State in Haskell

Total Page:16

File Type:pdf, Size:1020Kb

State in Haskell c Kluwer Academic Publishers Boston Manufactured in The Netherlands State in Haskell JOHN LAUNCHBURY jlcseogiedu Oregon Graduate Institute PO Box Portland OR SIMON L PEYTON JONES simonp jdcsglasgowacuk University of Glasgow G QQ Scotland Abstract Some algorithms make critical internal use of up datable state even though their external sp ecication is purely functional Based on earlier work on monads we present a way of securely encapsulating stateful computations that manipulate multiple named mutable ob jects in the context of a nonstrict purelyfunctional language The security of the encapsulation is assured by the type system using parametricity The same framework is also used to handle inputoutput op erations state changes on the external world and calls to C Introduction Purely functional programming languages allow many algorithms to b e expressed very concisely but there are a few algorithms in which inplace up datable state seems to play a crucial role For these algorithms purelyfunctional languages which lack up datable state app ear to b e inherently inecient Ponder McGeer Ng Examples of such algorithms include Algorithms based on the use of incrementallymodied hash tables where lo okups are interleaved with the insertion of new items The unionnd algorithm which relies for its eciency on the set representa tions b eing simplied each time the structure is examined Many graph algorithms which require a dynamically changing structure in which sharing is explicit so that changes are visible nonlo cally There is furthermore one absolutely unavoidable use of state in every functional program inputoutput The plain fact of the matter is that the whole purp ose of running a program functional or otherwise is to make some change to the world an up dateinplace if you please In many programs these IO eects are rather complex involving interleaved reads from and writes to the world state We use the term stateful to describ e computations or algorithms in which the programmer really do es want to manipulate up datable state What has b een lacking until now is a clean way of describing such algorithms in a functional lan guage esp ecially a nonstrict one without throwing away the main virtues of functional languages indep endence of order of evaluation the ChurchRosser prop erty referential transparency nonstrict semantics and so on 2 In this pap er we describ e a way to express stateful algorithms in nonstrict purely functional languages The approach is a development of our earlier work on monadic IO and state encapsulation Launchbury Peyton Jones Wadler but with an imp ortant technical innovation we use parametric p olymorphism to achieve safe encapsulation of state It turns out that this allows mutable ob jects to b e named without losing safety and it also allows inputoutput to b e smo othly integrated with other state manipulation The other imp ortant feature of this pap er is that it describ es a complete system and one that is implemented in the Glasgow Haskell compiler and freely available The system has the following prop erties Complete referential transparency is maintained At rst it is not clear what this statement means how can a stateful computation b e said to b e referentially transparent To b e more precise a stateful computation is a state transformer that is a function from an initial state to a nal state It is like a script detailing the actions to b e p erformed on its input state Like any other function it is quite p ossible to apply a single stateful computation to more than one input state and of course its b ehaviour may dep end on that state But in addition we guarantee that the state is used in a singlethreaded way Consequently the nal state can b e constructed by mo difying the input state inplace This ecient implementation resp ects the purelyfunctional seman tics of the statetransformer function so all the usual techniques for reasoning ab out functional programs continue to work Similarly stateful programs can b e exp osed to the full range of program transformations applied by a compiler with no sp ecial cases or side conditions The programmer has complete control over where inplace up dates are used and where they are not For example there is no complex analysis to determine when an array is used in a singlethreaded way Since the viability of the entire program may b e predicated on the use of inplace up dates the programmer must b e condent in and b e able to reason ab out the outcome Mutable ob jects can b e named This ability sounds inno cuous enough but once an ob ject can b e named its use cannot b e controlled as readily Yet naming is imp ortant For example it gives us the ability to manipulate multiple mutable ob jects simultaneously Inputoutput takes its place as a sp ecialised form of stateful computation In deed the type of IOp erforming computations is an instance of the more p olymorphic type of stateful computations Along with IO comes the ability to call imp erative pro cedures written in other languages It is p ossible to encapsulate stateful computations so that they app ear to the rest of the program as pure stateless functions which are guaranteed by the 3 type system to have no interactions whatever with other computations whether stateful or otherwise except via the values of arguments and results of course Complete safety is maintained by this encapsulation A program may contain an arbitrary number of stateful subcomputations each simultaneously active without concern that a mutable ob ject from one might b e mutated by another Stateful computations can even b e p erformed lazily without losing safety For example supp ose that stateful depthrst search of a graph returns a list of vertices in depthrst order If the consumer of this list only evaluates the rst few elements of the list then only enough of the stateful computation is executed to pro duce those elements Overview This section introduces the key ideas of our approach to stateful computation We b egin with the programmerseyeview State transformers A state transformer of type ST s a is a computation which transforms a state indexed by type s and delivers a value of type a You can think of it as a pure function taking a state as its argument and delivering a state and a value as its result We depict a state transformer like this Result State in State out From a semantic p oint of view this is a purelyfunctional account of state For example b eing a pure function a state transformer is a rstclass value it can b e passed to a function returned as a result stored in a data structure duplicated freely and so on Of course it is our intention that the new state will actually b e constructed by mo difying the old one in place a matter to which we return in Section From now on we take the term state transformer to b e synonymous with stateful computation the computation is seen as transforming one state into another A state transformer can have other inputs b esides the state if so it will have a functional type It can also have many results by returning them in a tuple For example a state transformer with two inputs of type Int and two results of type Int and Bool would have the type 4 Int Int ST s IntBool Its picture might lo ok like this Inputs Results State in State out The simplest state transformer returnST simply delivers a value without aecting the state at all returnST a ST s a The picture for returnST is like this State in State out Mutable variables Next we need to provide some primitive state transformers which op erate on the state The simplest thing to provide is the ability to allo cate read and write mutable variables newVar a ST s MutVar s a readVar MutVar s a ST s a writeVar MutVar s a a ST s The type MutVar s a is the type of references allo cated from a state indexed by s and containing a value of type a A reference can b e thought of as the name of or address of a variable an up datable lo cation in the state capable of holding a value The state contains a nite mapping of references to values Notice that unlike SMLs ref types for example MutVars are parameterised over the type of the state as well as over the type of the value to which the reference is mapp ed by the state a decision whose imp ortance will b ecome apparent in Section We use the name MutVar for the type of references rather than Ref sp ecically to avoid confusion with SML Returning to the primitives the function newVar takes an initial value of type a say and delivers a state transformer of type ST s MutVar s a When this 5 state transformer is applied to a state it allo cates a fresh reference that is one currently not used in the state augments the state to map the new reference to the supplied value and returns the reference along with the mo died state Given a reference v readVar v is a state transformer which leaves the state unchanged but uses the state to map the reference to its value The function writeVar transforms the state so that it maps the given reference to a new value Notice that the reference itself does not change it is the state which is mo died writeVar delivers a result of the unit type a type which only has one value apart from b ottom also written A state transformer of type ST s is useful only for its eect on the state Comp osing state transformers State transformers can b e comp osed in sequence to form a larger state transformer using thenST which has type thenST ST s a a ST s b ST s b The picture for s thenST s is like this s1 s2 State in State out Notice
Recommended publications
  • Causal Commutative Arrows Revisited
    Causal Commutative Arrows Revisited Jeremy Yallop Hai Liu University of Cambridge, UK Intel Labs, USA [email protected] [email protected] Abstract init which construct terms of an overloaded type arr. Most of the Causal commutative arrows (CCA) extend arrows with additional code listings in this paper uses these combinators, which are more constructs and laws that make them suitable for modelling domains convenient for defining instances, in place of the notation; we refer such as functional reactive programming, differential equations and the reader to Paterson (2001) for the details of the desugaring. synchronous dataflow. Earlier work has revealed that a syntactic Unfortunately, speed does not always follow succinctness. Al- transformation of CCA computations into normal form can result in though arrows in poetry are a byword for swiftness, arrows in pro- significant performance improvements, sometimes increasing the grams can introduce significant overhead. Continuing with the ex- speed of programs by orders of magnitude. In this work we refor- ample above, in order to run exp, we must instantiate the abstract mulate the normalization as a type class instance and derive op- arrow with a concrete implementation, such as the causal stream timized observation functions via a specialization to stream trans- transformer SF (Liu et al. 2009) that forms the basis of signal func- formers to demonstrate that the same dramatic improvements can tions in the Yampa domain-specific language for functional reactive be achieved without leaving the language. programming (Hudak et al. 2003): newtype SF a b = SF {unSF :: a → (b, SF a b)} Categories and Subject Descriptors D.1.1 [Programming tech- niques]: Applicative (Functional) Programming (The accompanying instances for SF , which define the arrow operators, appear on page 6.) Keywords arrows, stream transformers, optimization, equational Instantiating exp with SF brings an unpleasant surprise: the reasoning, type classes program runs orders of magnitude slower than an equivalent pro- gram that does not use arrows.
    [Show full text]
  • An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices
    Technological University Dublin ARROW@TU Dublin Theses LTTC Programme Outputs 2015-11 An Exploration Of The Effects Of Enhanced Compiler Error Messages For Computer Programming Novices Brett A. Becker Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/ltcdis Part of the Computer and Systems Architecture Commons, and the Educational Methods Commons Recommended Citation Becker, B. (2015) An exploration of the effects of enhanced compiler error messages for computer programming novices. Thesis submitted to Technologicl University Dublin in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education, November 2015. This Theses, Masters is brought to you for free and open access by the LTTC Programme Outputs at ARROW@TU Dublin. It has been accepted for inclusion in Theses by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices A thesis submitted to Dublin Institute of Technology in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education by Brett A. Becker November 2015 Supervisor: Dr Claire McDonnell Learning Teaching and Technology Centre, Dublin Institute of Technology Declaration I certify that this thesis which I now submit for examination for the award of Masters (M.A.) in Higher Education is entirely my own work and has not been taken from the work of others, save and to the extent that such work has been cited and acknowledged within the text of my own work.
    [Show full text]
  • Directing Javascript with Arrows
    Directing JavaScript with Arrows Khoo Yit Phang Michael Hicks Jeffrey S. Foster Vibha Sazawal University of Maryland, College Park {khooyp,mwh,jfoster,vibha}@cs.umd.edu Abstract callback with a (short) timeout. Unfortunately, this style of event- JavaScript programmers make extensive use of event-driven pro- driven programming is tedious, error-prone, and hampers reuse. gramming to help build responsive web applications. However, The callback sequencing code is strewn throughout the program, standard approaches to sequencing events are messy, and often and very often each callback must hard-code the names of the next lead to code that is difficult to understand and maintain. We have events and callbacks in the chain. found that arrows, a generalization of monads, are an elegant solu- To combat this problem, many researchers and practitioners tion to this problem. Arrows allow us to easily write asynchronous have developed libraries to ease the construction of rich and highly programs in small, modular units of code, and flexibly compose interactive web applications. Examples include jQuery (jquery. them in many different ways, while nicely abstracting the details of com), Prototype (prototypejs.org), YUI (developer.yahoo. asynchronous program composition. In this paper, we present Ar- com/yui), MochiKit (mochikit.com), and Dojo (dojotoolkit. rowlets, a new JavaScript library that offers arrows to the everyday org). These libraries generally provide high-level APIs for com- JavaScript programmer. We show how to use Arrowlets to construct mon features, e.g., drag-and-drop, animation, and network resource a variety of state machines, including state machines that branch loading, as well as to handle API differences between browsers.
    [Show full text]
  • The Glasgow Haskell Compiler User's Guide, Version 4.08
    The Glasgow Haskell Compiler User's Guide, Version 4.08 The GHC Team The Glasgow Haskell Compiler User's Guide, Version 4.08 by The GHC Team Table of Contents The Glasgow Haskell Compiler License ........................................................................................... 9 1. Introduction to GHC ....................................................................................................................10 1.1. The (batch) compilation system components.....................................................................10 1.2. What really happens when I “compile” a Haskell program? .............................................11 1.3. Meta-information: Web sites, mailing lists, etc. ................................................................11 1.4. GHC version numbering policy .........................................................................................12 1.5. Release notes for version 4.08 (July 2000) ........................................................................13 1.5.1. User-visible compiler changes...............................................................................13 1.5.2. User-visible library changes ..................................................................................14 1.5.3. Internal changes.....................................................................................................14 2. Installing from binary distributions............................................................................................16 2.1. Installing on Unix-a-likes...................................................................................................16
    [Show full text]
  • SOME USEFUL STRUCTURES for CATEGORICAL APPROACH for PROGRAM BEHAVIOR in Computer Science, Where We Often Use More Complex Structures Not Expressible by Sets
    JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 02/11; ACCEPTED 03/11 UDC 004.423.45 [ SomeSome useful Useful structures Structures for categorical for Categorical approach Approach for program for Programbehavior Behavior Viliam Slodicákˇ [email protected] Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical university of Košice Letná 9, 042 00 Košice Slovak Republic Abstract Using of category theory in computer science has extremely grown in the last decade. Categories allow us to express mathematical structures in unified way. Algebras are used for constructing basic structures used in computer programs. A program can be considered as an element of the initial algebra arising from the used programming language. In our contribution we formulate two ways of expressing algebras in categories. We also construct the codomain functor from the arrow category of algebras into the base category of sets which objects are also the carrier-sets of the algebras. This functor expresses the relation between algebras and carrier-sets. Keywords: Algebra, arrow category, monad, Kleisli category, codomain functor 1. Introduction Knowing and proving of the expected behavior of complex program systems is very important and actual rôle. It carries the time and cost savings: in mathematics [8] or in practical applications of economical character. The aim of programming is to construct such correct programs and program systems that during their execution provide expected behavior [7]. A program can be considered as an element of the initial algebra arising from the used programming language [14]. Algebraic structures and number systems are widely used in computer science.
    [Show full text]
  • The Bluej Environment Reference Manual
    The BlueJ Environment Reference Manual Version 2.0 for BlueJ Version 2.0 Kasper Fisker Michael Kölling Mærsk Mc-Kinney Moller Institute University of Southern Denmark HOW DO I ... ? – INTRODUCTION ........................................................................................................ 1 ABOUT THIS DOCUMENT................................................................................................................................. 1 RELATED DOCUMENTS.................................................................................................................................... 1 REPORT AN ERROR.......................................................................................................................................... 1 USING THE CONTEXT MENU........................................................................................................................... 1 1 PROJECTS.......................................................................................................................................... 2 1.1 CREATE A NEW PROJECT................................................................................................................... 2 1.2 OPEN A PROJECT ............................................................................................................................... 2 1.3 FIND OUT WHAT A PROJECT DOES .................................................................................................... 2 1.4 COPY A PROJECT ..............................................................................................................................
    [Show full text]
  • Companion Object
    1. Functional Programming Functional Programming What is functional programming? What is it good for? Why to learn it? Functional Programming Programs as a composition of pure functions. Pure function? Deterministic. Same result for the same inputs. Produces no observable side eects. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(500), Account(1000)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Referential Transparency Function can be replaced with its corresponding value without changing the program's behavior. Based on the substitution model. Referential Transparency Better reasoning about program behavior. Pure functions referentially transparent. Substitution model Replace a named reference (function) by its value. Based on equational reasoning. Unlocks local reasoning. fun add(a: Int, b: Int): Int = a + b val two = add(1, 1) // could be replaced by 2 everywhere in the program val equal = (two == 1 + 1) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Substitution model Same example, but with two Accounts. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(100), Account(200)) // could be replaced by Account(300) everywhere // in the program val equal = (mergedAcc == Account(300)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Side eect? Function tries to access or modify the external world. val accountDB = AccountDB() fun mergeAccounts(acc1: Account, acc2: Account): Account { val merged = Account(acc1.balance + acc2.balance) accountDB.remove(listOf(acc1, acc2)) // side effect! accountDB.save(merged) // side effect! return merged } val merged = mergeAccounts(Account(100), Account(400)) Target platform: JVM Running on Arrow v.
    [Show full text]
  • It's All About Morphisms
    It’s All About Morphisms Uberto Barbini @ramtop https://medium.com/@ramtop About me OOP programmer Agile TDD Functional PRogramming Finance Kotlin Industry Blog: https://medium.com/@ ramtop Twitter: @ramtop #morphisms#VoxxedVienna @ramtop Map of this presentation Monoid Category Monad Functor Natural Transformation Yoneda Applicative Morphisms all the way down... #morphisms#VoxxedVienna @ramtop I don’t care about Monads, why should I? Neither do I what I care about is y el is to define system behaviour ec Pr #morphisms#VoxxedVienna @ramtop This presentation will be a success if most of you will not fall asleep #morphisms#VoxxedVienna @ramtop This presentation will be a success if You will consider that Functional Programming is about transformations and preserving properties. Not (only) lambdas and flatmap #morphisms#VoxxedVienna @ramtop What is this Category thingy? Invented in 1940s “with the goal of understanding the processes that preserve mathematical structure.” “Category Theory is about relation between things” “General abstract nonsense” #morphisms#VoxxedVienna @ramtop Once upon a time there was a Category of Stuffed Toys and a Category of Tigers... #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 1) A collection of Objects #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 2) A collection of Arrows #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 3) Each Arrow works on 2 Objects #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 4) Arrows can be combined #morphisms#VoxxedVienna
    [Show full text]
  • Mechanized Reasoning During Compilation in the Glasgow Haskell Compiler
    HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler By Andrew Farmer Submitted to the graduate degree program in Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chairperson Dr. Andy Gill Dr. Perry Alexander Dr. Prasad Kulkarni Dr. James Miller Dr. Christopher Depcik Date Defended: April 30, 2015 The Dissertation Committee for Andrew Farmer certifies that this is the approved version of the following dissertation: HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler Chairperson Dr. Andy Gill Date approved: ii Abstract It is difficult to write programs which are both correct and fast. A promising approach, functional programming, is based on the idea of using pure, mathematical functions to construct programs. With effort, it is possible to establish a connection between a specification written in a functional language, which has been proven correct, and a fast implementation, via program transformation. When practiced in the functional programming community, this style of reasoning is still typ- ically performed by hand, by either modifying the source code or using pen-and-paper. Unfortu- nately, performing such semi-formal reasoning by directly modifying the source code often obfus- cates the program, and pen-and-paper reasoning becomes outdated as the program changes over time. Even so, this semi-formal reasoning prevails because formal reasoning is time-consuming, and requires considerable expertise. Formal reasoning tools often only work for a subset of the target language, or require programs to be implemented in a custom language for reasoning.
    [Show full text]
  • Download Article (PDF)
    Cent. Eur. J. Comp. Sci. • 4(3) • 2014 • 96-106 DOI: 10.2478/s13537-014-0220-7 Central European Journal of Computer Science Categorical structures as expressing tool for differential calculus Research Article William Steingartner1∗, Davorka Radaković2† 1 Department of Computers and Informatics, Faculty of El. Engineering and Informatics Technical University of Košice, Letná 9, 04200 Košice, Slovakia 2 Department of Mathematics and Informatics, Faculty of Sciences University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia Received 28 February 2014; accepted 01 September 2014 Abstract: Category is a mathematical structure consisting of objects and morphisms between objects with some specific properties. Categories examine in abstract way the properties of particular mathematical concepts by formalizing them as collections of objects and morphisms. Categorical structures are widely used in computer science for ex- act mathematical modeling. This paper highlights the most typical use of categories for constructing the model of part of differential calculus by using special category named arrow category; and codomain and domain functors. Keywords: arrow category• category theory • categorical model• codomain functor• derivative © Versita sp. z o.o. 1. Introduction Category theory is an area of study in mathematics that examines in abstract way the properties of particular math- ematical concepts by formalizing them as collections of objects and arrows (called morphisms, although this term also has a specific, non category-theoretical meaning), where these collections satisfy some basic conditions [1–3]. Category theory has been developed over the last fifty years, and it has concerned with the study of algebraic structures [4, 5]. Many significant areas of mathematics and informatics can be formalized by using categories.
    [Show full text]
  • Session Arrows: a Session-Type Based Framework for Parallel Code Generation
    MENG INDIVIDUAL PROJECT IMPERIAL COLLEGE LONDON DEPARTMENT OF COMPUTING Session Arrows: A Session-Type Based Framework For Parallel Code Generation Supervisor: Prof. Nobuko Yoshida Author: Dr. David Castro-Perez Shuhao Zhang Second Marker: Dr. Iain Phillips June 19, 2019 Abstract Parallel code is notorious for its difficulties in writing, verification and maintenance. However, it is of increasing importance, following the end of Moore’s law. Modern pro- grammers are expected to utilize the power of multi-core CPUs and face the challenges brought by parallel programs. This project builds an embedded framework in Haskell to generate parallel code. Combining the power of multiparty session types with parallel computation, we create a session typed monadic language as the middle layer and use Arrow, a general interface to computation as an abstraction layer on top of the language. With the help of the Arrow interface, we convert the data-flow of the computation to communication and generate parallel code according to the communication pattern between participants involved in the computation. Thanks to the addition of session types, not only the generated code is guaranteed to be deadlock-free, but also we gain a set of local types so that it is possible to reason about the communication structure of the parallel computation. In order to show that the framework is as expressive as usual programming lan- guages, we write several common parallel computation patterns and three algorithms to benchmark using our framework. They demonstrate that users can express computa- tion similar to traditional sequential code and gain, for free, high-performance parallel code in low-level target languages such as C.
    [Show full text]
  • An Ode to Arrows
    An Ode to Arrows Hai Liu Paul Hudak Department of Computer Science Yale University New Haven, CT 06520, U.S.A. {hai.liu,paul.hudak}@yale.edu Abstract. We study a number of embedded DSLs for autonomous or- dinary differential equations (autonomous ODEs) in Haskell. A naive implementation based on the lazy tower of derivatives is straightforward but has serious time and space leaks due to the loss of sharing when handling cyclic and infinite data structures. In seeking a solution to fix this problem, we explore a number of DSLs ranging from shallow to deep embeddings, and middle-grounds in between. We advocate a so- lution based on arrows, an abstract notion of computation that offers both a succinct representation and an effective implementation. Arrows are ubiquitous in their combinator style that happens to capture both sharing and recursion elegantly. We further relate our arrow-based DSL to a more constrained form of arrows called causal commutative arrows, the normalization of which leads to a staged compilation technique im- proving ODE performance by orders of magnitude. 1 Introduction Consider the following stream representation of the “lazy tower of derivatives” [9] in Haskell: data D a = D {val :: a, der :: D a } deriving (Eq, Show) 0 Mathematically it represents an infinite sequence of derivatives f(t0), f (t0), 00 (n) f (t0), ... , f (t0), ... for a function f that is continuously differentiable at some value t0. This representation has been used frequently in a technique called Functional Automatic Differentiation The usual trick in Haskell is to make D a an instance of the Num and Fractional type classes, and overload the mathemat- ical operators to simultaneously work on all values in the tower of derivatives: instance Num a ⇒ Num (D a) where D x x 0 + D y y0 = D (x + y)(x 0 + y0) u@(D x x 0) ∗ v@(D y y0) = D (x ∗ y)(x 0 ∗ v + u ∗ y0) negate (D x x 0) = D (−x)(−x 0) ..
    [Show full text]