacKenzie. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". i Table of Contents 1 Overview of Stabs ::::::::::::::::::::::::::::::: 1 1.1 Overview of Debugging Information Flow ::::::::::::::::::::::: 1 1.2 Overview of Stab Format ::::::::::::::::::::::::::::::::::::::: 1 1.3 The String Field :::::::::::::::::::::::::::::::::::::::::::::::: 2 1.4 A Simple Example in C Source ::::::::::::::::::::::::::::::::: 3 1.5 The Simple Example at the Assembly Level ::::::::::::::::::::: 4 2 Encoding the Structure of the Program ::::::: 7 2.1 Main Program :::::::::::::::::::::::::::::::::::::::::::::::::: 7 2.2 Paths and Names of the Source Files :::::::::::::::::::::::::::: 7 2.3 Names of Include Files:::::::::::::::::::::::::::::::::::::::::: 8 2.4 Line Numbers :::::::::::::::::::::::::::::::::::::::::::::::::: 9 2.5 Procedures ::::::::::::::::::::::::::::::::::::::::::::::::::::: 9 2.6 Nested Procedures::::::::::::::::::::::::::::::::::::::::::::: 11 2.7 Block Structure -
ARM Software Development Toolkit Version 2.11 User Guide
211ug.book : SDT_UG_Front_cover.fm Page i Sunday, June 1, 1997 12:21 PM ARM Software Development Toolkit Version 2.11 User Guide Document number: ARM DUI 0040C Issued: May 1997 Copyright Advanced RISC Machines Ltd (ARM) 1996 Beta Draft Beta ENGLAND GERMANY Advanced RISC Machines Limited Advanced RISC Machines Limited Fulbourn Road Otto-Hahn Str. 13b Cherry Hinton 85521 Ottobrunn-Riemerling Cambridge CB1 4JN Munich UK Germany Telephone: +44 1223 400400 Telephone: +49 89 608 75545 Facsimile: +44 1223 400410 Facsimile: +49 89 608 75599 Email: [email protected] Email: [email protected] JAPAN USA Advanced RISC Machines K.K. ARM USA Incorporated KSP West Bldg, 3F 300D, 3-2-1 Sakado Suite 5 Takatsu-ku, Kawasaki-shi 985 University Avenue Kanagawa Los Gatos 213 Japan CA 95030 USA Telephone: +81 44 850 1301 Telephone: +1 408 399 5199 Facsimile: +81 44 850 1308 Facsimile: +1 408 399 8854 Email: [email protected] Email: [email protected] World Wide Web address: http://www.arm.com Partner Confidential - Final Draft 211ug.book : SDT_UG_Front_cover.fm Page ii Sunday, June 1, 1997 12:21 PM Proprietary Notice ARM, the ARM Powered logo and EmbeddedICE are trademarks of Advanced RISC Machines Ltd. Neither the whole nor any part of the information contained in, or the product described in, this manual may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in this manual is subject to continuous developments and improvements. All particulars of the product and its use contained in this manual are given by ARM in good faith. -
The IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide
IAR Linker and Library To o l s Reference Guide Version 4.60 XLINK-460G COPYRIGHT NOTICE © Copyright 1987–2007 IAR Systems. All rights reserved. No part of this document may be reproduced without the prior written consent of IAR Systems. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR, IAR Systems, IAR Embedded Workbench, IAR MakeApp, C-SPY, visualSTATE, From Idea To Target, IAR KickStart Kit and IAR PowerPac are trademarks or registered trademarks owned by IAR Systems AB. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE April 2007 Part number: XLINK-460G The IAR Linker and Library Tools Reference Guide replaces all versions of the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide. XLINK-460G Contents Tables ..................................................................................................................... -
Packet Structure Definition
xx Tektronix Logic Analyzer Online Help ZZZ PrintedHelpDocument *P077003206* 077-0032-06 Tektronix Logic Analyzer Online Help ZZZ PrintedHelpDocument www.tektronix.com 077-0032-06 Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. D-Max, MagniVu, iView, iVerify, iCapture, iLink, PowerFlex, and TekLink are trademarks of Tektronix, Inc. 076-0113-06 077-0032-06 April 27, 2012 Contacting Tektronix Tektronix, Inc. 14150 SWKarlBraunDrive P.O. Box 500 Beaverton, OR 97077 USA For product information, sales, service, and technical support: In North America, call 1-800-833-9200. Worldwide, visit www.tektronix.com to find contacts in your area. Warranty Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. -
IAR Linker and Library Tools Reference Guide
IAR Linker and Library Tools Reference Guide XLINK-540 XLINK-540 COPYRIGHT NOTICE © 1987–2012 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success, IAR KickStart Kit, I-jet, IAR, and the logotype of IAR Systems are trademarks or registered trademarks owned by IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE June 2012 Part number: XLINK-540 The IAR Linker and Library Tools Reference Guide replaces all versions of the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide. XLINK-540 Contents Tables ........................................................................................................................ 7 Preface ...................................................................................................................... 9 Who should read this guide ................................................................. 9 How to use this guide ............................................................................ -
Using Ld the GNU Linker
Using ld The GNU linker ld version 2 January 1994 Steve Chamberlain Cygnus Support Cygnus Support [email protected], [email protected] Using LD, the GNU linker Edited by Jeffrey Osier (jeff[email protected]) Copyright c 1991, 92, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the above conditions for modified versions. Chapter 1: Overview 1 1 Overview ld combines a number of object and archive files, relocates their data and ties up symbol references. Usually the last step in compiling a program is to run ld. ld accepts Linker Command Language files written in a superset of AT&T’s Link Editor Command Language syntax, to provide explicit and total control over the linking process. This version of ld uses the general purpose BFD libraries to operate on object files. This allows ld to read, combine, and write object files in many different formats—for example, COFF or a.out. Different formats may be linked together to produce any available kind of object file. See Chapter 5 [BFD], page 47, for more information. Aside from its flexibility, the gnu linker is more helpful than other linkers in providing diagnostic information. -
ARM Command Line Workbook
ARM Command Line Workbook CS160 Computer Organization Version 1.1 October 27th, 2002 Revised Fall 2005 ARM University Program Version 1.0 January 14, 1997 ARM Command Line Workbook Introduction Aim This workbook provides the student with a basic understanding of the facilities provided by the ARM Toolkit for command line users. Note: For all of the command line tools provided with the toolkit it is possible to get on- line help on the command line parameters by specifying the toolname followed by -help. Prerequisites Before getting started, you will need to add the ARM tools to your command path. Make the following change to the ~/.zsh_files/.zshrc file: • export PATH="$PATH:/pkgs/arm202u/bin" Next, you will need to add an environment variable so that the ARM compiler knows where to find the appropriate libraries. Make the following change to the ~/.zshrc file: • export ARMLIB="/pkgs/arm202u/lib" Ask the GTAs for help if you don’t know how to do this. When done, issue the commands: source ~/.zshrc ~cs160/bin/armsetup.pl The latter will create a hierarchy of subdirectories and files in a directory called arm within your cs160 directory. The reference /cmdline/hello.c thus should be read as ~/arm/cmdline/hello.c Compiler The ‘Hello World’ example program is a simple C program which calls a subroutine. This program file can be found as /cmdline/hello.c #include <stdio.h> /* Declare subroutine before used by main */ void subroutine (void); int main() { printf("Hello World from main\n"); subroutine(); printf("And Goodbye from main\n"); return 0; } /* Define subroutine */ void subroutine() { printf("Hello from subroutine\n"); } 2 ARM Command Line Workbook Exercise 1.1 Compile this program with the ARM C compiler type armcc -g hello.c The C compiler automatically invokes the linker to produce an executable with the same name as the C module but with no file extension. -
Updated Virtualrpc Components for RISC OS 6
ne of the main things that keeps me using my Risc PC is the versatility of the operating system - mainly due to it’s universal draw file format. For Oinstance I construct the centre pages in Artworks as this now has excellent PDF export facilities. However for proofing the magazine before it gets sent to the printers I like to do a printout to see if everything works properly. Because Artworks now can deal with multiple pages it is very easy to save each page either as an Artworks file or Draw file directly into the magazine’s Ovation Pro file by dragging and dropping. A two second job! Other computer platforms don’t generally have this facility of moving files directly into open application windows. Generally to move a file to another application you have to use the dreaded ‘save as’ filer window - choose a suitable format - navigate to where you need to save the file - save it - go to the other application - open a filer window - navigate to the saved file - open it in the new application. If you need to transfer a different file type you generally have to go through all that palaver again. Two seconds on RISC OS, thirty seconds on OS X or Windows. Draw is a great program with no real equivalent on a PC or Mac. For instance it can be put to good use in music for constructing objects the original program can’t do. I use the Sibelius music setting program on both RISC OS and Windows. The RISC OS still has one or two advantages over the PC version, one of which is it’s ability to export to Draw. -
Linker Script Guide Emprog
Linker Script Guide Emprog Emprog ThunderBench™ Linker Script Guide Version 1.2 ©May 2013 Page | 1 Linker Script Guide Emprog 1 - Linker Script guide 2 -Arm Specific Options Page | 2 Linker Script Guide Emprog 1 The Linker Scripts Every link is controlled by a linker script. This script is written in the linker command language. The main purpose of the linker script is to describe how the sections in the input files should be mapped into the output file, and to control the memory layout of the output file. Most linker scripts do nothing more than this. However, when necessary, the linker script can also direct the linker to perform many other operations, using the commands described below. The linker always uses a linker script. If you do not supply one yourself, the linker will use a default script that is compiled into the linker executable. You can use the ‘--verbose’ command line option to display the default linker script. Certain command line options, such as ‘-r’ or ‘-N’, will affect the default linker script. You may supply your own linker script by using the ‘-T’ command line option. When you do this, your linker script will replace the default linker script. You may also use linker scripts implicitly by naming them as input files to the linker, as though they were files to be linked. 1.1 Basic Linker Script Concepts We need to define some basic concepts and vocabulary in order to describe the linker script language. The linker combines input files into a single output file. The output file and each input file are in a special data format known as an object file format. -
Chapter 13 ARM Image Format
Chapter 13 ARM Image Format This chapter describes the ARM Image Format (AIF). It contains the following sections: • Overview of the ARM Image Format on page 13-2 • AIF variants on page 13-3 • The layout of AIF on page 13-4. ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-1 ARM Image Format 13.1 Overview of the ARM Image Format ARM Image Format (AIF) is a simple format for ARM executable images, consisting of: • a 128-byte header • the image code • the image initialized static data. An AIF image is capable of self-relocation if it is created with the appropriate linker options. The image can be loaded anywhere and it will execute where it is loaded. After an AIF image has been relocated, it can create its own zero-initialized area. Finally, the image is entered at the unique entry point. 13-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C ARM Image Format 13.2 AIF variants There are three variants of AIF: Executable AIF Executable AIF can be loaded at its load address and entered at the same point (at the first word of the AIF header). It prepares itself for execution by relocating itself if required and setting to zero its own zero-initialized data. The header is part of the image itself. Code in the header ensures that the image is properly prepared for execution before being entered at its entry address. The fourth word of an executable AIF header is: BL entrypoint The most significant byte of this word (in the target byte order) is 0xeb. -
Linkers and Loaders Do?
Linkers & Loaders by John R. Levine Table of Contents 1 Table of Contents Chapter 0: Front Matter ........................................................ 1 Dedication .............................................................................................. 1 Introduction ............................................................................................ 1 Who is this book for? ......................................................................... 2 Chapter summaries ............................................................................. 3 The project ......................................................................................... 4 Acknowledgements ............................................................................ 5 Contact us ........................................................................................... 6 Chapter 1: Linking and Loading ........................................... 7 What do linkers and loaders do? ............................................................ 7 Address binding: a historical perspective .............................................. 7 Linking vs. loading .............................................................................. 10 Tw o-pass linking .............................................................................. 12 Object code libraries ........................................................................ 15 Relocation and code modification .................................................... 17 Compiler Drivers ................................................................................. -
Interaktívny Disassembler Prohlášení
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS INTERAKTÍVNY DISASSEMBLER BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE Milan Mrva AUTHOR BRNO 2011 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS INTERAKTIVNÍ ZPĚTNÝ ASSEMBLER INTERACTIVE DISASSEMBLER BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE Milan Mrva AUTHOR VEDOUCÍ PRÁCE Ing. Jakub Křoustek SUPERVISOR BRNO 2011 Abstrakt V práci jsou popsané postupy a nástroje zpětného inženýrství v rámci softwaru. Uvedené jsou techniky ochrany před rozkladem či zkoumáním obsahu spustitelného souboru. Představené jsou příklady programů zabývajících se zpětným překladem. Dále se práce zaobírá architekturou procesoru s důrazem na mikroprocesory Intel a Motorola. Jsou ukázané rozdílné formáty spustitelných souborů. Byl implementovaný generický modulovatelný zpětný assembler.V tomto textu je představená jak jeho struktura, tak zásuvné moduly, které prezentují tři různé techniky disassemblovaní. Jeden z modulů používa vícevláknový parser, který je vlastním návrhem autora. Tyto přístupy jsou v závěru porovnané a je nastíněn další vývoj. Abstract This thesis describes procedures and tools of reverse engineering in terms of software development. There are introduces different techniques of protection against decomposition of executables. The work also mentions some programs used for decomposition analysis. Furthermore it contains information about architecture of processing units, with emphasis on microprocessors Intel and Motorola. Variety of executable formats is shown. Generic retargetable disassembler was implemented. There is a description of its structure and plugins. These plugins represents three algorithms used for disassembling a program.