Reproductive Strategies of the Insidious Fish Ectoparasite, Neobenedenia Sp

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Strategies of the Insidious Fish Ectoparasite, Neobenedenia Sp Reproductive Strategies of the Insidious Fish Ectoparasite, Neobenedenia sp. (Capsalidae: Monogenea) Truong Dinh Hoai1,2, Kate S. Hutson1* 1 Marine Parasitology Laboratory, Centre for Sustainable Tropical Fisheries and Aquaculture and the School of Marine and Tropical Biology, James Cook University, Queensland, Australia, 2 Aquatic Environment and Fish Pathology Department, Faculty of Animal Science and Aquaculture, Vietnam National University of Agriculture, Hanoi, Vietnam Abstract Fish monogeneans are lethal parasites in aquaculture. We provide the first experimental evidence that a notorious fish monogenean, Neobenedenia sp., can produce viable eggs in isolation for three consecutive generations. We infected individual, isolated, farmed barramundi, Lates calcarifer (Bloch) with a single oncomiracidium (larva) of the hermaphroditic monogenean Neobenedenia sp. Isolated parasites reached sexual maturity at day 10 post-hatch (24uC, 35%) and laid ,3,300 embryonated eggs over 17 days. Egg production rapidly increased following sexually maturity on day 10 (58615 eggs) and peaked on day 15 (496668 eggs) before gradually decreasing. Neobenedenia sp. exhibited egg laying and egg hatching rhythms. Parasites laid eggs continuously, but egg production increased in periods of darkness (64.3%), while the majority of oncomiracidia (81%) emerged from eggs in the first three hours of light. Eggs laid by isolated ‘parent’ parasites hatched and individual emerging oncomiracidia were used to infect more individual, isolated fish, with three consecutive, isolated, parasite generations (F1, F2 and F3) raised in the laboratory. Infection success and egg hatching success did not differ between generations. Our data show that one parasite, in the absence of a mate, presents a severe threat to captive fish populations. Citation: Dinh Hoai T, Hutson KS (2014) Reproductive Strategies of the Insidious Fish Ectoparasite, Neobenedenia sp. (Capsalidae: Monogenea). PLoS ONE 9(9): e108801. doi:10.1371/journal.pone.0108801 Editor: La´szlo´ Orba´n, Temasek Life Sciences Laboratory, Singapore Received March 18, 2014; Accepted August 31, 2014; Published September 29, 2014 Copyright: ß 2014 Dinh Hoai, Hutson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data are available from the James Cook University Research Database: https://research.jcu.edu.au/researchdata/published/detail/d9eda2a2d49ef0b1ab4de74a2c77c826/. Funding: This work was funded by an AusAID Scholarship (www.ausaid.gov.au) awarded to TDH. The Australian Society for Parasitology (http://parasite.org.au/) provided a Student Travel Award for TDH to present this research at the annual conference in Launceston, Tasmania, Australia in 2012. The funders had norolein study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * Email: [email protected] Introduction reproductive potential when a parasite finds itself alone on a host. Monogeneans also exhibit egg laying and egg hatching rhythms, Monogeneans exhibit sophisticated life history strategies in which can reduce the risk of predation and coincide with host order to ensure their survival in contrasting and unpredictable behaviours to ensure infection success. Monogeneans maximise environments. Evolutionary strategies include multiple reproduc- their chances of finding a host by releasing eggs into the tive mechanisms, predator avoidance and behavioural responses to environment during certain times of the day or night [7], host and environmental cues that favour enhanced infection extending the hatching period [11], responding to hatching cues success. In wild populations these strategies ensure some parasites such as shadows [12], chemicals [11,13], mechanical disturbance survive to the next generation, whereas in captive populations, [14–16] and osmotic changes [17], most of which are generated by where host organisms are confined in high densities, it can lead to the host. parasite epizootics. Neobenedenia are marine capsalid monogeneans of critical Various reproductive mechanisms have been observed in concern to aquaculture because they exhibit several life history monogeneans including oviparity [1], viviparity [2] and self- traits that aid their survival. Neobenedenia spp. have direct life fertilisation [3]. Most oviparous monogeneans deposit fewer than cycles with short generation times [18,19] and low host specificity 100 eggs/parasite/day [4–7], although some species can produce [20,21] which has resulted in major stock losses in several more than 550 eggs/parasite/day [8]. In viviparous monogeneans, aquaculture fish species (see [18,22–24]). Furthermore, attached up to three consecutive generations can develop inside the mother parasite stages are transparent, which can reduce predation by parasite. For example, a single individual Gyrodactylus salaris cleaner organisms [21]. Eggs are encapsulated by a proteinaceous bears the first daughter within 24 hours of the birth of the parent shell which confers protection to the developing embryo from [9] and thus has the capacity to produce six million offspring in digestion [25], most chemicals [26–29] and bacteria [1]. Capsalid four weeks [1]. Self-fertilisation is known to occur in monogenean monogeneans are hermaphrodites, displaying several types of species that infect the bladder of amphibians [3,10] and ensures reproduction including mutual cross-insemination [30], attach- PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108801 Reproductive Strategies of Neobenedenia ment of spermatophores to other individuals [31] and self- monitored daily under a stereomicroscope using both transmitted insemination (as observed by the copulatory organ lodged in the and incident light. When eye spots were observed in the eggs, parasite’s own uterus; see [30,32]). However, no studies have monitoring was increased to every 2 h in order to obtain newly experimentally examined whether fish monogeneans can success- hatched oncomiracidia. Individual oncomiracidia ,4 h old were fully reproduce in isolation and produce viable eggs and larvae. gently aspirated using a fine-tip glass pipette under a stereomi- The aim of this research was to experimentally examine the croscope and introduced to a 10 L aquarium containing an reproductive strategies of Neobenedenia. Specifically we sought to individual L. calcarifer in 6 L of sea water. Each oncomiracidium determine: 1) whether Neobenedenia can reproduce in isolation; 2) was released at the bottom of the aquarium to avoid the effects of Neobenedenia fecundity over time; 3) whether Neobenedenia surface tension and currents which can trap and kill oncomiracidia exhibit egg laying rhythms and/or hatching rhythms. We used a [1]. When the oncomiracidia were introduced, air supply to the barramundi, or Asian seabass, Lates calcarifer – Neobenedenia sp. fish was stopped for 1 h in order to reduce water currents and model system for our experiments. Barramundi (Perciformes: thereby increase infection success [19]. Thirty replicates were Latidae) are distributed in estuaries and coastal seas from south- made at room temperature (24.360.2uC). Salinity in each western India to north-eastern Australia, with approximate aquarium was checked using a refractometer every 24 h and latitudes of 625u [33]. This species is among the most important adjusted by adding distilled water to maintain 3561%. food fishes in tropical Australasia and is farmed throughout eastern To determine the onset of egg production, a piece of 5 cm2 fine and western Asia (China, India, Israel, Indonesia, Malaysia, gauge (0.560.5 mm) netting was immersed in each aquarium and Philippines, Singapore, Tahiti, Taiwan, Thailand) and Australia checked daily under a stereomicroscope. Eggs have filamentous [34]. High intensities of Neobenedenia on farmed fish damage host strings which easily entangle on netting [40]. The day that eggs epidermis through attachment and feeding [19,23,35] and were observed on the netting was recorded as time to sexual increase secondary infections [36,37]. maturity. Eggs always entangle on netting on the day of sexual maturity (AK Brazenor, unpublished data). Netting was renewed Materials and Methods daily and any suspended eggs remaining in the sea water were collected daily by filtering the solution through a 60 mm mesh. Ethics Statement In order to confirm isolated fish were infected by a single, This work was conducted using a barramundi, Lates calcarifer – individual parasite, fish were immersed in fresh water at the end of Neobenedenia sp. model system with all procedures approved by the experiment, which kills Neobenedenia [see 35]. Fish were the James Cook University Animal Ethics Committee (A1579). bathed in 1 L of fresh water containing a mild sedative (Aqui-S Neobenedenia sp. used in experiments were collected from private 1:1000) for 5 min. The fresh water solution and the body surface land in north Queensland, Australia. Future permissions should be of the fish were examined twice under a stereomicroscope to directed to Coral Coast Barramundi Pty Ltd. collect detached and attached parasites, respectively. We sought to determine
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Ahead of Print Online Version Gyrodactylus Aff. Mugili Zhukov
    Ahead of print online version FoliA PArAsitologicA 60 [5]: 441–447, 2013 © institute of Parasitology, Biology centre Ascr issN 0015-5683 (print), issN 1803-6465 (online) http://folia.paru.cas.cz/ Gyrodactylus aff. mugili Zhukov, 1970 (Monogenoidea: Gyro- dactylidae) from the gills of mullets (Mugiliformes: Mugilidae) collected from the inland waters of southern Iraq, with an evalutation of previous records of Gyrodactylus spp. on mullets in Iraq Delane C. Kritsky1, Atheer H. Ali2 and Najim R. Khamees2 1 Health Education Program, school of Health Professions, idaho state University, Pocatello, idaho, UsA; 2 Department of Fisheries and Marine resources, college of Agriculture, University of Basrah, Basrah, iraq Abstract: Gyrodactylus aff. mugili Zhukov, 1970 (Monogenoidea: gyrodactylidae) is recorded and described from the gill lamellae of 11 of 35 greenback mullet, Chelon subviridis (Valenciennes) (minimum prevalence 31%), from the brackish waters of the shatt Al-Arab Estuary in southern iraq. the gyrodactylid was also found on the gill lamellae of one of eight speigler’s mullet, Valamugil speigleri (Bleeker), from the brackish waters of the shatt Al-Basrah canal (minimum prevalence 13%). Fifteen Klunzinger’s mullet, Liza klunzingeri (Day), and 13 keeled mullet, Liza carinata (Valenciennes), collected and examined from southern iraqi waters, were apparently uninfected. the gyrodactylids from the greenback mullet and speigler’s mullet were considered to have affinity toG. mu- gili Zhukov, 1970, and along with G. mugili may represent members of a species complex occurring on mullets in the indo-Pacific region. A single damaged gyrodactylid from the external surfaces of the abu mullet, Liza abu (Heckel), was insufficient for species identification.
    [Show full text]
  • Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service
    [Show full text]
  • Reference to Gyrodactylus Salaris (Platyhelminthes, Monogenea)
    DISEASES OF AQUATIC ORGANISMS Published June 18 Dis. aquat. Org. 1 I REVIEW Host specificity and dispersal strategy in gyr odactylid monogeneans, with particular reference to Gyrodactylus salaris (Platyhelminthes, Monogenea) Tor A. Bakkel, Phil. D. Harris2, Peder A. Jansenl, Lars P. Hansen3 'Zoological Museum. University of Oslo. Sars gate 1, N-0562 Oslo 5, Norway 2Department of Biochemistry, 4W.University of Bath, Claverton Down, Bath BA2 7AY, UK 3Norwegian Institute for Nature Research, Tungasletta 2, N-7004 Trondheim. Norway ABSTRACT: Gyrodactylus salaris Malmberg, 1957 is an important pathogen in Norwegian populations of Atlantic salmon Salmo salar. It can infect a wide range of salmonid host species, but on most the infections are probably ultimately lim~tedby a host response. Generally, on Norwegian salmon stocks, infections grow unchecked until the host dies. On a Baltic salmon stock, originally from the Neva River, a host reaction is mounted, limltlng parasite population growth on those fishes initially susceptible. Among rainbow trouts Oncorhynchus mykiss from the sam.e stock and among full sib anadromous arctic char Salvelinus alpjnus, both naturally resistant and susceptible individuals later mounting a host response can be observed. This is in contrast to an anadromous stock of brown trout Salmo trutta where only innately resistant individuals were found. A general feature of salmonid infections is the considerable variation of susceptibility between individual fish of the same stock, which appears genetic in origin. The parasite seems to be generally unable to reproduce on non-salmonids, and on cyprinids, individual behavioural mechanisms of the parasite may prevent infection. Transmission occurs directly through host contact, and by detached gyrodactylids and also from dead fishes.
    [Show full text]
  • From Pimelodella Yuncensis (Siluriformes: Pimelodidae) in Peru
    Proc. Helminthol. Soc. Wash. 56(2), 1989, pp. 125-127 Scleroductus yuncensi gen. et sp. n. (Monogenea) from Pimelodella yuncensis (Siluriformes: Pimelodidae) in Peru CESAR A. JARA' AND DAVID K. CoNE2 1 Department of Microbiology and Parasitology, Faculty of Biological Sciences, Trujillo, Peru and 2 Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3 ABSTRACT: Scleroductus yuncensi gen. et sp. n. (Gyrodactylidea: Gyrodactylinae) is described from Pimelodella yuncensis Steindachner, 1912 (Siluriformes; Pimelodidae), from fresh water in Peru. The new material is unique in having a bulbous penis with 2 sclerotized ribs within the ejaculatory duct and a sclerotized partial ring surrounding the opening. The hamuli are slender and with thin, continuously curved blades. The superficial bar has 2 posteriorly directed filamentous processes in place of the typically broad gyrodactylid ventral bar membrane. Scleroductus is the fourth genus of the Gyrodactylidea to be described from South America, all of which occur on siluriform fishes. KEY WORDS: Scleroductus yuncensi gen. et sp. n., Gyrodactylidea, Monogenea, Peru, Pimelodella yuncensis. During a parasite survey of freshwater fishes Scleroductus yuncensi sp. n. of Peru, one of us (C.A.J.) found a previously (Figs. 1-5) undescribed viviparous monogenean from the DESCRIPTION (12 specimens studied; 6 speci- external surface of Pimelodella yuncensis that mens measured): Partially flattened holotype could not be classified into any known genus 460 (400-470) long, 90 wide at midlength. Bul- within the Gyrodactylidea (Baer and Euzet, 1961). bous pharynx 42 (35-45) wide. Penis bulbous, The present study describes the new material as 15 (15-16) in diameter; armed with 2 sclerotized Scleroductus yuncensi gen.
    [Show full text]
  • Community Ecology of Parasites in Four Species of Corydoras (Callichthyidae), Ornamental Fish Endemic to the Eastern Amazon (Brazil)
    Anais da Academia Brasileira de Ciências (2019) 91(1): e20170926 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201920170926 www.scielo.br/aabc | www.fb.com/aabcjournal Community ecology of parasites in four species of Corydoras (Callichthyidae), ornamental fish endemic to the eastern Amazon (Brazil) MAKSON M. FERREIRA1, RAFAEL J. PASSADOR2 and MARCOS TAVARES-DIAS3 1Graduação em Ciências Biológicas, Faculdade de Macapá/FAMA, Rodovia Duca Serra, s/n, Cabralzinho, 68906-801 Macapá, AP, Brazil 2Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Rua Leopoldo Machado, 1126, Centro, 68900-067 Macapá, AP, Brazil 3Embrapa Amapá, Rodovia Juscelino Kubitschek, 2600, 68903-419 Macapá, AP, Brazil Manuscript received on April 2, 2018; accepted for publication on June 11, 2018 How to cite: FERREIRA MM AND PASSADOR RJ. 2019. Community ecology of parasites in four species of Corydoras (Callichthyidae), ornamental fish endemic to the eastern Amazon (Brazil). An Acad Bras Cienc 91: e20170926. DOI 10.1590/0001-3765201920170926. Abstract: This study compared the parasites community in Corydoras ephippifer, Corydoras melanistius, Corydoras amapaensis and Corydoras spilurus from tributaries from the Amapari River in State of Amapá (Brazil). A total of 151 fish of these four ornamental species were examined, of which 66.2% were parasitized by one or more species, and a total of 732 parasites were collected. Corydoras ephippifer (91.2%) and C. spilurus (98.8%) were the most parasitized hosts, while C. amapaensis (9.6%) was the least parasitized. A high similarity (≅ 75%) of parasite communities was found in the host species.
    [Show full text]
  • Ontogenesis and Phylogenetic Interrelationships of Parasitic Flatworms
    W&M ScholarWorks Reports 1981 Ontogenesis and phylogenetic interrelationships of parasitic flatworms Boris E. Bychowsky Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, Oceanography Commons, Parasitology Commons, and the Zoology Commons Recommended Citation Bychowsky, B. E. (1981) Ontogenesis and phylogenetic interrelationships of parasitic flatworms. Translation series (Virginia Institute of Marine Science) ; no. 26. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/reports/32 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. /J,J:>' :;_~fo c. :-),, ONTOGENESIS AND PHYLOGENETIC INTERRELATIONSHIPS OF PARASITIC FLATWORMS by Boris E. Bychowsky Izvestiz Akademia Nauk S.S.S.R., Ser. Biol. IV: 1353-1383 (1937) Edited by John E. Simmons Department of Zoology University of California at Berkeley Berkeley, California Translated by Maria A. Kassatkin and Serge Kassatkin Department of Slavic Languages and Literature University of California at Berkeley Berkeley, California Translation Series No. 26 VIRGINIA INSTITUTE OF MARINE SCIENCE COLLEGE OF WILLIAM AND MARY Gloucester Point, Virginia 23062 William J. Hargis, Jr. Director 1981 Preface This publication of Professor Bychowsky is a major contribution to the study of the phylogeny of parasitic flatworms. It is a singular coincidence for it t6 have appeared in print the same year as Stunkardts nThe Physiology, Life Cycles and Phylogeny of the Parasitic Flatwormsn (Amer. Museum Novitates, No. 908, 27 pp., 1937 ), and this editor well remembers perusing the latter under the rather demanding tutelage of A.C.
    [Show full text]
  • Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, Ruthellen Klinger, and Denise Petty2
    FA28 Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, RuthEllen Klinger, and Denise Petty2 Introduction of water, may increase the density of parasites on wild fish and consequently result in disease. In addition, the release Monogeneans are a class of parasitic flatworms that are of monogenean-infested fishes to the natural environment commonly found on fishes and lower aquatic invertebrates. can have potentially devastating effects. One example is the Most monogeneans are browsers that move about freely on movement of resistant Atlantic salmon Salmo salar from the fish’s body surface feeding on mucus and epithelial cells Sweden that is suspected to be the source of Gyrodactylus of the skin and gills; however, a few adult monogeneans will salaris that caused heavy losses of susceptible salmon in remain permanently attached to a single site on the host. Norwegian rivers. Another example is the introduction of Some monogenean species invade the rectal cavity, ureter, monogenean-infested stellate sturgeon Acipenser stellatus body cavity, and even the blood vascular system. Between from the Caspian Sea into Lake Aral that decimated the 4,000 and 5,000 species of monogeneans have been ship sturgeon Acipenser nudiventris population, which was described. They are found on fishes in fresh and salt water not resistant to the monogenean. and in a wide range of water temperatures. Morbidity and mortality epidemics caused by excessive Classification and Identification of parasite loads are not uncommon in captive fishes and Monogeneans have also occurred in wild fishes. Captive fishes are usually held in more crowded conditions than fishes in the natural Though the terms “monogenetic trematodes” and “flukes” environment.
    [Show full text]
  • Les Interactions Entre La Reproduction Et La Biologie Des Populations Chez Les Monogènes Gyrodactylidae : Revue
    Bull. Fr. Pèche Piscic. (1993) 328 : 47-65 — 47 — LES INTERACTIONS ENTRE LA REPRODUCTION ET LA BIOLOGIE DES POPULATIONS CHEZ LES MONOGÈNES GYRODACTYLIDAE : REVUE P. D. HARRIS Department of Adult Education, University of Nottingham, University Park, Nottingham NG7 2RD, UK. RÉSUMÉ Les Gyrodactylidae sont des Monogènes vivipares, les embryons se développent de manière emboîtée dans l'utérus maternel. Les premier et deuxième individus fils se développent sans auto, ni fécondation croisée ; seuls les troisième et suivants peuvent se développer sexuellement. L'importance relative de la reproduction sexuée, dépend de la structure d'âge de la population et de la mortalité. Chez Macrogyrodactylus polypteri, le développement post­ natal de l'appareil génital femelle facilite la fécondation croisée chez tous les individus suivant la seconde naissance. La reproduction asexuée maximise la croissance de la population mais la sexualité intervient régulièrement. Gyrdicotylus gallieni, qui parasite la bouche de Xenopus laevis, présente une croissance exceptionnellement lente de la population et les populations parasites sont surtout composées d'individus âgés et sexuellement matures. Isancistrum subulatae, parasite du Ca\mar Alloteuthissubulata, forme d'importantes populations, mais leurcroissance est probablement lente, et la structure d'âge suggère que la sexualité est courante. Chez Gyrodactylus, plusieurs stratégies existent. Gyrodactylus turnbulli, chez les Guppis, a une courte durée de vie et manifeste une mortalité spécifique croissant exponentiellement avec l'âge, de telle sorte que moins d'un pour cent survivent assez longtemps pour donner une troisième naissance. La reproduction est principalement asexuée mais le sexe intervient dans les populations de très fortes densités. Dans la nature la reproduction asexuée prédomine sans doute et cette espèce peut être considérée comme cycliquement parthénogénétique.
    [Show full text]
  • LIST of AQUATIC ALIEN SPECIES of the IBERIAN PENINSULA (2020) Updated List of Aquatic Alien Species Introduced and Established in Iberian Inland Waters
    Red-eared slider (Trachemys scripta) © Javier Murcia Requena LIST OF AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of aquatic alien species introduced and established in Iberian inland waters Authors Oliva-Paterna F.J., Ribeiro F., Miranda R., Anastácio P.M., García-Murillo P., Cobo F., Gallardo B., García-Berthou E., Boix D., Medina L., Morcillo F., Oscoz J., Guillén A., Aguiar F., Almeida D., Arias A., Ayres C., Banha F., Barca S., Biurrun I., Cabezas M.P., Calero S., Campos J.A., Capdevila-Argüelles L., Capinha C., Carapeto A., Casals F., Chainho P., Cirujano S., Clavero M., Cuesta J.A., Del Toro V., Encarnação J.P., Fernández-Delgado C., Franco J., García-Meseguer A.J., Guareschi S., Guerrero A., Hermoso V., Machordom A., Martelo J., Mellado-Díaz A., Moreno J.C., Oficialdegui F.J., Olivo del Amo R., Otero J.C., Perdices A., Pou-Rovira Q., Rodríguez-Merino A., Ros M., Sánchez-Gullón E., Sánchez M.I., Sánchez-Fernández D., Sánchez-González J.R., Soriano O., Teodósio M.A., Torralva M., Vieira-Lanero R., Zamora-López, A. & Zamora-Marín J.M. LIFE INVASAQUA – TECHNICAL REPORT LIFE INVASAQUA – TECHNICAL REPORT Pumpkinseed (Lepomis gibbosus) © Bernard Dupont.. CC-BY-SA-2.0 5 LIST OF AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of aquatic alien species introduced and established in Iberian inland waters LIFE INVASAQUA - Aquatic Invasive Alien Species of Freshwater and Estuarine Systems: Awareness and Prevention in the Iberian Peninsula. LIFE17 GIE/ES/000515 This publication is a Technical report by the European Project LIFE INVASAQUA (LIFE17 GIE/ES/000515).
    [Show full text]
  • Parasitic Flatworms
    Parasitic Flatworms Molecular Biology, Biochemistry, Immunology and Physiology This page intentionally left blank Parasitic Flatworms Molecular Biology, Biochemistry, Immunology and Physiology Edited by Aaron G. Maule Parasitology Research Group School of Biology and Biochemistry Queen’s University of Belfast Belfast UK and Nikki J. Marks Parasitology Research Group School of Biology and Biochemistry Queen’s University of Belfast Belfast UK CABI is a trading name of CAB International CABI Head Office CABI North American Office Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org ©CAB International 2006. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Parasitic flatworms : molecular biology, biochemistry, immunology and physiology / edited by Aaron G. Maule and Nikki J. Marks. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-0-85199-027-9 (alk. paper) ISBN-10: 0-85199-027-4 (alk. paper) 1. Platyhelminthes. [DNLM: 1. Platyhelminths. 2. Cestode Infections. QX 350 P224 2005] I. Maule, Aaron G. II. Marks, Nikki J. III. Tittle. QL391.P7P368 2005 616.9'62--dc22 2005016094 ISBN-10: 0-85199-027-4 ISBN-13: 978-0-85199-027-9 Typeset by SPi, Pondicherry, India.
    [Show full text]
  • The Prevalence, Ichtyopathological Significance and Control Measures of Gyrodactylus Specimens in Fishes from the Waters of Banat Region
    Scientia Parasitologica, 2007, 1, 91-98 The prevalence, ichtyopathological significance and control measures of Gyrodactylus specimens in fishes from the waters of Banat region C.D. COJOCARU Direc Ńia Sanitar ă Veterinar ă şi pentru Siguran Ńa Alimentelor Timi ş (State Sanitary Veterinary and Food Safety Directorate of Timi ş county), Str. Surorile Martir Caceu nr. 4, 300585 – Timi şoara, România, e-mail: [email protected] ABSTRACT. In Banat`s waters was recorded two species of Gyrodactylus : G. elegans from the gills of bream (Abramis brama danubii) , and also in carp (Cyprinus carpio), on gills and skin, and G. medius , found on body surface and gills of the young goldfish (Carassius auratus auratus) . A varieties of this two species are discussed. G. medius is a highly pathogenic species for young goldfish and G.elegans can produced important outbreaks and damages in carp culture. Formalin can be useful for the treatment of gyrodactylosis in goldfish, but it is forbidden in carp culture. The surveillance of carp and goldfish gyrodactilosis is necessary, and they must be included by the O.I.E. list of fish diseases like salmonid gyrodactylosis. Key words: G. medius, goldfish gyrodactylosis, G. elegans, carp gyrodactylosis. Introduction Gyrodactylosis is an important ectoparasitosis of the fish, especially in aquaculture. Among the The very most of monogeneans (over 1500 parasitical diseases of fishes, only salmonid species) are fish ectoparasites, which are found gyrodactylosis with Gyrodactylus salaris is on the skin and gills. A few species are met in comprised in the O.I.E. list of fish diseases, amphibians, reptiles, cephalopods and because this little monogenean can produce mammalians (in the eye of Hippopotamus ).
    [Show full text]