Fundy Tidal Energy Demonstration Project Volume I: Environmental Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Fundy Tidal Energy Demonstration Project Volume I: Environmental Assessment Fundy Ocean Research Centre for Energy (Minas Basin Pulp and Power Co. Ltd.) Environmental Assessment Registration Document – Fundy Tidal Energy Demonstration Project Volume I: Environmental Assessment Project Number 107405 June 2009 Minas Basin Pulp and Power Volume 1: Environmental Assessment Fundy Tidal Energy Demonstration Facility Final for submission Prepared by: AECOM Canada Ltd. 1701 Hollis Street, SH400 (PO Box 576 CRO), Halifax, NS, Canada B3J 3M8 T 902.428.2021 F 902.428.2031 www.aecom.com Project Number: 107405 Date: June 10, 2009 Minas Basin Pulp and Power Volume 1: Environmental Assessment Fundy Tidal Energy Demonstration Facility Statement of Qualifications and Limitations © 2009 AECOM CANADA LTD. ALL RIGHTS RESERVED. THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND TRADE SECRET LAW AND MAY NOT BE REPRODUCED IN ANY MANNER, EXCEPT BY CLIENT FOR ITS OWN USE, OR WITH THE WRITTEN PERMISSION OF AECOM CANADA LTD. The attached Report (the “Report”) has been prepared by AECOM Canada Ltd. (“Consultant”) for the benefit of the client (“Client”) in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the “Agreement”). The information, data, recommendations and conclusions contained in the Report: • are subject to the budgetary, time, scope, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the “Limitations”); • represent Consultants’ professional judgement in light of the Limitations and industry standards for the preparation of similar reports; • may be based on information provided to Consultant which has not been independently verified; • have not been updated since the date of issuance of the Report and their accuracy is limited to the time period and circumstances in which they were collected, processed, made or issued; • must be read as a whole and sections thereof should not be read out of such context; • were prepared for the specific purposes described in the Report and the Agreement; • in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time. Unless expressly stated to the contrary in the Report or the Agreement, Consultant: • shall not be responsible for any events or circumstances that may have occurred since the date on which the Report was prepared or for any inaccuracies contained in information that was provided to Consultant; • makes no representations whatsoever with respect to the Report or any part thereof, other than that the Report represents Consultant’s professional judgement as described above, and is intended only for the specific purpose described in the Report and the Agreement; • in the case of subsurface, environmental or geotechnical conditions, is not responsible for variability in such conditions geographically or over time. Any use of this Report is subject to this Statement of Qualifications and Limitations. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use. This Statement of Qualifications and Limitations is attached to and forms part of the Report. Final for submission Vol1_FINAL_EA_Minas_2009 June10.doc Minas Basin Pulp and Power Volume 1: Environmental Assessment Fundy Tidal Energy Demonstration Facility Executive Summary The Fundy Ocean Research Centre for Energy proposes to construct, operate and decommission a Tidal Energy Demonstration Facility in the Minas Passage, near Parrsboro, Nova Scotia. The objectives of the Demonstration Facility are: • To build and operate a tidal energy Demonstration Facility to test the commercial potential of in-stream tidal energy devices designed to convert tidal kinetic energy to electrical energy; • To acquire information necessary to assess the performance of tidal energy devices including their effect on the environment and the effect of the environment on the devices; and, • To develop monitoring techniques and methodologies for these devices in the tidal environment. The Facility will consist of three subsea turbine generators, individual subsea cables connecting the turbines to land-based infrastructure, an onshore transformer substation, and buried power lines connecting to the local power distribution system (the Project). This Project is subject to a screening level Environmental Assessment under the Canadian Environmental Assessment Act and is a Class 1 Undertaking under provincial regulations. The Environmental Assessment will be reviewed jointly under the terms of the Federal-Nova Scotia Environmental Assessment Agreement. This Environmental Assessment Document addresses the potential impacts associated with the Demonstration Project only, and relates to the deployment of three turbine generators. It does not address or predict the impacts of a larger array of turbine generators or a commercialization level project, as these projects would require a separate Environmental Assessment process. It is anticipated that some of the information gained from the environmental effects monitoring for the Demonstration Project can be used by researchers to model and predict potential impacts of scaled-up developments. The demonstration turbines will be located within a Crown Lease on the seabed in the vicinity of Black Rock on the north side of the Minas Passage, approximately 1.25 km from shore. The generators (with the possible exception of the Minas Basin Pulp and Power/Marine Current Turbines unit) will be installed on gravity bases, rather than drilled foundations. The units will be installed on the seabed in approximately 30 - 45 m depth at low tide. The Clean Current 2.2 MW model is approximately 18 m in length and has an outside diameter of approximately 20 m. The Nova Scotia Power/OpenHydro turbine is rated to 1 MW and the total diameter is 10 m with a 4 m diameter open centre. The MBP&P/Marine Current Turbine unit is 1.0 - 1.2 MW and will consist of twin axial flow rotors approximately 15 m in diameter. The MCT turbine will either be mounted on a steel gravity based structure or steel pin pile foundations in the seabed. A visible portion of the turbine’s support structure will project approximately 21.5 m above the sea surface at low tide. The total capacity of the three devices together will be approximately 4.4 MW. The Crown Lease will also include a 1.25 km long cable corridor connecting the generators to a land based facility above the high water mark. The terrestrial facility will be built on land leased from a private landowner and will consist of an underground vault to receive the submarine cables, a small building housing electrical switchgear and an interpretive centre, a parking area, a transformer substation and an underground cable connection to the power lines along West Bay Road. Deployment of the NSPI/OpenHydro turbine is scheduled for October, 2009 when construction of the onshore electrical facility will also begin. The onshore facility is expected to be connected to the electrical Final for submission Vol1_FINAL_EA_Minas_2009 June10.doc - i - Minas Basin Pulp and Power Volume 1: Environmental Assessment Fundy Tidal Energy Demonstration Facility grid by summer 2010. Installation of the subsea cables is planned for late summer of 2010, and this will be combined with or followed shortly by installation of the two remaining turbines, which will be completed by mid-summer, 2011. The demonstration turbines will operate for one to four years, following which the turbines and their gravity bases will be removed. Emissions and discharges are expected to be similar those associated with other marine and small terrestrial construction projects. Electromagnetic fields and noise associated with the turbines are less well understood and will require additional monitoring. Preliminary information suggests these emissions will have negligible impact due to the limited scale demonstration facility. Studies undertaken in 2008 to characterise the sea bed included the use of high-resolution seismic reflection systems, sidescan sonar, multibeam bathymetric sonar and photographic surveys. For the most part, the deployment area consists of exposed and scoured volcanic and sedimentary bedrock with course gravel and boulders covering glacial-era muds that may remain between upturned sedimentary ridges. Moving toward shore, thick surficial sediments overlie the bedrock. The cable route has been selected to avoid areas of slump and regions of gravel bedforms. Currents were measured over the lunar month using bottom mounted instruments three times at three different sites around the deployment area. The mean speed, mean velocity and maximum current speeds with the corresponding directions at specific water depths were measured at each site. Information on benthic animal and seaweed communities was obtained from seabed video and still camera photography in August and September 2008, as well as from several bottom samples obtained by scallop dredge in August 2008. Four main types of benthic communities are described based on the substrate they inhabit. Benthic communities exhibit moderate diversity and abundance of organisms reflective of communities adapted to the particular environment at the Project site. The Minas Passage/Minas Channel supports small commercial fisheries which tend to be fished from nearby. Inner Bay fisheries comprise primarily lobster, herring and soft-shell clams; however, many species in the Outer Bay also
Recommended publications
  • BLAZING the TRAIL in NOVA SCOTIA in Canada’S Second Ook Up, Way Up, Because Glooscap Is a Giant in Atlantic Canada’S Mi’Kmaq Culture
    article and photos by Jan Napier BLAZING THE TRAIL IN NOVA SCOTIA In Canada’s second ook up, way up, because Glooscap is a giant in Atlantic Canada’s Mi’kmaq culture. This almighty being was of such gargantuan proportions that the smallest province, a province of Nova Scotia was his bed and Prince Edward Island his pillow. larger-than-life demigod, Ancient legends of the mythical creator live on, and there’s no better place Lto explore them than the spectacular Glooscap Trail in northwestern Nova Scotia. over-the-top scenery and The trail stretches 227 miles, all told, but our itinerary focuses on a 125-mile the world’s highest tides segment between Truro and Joggins. It’s a laid-back, mostly coastal drive, beloved by those in the know. set the stage for RV The Mi’kmaq (pronounced Meeg-mah), an indigenous people native to travels on a grand scale Canada’s Maritime Provinces and the Gaspé Peninsula of Quebec, once lived freely in this region. Silas Tertius Rand, a Baptist missionary who traveled among the Mi’kmaq in the mid- to late-1800s, documented their stories featuring the heroic Glooscap. He “lived like other men ... but he never died, never was sick, never grew old,” wrote Rand. “He could do anything and everything.” Traveling RVers can learn more about Mi’kmaq myths and culture, and stand — dwarfed — beneath the demigod’s towering bronze likeness, at the Glooscap Heritage Centre, less than 5 miles from Truro in Millbrook. If you’re lucky, Climb Five Islands Lighthouse Program Director Gordon Pictou or a heritage interpreter will be on hand to for panoramic views of the Bay of Fundy, Minas Basin and the share some of the Mi’kmaq creation stories, like the one about Five Islands.
    [Show full text]
  • Preliminary Management Plan May 2009
    NovaNova ScotiaScotia ProvincialProvincial ParksParks Preliminary Management Plan May 2009 Cape Split Provincial Park Reserve ...discover our nature 1.0 EXECUTIVE SUMMARY ..................................................1 2.0 INTRODUCTION .........................................................2 3.0 VISION ..................................................................3 Vision .................................................................3 4.0 PARK VALUES ...........................................................3 Natural Heritage .......................................................4 Geology .........................................................4 Marine Environment ..............................................4 Flora ...........................................................4 Fauna ...........................................................5 Cultural Heritage .................................................5 Outdoor Recreation .....................................................6 Outdoor Education .....................................................6 Tourism ...............................................................6 5.0 PARK OBJECTIVES ......................................................7 Protection .............................................................7 Outdoor Recreation .....................................................7 Heritage Appreciation ...................................................7 Tourism ...............................................................8 6.0 PARK CLASSIFICATION ..................................................8
    [Show full text]
  • A Review of Ice and Tide Observations in the Bay of Fundy
    A tlantic Geology 195 A review of ice and tide observations in the Bay of Fundy ConDesplanque1 and David J. Mossman2 127 Harding Avenue, Amherst, Nova Scotia B4H 2A8, Canada departm ent of Physics, Engineering and Geoscience, Mount Allison University, 67 York Street, Sackville, New Brunswick E4L 1E6, Canada Date Received April 27, 1998 Date Accepted December 15,1998 Vigorous quasi-equilibrium conditions characterize interactions between land and sea in macrotidal regions. Ephemeral on the scale of geologic time, estuaries around the Bay of Fundy progressively infill with sediments as eustatic sea level rises, forcing fringing salt marshes to form and reform at successively higher levels. Although closely linked to a regime of tides with large amplitude and strong tidal currents, salt marshes near the Bay of Fundy rarely experience overflow. Built up to a level about 1.2 m lower than the highest astronomical tide, only very large tides are able to cover the marshes with a significant depth of water. Peak tides arrive in sets at periods of 7 months, 4.53 years and 18.03 years. Consequently, for months on end, no tidal flooding of the marshes occurs. Most salt marshes are raised to the level of the average tide of the 18-year cycle. The number of tides that can exceed a certain elevation in any given year depends on whether the three main tide-generating factors peak at the same time. Marigrams constructed for the Shubenacadie and Cornwallis river estuaries, Nova Scotia, illustrate how the estuarine tidal wave is reshaped over its course, to form bores, and varies in its sediment-carrying and erosional capacity as a result of changing water-surface gradients.
    [Show full text]
  • 2019 Bay of Fundy Guide
    VISITOR AND ACTIVITY GUIDE 2019–2020 BAYNova OF FUNDYScotia’s & ANNAPOLIS VALLEY TIDE TIMES pages 13–16 TWO STUNNING PROVINCES. ONE CONVENIENT CROSSING. Digby, NS – Saint John, NB Experience the phenomenal Bay of Fundy in comfort aboard mv Fundy Rose on a two-hour journey between Nova Scotia and New Brunswick. Ferries.ca Find Yourself on the Cliffs of Fundy TWO STUNNING PROVINCES. ONE CONVENIENT CROSSING. Digby, NS – Saint John, NB Isle Haute - Bay of Fundy Experience the phenomenal Bay of Fundy in comfort aboard mv Fundy Rose on a two-hour journey between Nova Scotia Take the scenic route and fi nd yourself surrounded by the and New Brunswick. natural beauty and rugged charm scattered along the Fundy Shore. Find yourself on the “Cliffs of Fundy” Cape D’or - Advocate Harbour Ferries.ca www.fundygeopark.ca www.facebook.com/fundygeopark Table of Contents Near Parrsboro General Information .................................. 7 Top 5 One-of-a-Kind Shopping ........... 33 Internet Access .................................... 7 Top 5 Heritage and Cultural Smoke-free Places ............................... 7 Attractions .................................34–35 Visitor Information Centres ................... 8 Tidally Awesome (Truro to Avondale) ....36–43 Important Numbers ............................. 8 Recommended Scenic Drive ............... 36 Map ............................................... 10–11 Top 5 Photo Opportunities ................. 37 Approximate Touring Distances Top Outdoor Activities ..................38–39 Along Scenic Route .........................10
    [Show full text]
  • Identification of Atlantic Mud-Piddock Habitat in Atlantic Canadian Waters
    Identification of Atlantic Mud-piddock Habitat in Atlantic Canadian Waters C.M. Clark, A. Hebda, G. Jones, S. Butler, and G. Pardy Population Ecology Division Fisheries and Oceans Canada 1 Challenger Drive Dartmouth, NS B2Y 4A2 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3295 1 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • The Annapolis Basin Scallop Fishery: a Historical Perspective and 1993 Stock Assessment
    Scientific Excellence • Resource Protection & Conservation • Benefits for Canadians Excellence scientifique • Protection et conservation des ressources • Bénéfices aux Canadiens DFO Library MPO - Bbliothèque III IIIIHIIIIJIIII II I/9-- - 12022666 The Annapolis Basin Scallop Fishery: A Historical Perspective and 1993 Stock Assessment E. L. Kenchington and M. J. Lundy Benthic Fisheries and Aquaculture Division Biological Sciences Branch Department of Fisheries and Oceans P.O. Box 550 Halifax, Nova Scotia B3J 2S7 1994 Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2230 5-é-/ 23 Fisheries Pêches 1+1 and Oceans et Océans Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribu- tion is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences. Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisherics Abstracts and indexed in the Department's annual index to scientific and technical publications. Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports ( Biological Series) of the Fisherics Research Board of Canada. Numbers 901-1425 were issued as Manuscript Reports of the Fisheries Research Board of Canada.
    [Show full text]
  • Annapolis Basin Bay of Fundy Estuary Profile Annapolis Basin
    Bay of Fundy Estuary Profiles Annapolis Basin Bay of Fundy Estuary Profile Annapolis Basin The Annapolis Basin is a sub-basin of the Bay of Fundy along the northwestern shore of Nova Scotia and at the western end of the Annapolis Valley. The Annapolis River is the major water source flowing into the estuary. At the NB mouth of the estuary, a narrow channel known as the Digby Gut connects the 44 NS estuary to the Bay of Fundy. Annapolis Royal and Digby are the main communities along the shore of the estuary, and Kingston-Greenwood is within the catchment area. Near Digby, there is a ferry port that connects to Saint John, New Brunswick. The estuary also hosts a tidal power generating station, which is near Annapolis Royal. The economy within the catchment area is largely driven by agriculture. However, Estuary surface area 104.07 km2 there are also several shellfish and finfish aquaculture tenures, and some Width at estuary mouth 1.85 km commercial fisheries near the mouth of the estuary that largely target Shoreline length 200.63 km invertebrates such as crab, lobster, and clams that inhabit tidal mudflats. The Catchment area 2322.05 km2 extensive tidal mudflats within the estuary are important habitat for Shorebird colonies 2 shorebirds. Within the catchment area there is freshwater habitat for wood Protected area 94.81 km2 turtles, and two protected areas that overlap with the landward boundary of Paved roads 1028 km the estuary. Although the upper valley is primarily agricultural land, much of Aquaculture leases 10 the rest of the catchment area is covered by forest.
    [Show full text]
  • R E P O R T S 112 Structure of the Minas Passage, Bay of Fundy: A
    Reports 112 Structure of the Minas Passage, Bay of Fundy: A Preliminary Report* DONALD J. P. SWIFT Duke University, Durham, N. C. FRANK L. JAGODITS Huntec Limited, Toronto, Ont. BERNARD L. MANISTRE Lockwood Survey Corporation Limited, Toronto, Ont. NORMAN R. PATERSON Huntec Limited, Toronto, Ont. Introduction From July, 1965 to March, 1966, a joint geological-geophysical study of the Minas Passage, Bay of Fundy, was undertaken by Huntec Limited of Toronto for the Atlantic Development Board of Canada. The purpose of the project was to test the feasibility of a tidal power station in the Passage. This paper presents a portion of the study, namely the structure of the geologically critical Minas Passage area and its bearing on regional structure. The Bay of Fundy is a funnel-shaped body of water lying between Nova Scotia and New Brunswick (Fig. 1). Fundy proper is 144 kilometers long, 100 kilometers wide at the base, and averages 75 meters in depth. The northeast end bifurcates into northeast-trending Chignecto Bay, and the east-trending Minas Basin. Three distinct bodies of water are included within the latter; the Minas Basin proper; the Minas Channel, separated from the basin by the great curved peninsula of Cape Blomidon-Cape Split; and the Minas Passage, connecting the Channel and the Basin (Fig. 2). ^Manuscript received 12 January, 1968. Reports 113 -V. N - ~M ' , , , - I . , I - I Figure 2 - The Minas Passage with Cape Split in the background. Stratigraphy Three well-defined bedrock sequences occur in the Minas Passage area. The Cobequid Complex is a lower Paleozoic metamorphic and igneous complex comprising the upraised Cobequid Fault Block (Fig.
    [Show full text]
  • The Atlantic Geoscience Society (AGS) La Société Géoscientifique De L’Atlantique
    The Atlantic Geoscience Society (AGS) La Société Géoscientifique de l’Atlantique 42nd Colloquium and Annual Meeting Special Sessions: Geoscience Education and Outreach: Creating an Awareness Offshore Geology of Eastern Canada Tin-related mineralization and exploration in the Maritimes Dates, Rates, and Durations of Tectonic Processes Advances in Carboniferous Geology in the Atlantic Provinces General Sessions: Current Research in the Atlantic Provinces 5-6 February, 2016 Holiday Inn, Truro, Nova Scotia PROGRAM WITH ABSTRACTS We gratefully acknowledge sponsorship from the following companies and organizations: Department of Energy Department of Natural Resources Welcome to the 42nd Colloquium and Annual Meeting of the Atlantic Geoscience Society in Truro. This is a new venue for us this year, and we hope you will soon find your way around both the hotel and the town. You have contributed a very full program, which we hope you will find stimulating, broadening, and the source of much discussion. AGS members are clearly pushing the boundaries of geoscience in all its branches! Be sure to take in the science on the posters and the displays from sponsors. And don’t miss the after-banquet jam and open mike on Saturday night. For social media types, please consider sharing updates on Facebook. We hope you will be able to use the weekend to renew old acquaintances, make new ones, and further the aims of your Atlantic Geoscience Society. The organizers: Tim Fedak, Bob Grantham, Rob Raeside, Chris White 2 ATLANTIC GEOSCIENCE SOCIETY 42nd COLLOQUIUM AND ANNUAL GENERAL MEETING 5-6 February, 2016, Holiday Inn, Truro, Nova Scotia PROGRAM SUMMARY Locations: see campus plan, inside back cover Friday, 5th February, 2016 9.00 – 4.00 p.m.
    [Show full text]
  • The Early Jurassic Ornithischian Dinosaurian Ichnogenus Anomoepus
    19 The Early Jurassic Ornithischian Dinosaurian Ichnogenus Anomoepus Paul E. Olsen and Emma C. Rainforth nomoepus is an Early Jurassic footprint genus and 19.2). Because skeletons of dinosaur feet were not produced by a relatively small, gracile orni- known at the time, he naturally attributed the foot- A thischian dinosaur. It has a pentadactyl ma- prints to birds. By 1848, however, he recognized that nus and a tetradactyl pes, but only three pedal digits some of the birdlike tracks were associated with im- normally impressed while the animal was walking. The pressions of five-fingered manus, and he gave the name ichnogenus is diagnosed by having the metatarsal- Anomoepus, meaning “unlike foot,” to these birdlike phalangeal pad of digit IV of the pes lying nearly in line with the axis of pedal digit III in walking traces, in combination with a pentadactyl manus. It has a pro- portionally shorter digit III than grallatorid (theropod) tracks, but based on osteometric analysis, Anomoepus, like grallatorids, shows a relatively shorter digit III in larger specimens. Anomoepus is characteristically bi- pedal, but there are quadrupedal trackways and less common sitting traces. The ichnogenus is known from eastern and western North America, Europe, and southern Africa. On the basis of a detailed review of classic and new material, we recognize only the type ichnospecies Anomoepus scambus within eastern North America. Anomoepus is known from many hundreds of specimens, some with remarkable preservation, showing many hitherto unrecognized details of squa- mation and behavior. . Pangea at approximately 200 Ma, showing the In 1836, Edward Hitchcock described the first of what areas producing Anomoepus discussed in this chapter: 1, Newark we now recognize as dinosaur tracks from Early Juras- Supergroup, eastern North America; 2, Karoo basin; 3, Poland; sic Newark Supergroup rift strata of the Connecticut 4, Colorado Plateau.
    [Show full text]
  • They Planted Well: New England Planters in Maritime Canada
    They Planted Well: New England Planters in Maritime Canada. PLACES Acadia University, Wolfville, Nova Scotia, 9, 10, 12 Amherst Township, Nova Scotia, 124 Amherst, Nova Scotia, 38, 39, 304, 316 Andover, Maryland 65 Annapolis River, Nova Scotia, 22 Annapolis Township, Nova Scotia, 23, 122-123 Annapolis Valley, Nova Scotia, 10, 14-15, 107, 178 Annapolis County, Nova Scotia, 20, 24-26, 28-29, 155, 258 Annapolis Gut, Nova Scotia, 43 Annapolis Basin, Nova Scotia, 25 Annapolis-Royal (Port Royal-Annapolis), 36, 46, 103, 244, 251, 298 Atwell House, King's County, Nova Scotia, 253, 258-259 Aulac River, New Brunswick, 38 Avon River, Nova Scotia, 21, 27 Baie Verte, Fort, (Fort Lawrence) New Brunswick, 38 Barrington Township, Nova Scotia, 124, 168, 299, 315, Beaubassin, New Brunswick (Cumberland Basin), 36 Beausejour, Fort, (Fort Cumberland) New Brunswick, 17, 22, 36-37, 45, 154, 264, 277, 281 Beaver River, Nova Scotia, 197 Bedford Basin, Nova Scotia, 100 Belleisle, Annapolis County, Nova Scotia, 313 Biggs House, Gaspreau, Nova Scotia, 244-245 Blomidon, Cape, Nova Scotia, 21, 27 Boston, Massachusetts, 18, 30-31, 50, 66, 69, 76, 78, 81-82, 84, 86, 89, 99, 121, 141, 172, 176, 215, 265 Boudreau's Bank, (Starr's Point) Nova Scotia, 27 Bridgetown, Nova Scotia, 196, 316 Buckram (Ship), 48 Bucks Harbor, Maine, 174 Burton, New Brunswick, 33 Calkin House, Kings County, 250, 252, 259 Camphill (Rout), 43-45, 48, 52 Canning, Nova Scotia, 236, 240 Canso, Nova Scotia, 23 Cape Breton, Nova Scotia, 40, 114, 119, 134, 138, 140, 143-144 2 Cape Cod-Style House, 223
    [Show full text]
  • Wampanoag, Tribespeople “Of the Dawn”
    THE WAMPANOAG, TRIBESPEOPLE “OF THE DAWN” “Ye see, Hinnissy, th’ Indyun is bound f’r to give way to th’ onward march iv white civilization. You ’an me, Hinnissy, is th’ white civilization... The’ on’y hope f’r th’ Indyun is to put his house on rollers, an’ keep a team hitched to it, an’, whin he sees a white man, to start f’r th’ settin’ sun.” — Finley Peter Dunne, OBSERVATIONS BY MR. DOOLEY, New York, 1902 HDT WHAT? INDEX WAMPANOAG WAMPANOAG When the English settlements first commenced in New England, that part of its territory, which lies south of New Hampshire, was inhabited by five principal nations of Indians: the Pequots, who lived in Connecticut; the Narragansets, in Rhode Island; the Pawkunnawkuts, or Womponoags, east of the Narragansets and to the north as far as Charles river;1 the Massachusetts, north of Charles river and west of Massachusetts Bay; and the Pawtuckets, north of the Massachusetts. The boundaries and rights of these nations appear not to have been sufficiently definite to be now clearly known. They had within their jurisdiction many subordinate tribes, governed by sachems, or sagamores, subject, in some respects, to the principal sachem. At the commencement of the seventeenth century, they were able to bring into the field more than 18,000 warriors; but about the year 1612, they were visited with a pestilential disease, whose horrible ravages reduced their number to about 1800.2 Some of their villages were entirely depopulated. This great mortality was viewed by the first Pilgrims, as the accomplishment of one of the purposes of Divine Providence, by making room for the settlement of civilized man, and by preparing a peaceful asylum for the persecuted Christians of the old world.
    [Show full text]