NATURAL ENGLAND CHESIL & the FLEET EMS Survey Of

Total Page:16

File Type:pdf, Size:1020Kb

Load more

NATURAL ENGLAND CHESIL & THE FLEET EMS Survey of Shingle Springline Communities DATA REPORT January 2012 Report Prepared by Lin Baldock & Jon Bass 01305 852585 [email protected] [email protected] NATURAL ENGLAND Chesil & the Fleet EMS Survey of Shingle Springlines Communities _____________________________________________________________________________________________________ TABLE OF CONTENTS EXECUTIVE SUMMARY...........................................................................................................................I 1 INTRODUCTION.............................................................................................................................. 2 2 SPRING CLASSIFICATION............................................................................................................. 2 3 SPRINGS – MAPPING AND SAMPLING METHODS..................................................................... 3 4 RESULTS AND DISCUSSION......................................................................................................... 5 5 MONITORING PROTOCOL FOR SHINGLE SPRINGLINE COMMUNITIES ................................. 7 6 ACKNOWLEDGEMENTS ................................................................................................................9 7 REFERENCES................................................................................................................................. 9 List of Tables Table 1 Locations of fast springs in the eastern Fleet and sampling points at Langton Hive Point and Clouds Hill. Table 2a List of taxa recorded in Fleet springline communities – 2011 Table 2b Habitat descriptions of Fleet springline communities - 2011 Table 3 List of taxa recorded in Fleet springline communities – historical data List of Figures Figure 1 Preliminary comparison of community similarities between spring and seep samples in the Fleet (the closer to each other on the plot the more similar the community). List of Plates Plate 1 Typical fast flowing spring – eastern Fleet. Plate 2 Fast flowing spring eastern Fleet showing characteristic algal growth where there is flowing water over the pebbles. Plate 3 Pebbles embedded in anaerobic, fine sediment in a non-spring area - eastern Fleet. Plate 4 Pebbles in a seep area in the mid-Fleet cleared of a mat of dead Zostera leaves. Plate 5 Close up of pebbles in a mid-Fleet seep area showing open spaces between pebbles colonised by the bivalve Lasaea rubra. Plate 6 Algal flora typical of fast springs – eastern Fleet. Plate 7 Heavily sedimented pebbles with wracks in a non-spring area – eastern Fleet Plate 8 Location of seep in the mid-Fleet just below the line of halophyte scrub (two sample locations shown). Plate 9 De Folin’s lagoon snail (Caecum armoricum) from an eastern Fleet spring. Plate 10 The cumacean crustacean Nannastacus unguiculatus from an eastern Fleet spring. Plate 11 The amphipod crustacean Eulimnogammarus obtusatus from an eastern Fleet spring. _____________________________________________________________________________________________________ Lin Baldock & Jon Bass i January 2012 NATURAL ENGLAND Chesil & the Fleet EMS Survey of Shingle Springlines Communities _____________________________________________________________________________________________________ Plate 12 The tanaeid crustacean Apseudes talpa from an eastern Fleet spring. Plate 13 The slit limpet Emarginula conica from an eastern Fleet spring. Plate 14 Chiton (Achanthochitona crinitus) from an eastern Fleet spring. Plate 15 The mollusc Onuba aculeus from a mid-Fleet seep. Plate 16 The hydroid Clava multicornis from a mid-Fleet seep Plate 17 The pulmonate mollusc Auriculinella bidentata from a mid-Fleet seep. Plate 18 The bivalve Lasaea rubra var. pallida from a mid-Fleet seep. Plate 19 De Folin’s lagoon snail Caecum armoricum from a mid-Fleet seep. List of Video Clips Video 1 Fast flowing spring – eastern Fleet _____________________________________________________________________________________________________ Lin Baldock & Jon Bass ii January 2012 NATURAL ENGLAND Chesil & the Fleet EMS Survey of Shingle Springlines Communities _____________________________________________________________________________________________________ EXECUTIVE SUMMARY A preliminary survey of Shingle Springline Communities in the Fleet was undertaken in the summer and early autumn of 2011. These springline communities were identified as a qualifying sub-feature of the Chesil and the Fleet European Marine Site by English Nature but the extent of the habitat remained unknown, neither was a methodology for surveying this sub-feature established at that time. The aims of the present project were therefore: • to develop a sampling methodology for the spring communities, • compare mollusc species found in 2011 with work reported in 1989, • identify other invertebrate species where possible. Two types of spring, and hence two types of springline community were found to be present on the Chesil Bank shore of the Fleet. • Fast flowing springs – eastern Fleet • Less active springs (seeps) – western Fleet. The fast flowing springs are restricted to the eastern Fleet where they appear as discrete areas of fast flowing seawater running out of the beach at about mid-tide level. The pebbles in these areas are not embedded in smooth, ochorous clay nor compacted in anaerobic sediment. Notably these active spring areas are associated with loose, clean pebbles which are very mobile underfoot. The less active springs (seeps) are located in the mid- and western Fleet. These seeps are not immediately obvious since water does not visibly run out as springs but they can be identified by the fact that they occur in areas of the shore where the pebbles are not compacted by either fine or anaerobic sediment but shift readily underfoot. The location of change between these two “spring” types has not been identified but is likely to be at the transition point in the hydrological system of the Fleet in Butterstreet Cove. A total of twenty fast flowing springs were identified in the eastern Fleet and three sites with less active springs or seeps were located opposite Langton Hive Point and Clouds Hill. Samples of pebbles from the two spring types were collected using cores and returned to the laboratory for sorting and analysis enabling a characteristic community to be identified for each kind of spring. The seep community of the mid- and western Fleet was found to support very high densities of de Folin’s lagoon snail (Caecum armoricum) (10,000s m-2) with both adult and juvenile snails being present together with 100,000s m-2 of the small bivalve Lasaea rubra. This compares with C. armoricum densities of a few thousand m-2 reported for sites in Sussex and Kent. Results of the present survey are tabulated and compared with historical data available on the composition of these special spring communities. The vulnerability of the spring/seep habitats and communities is discussed and a monitoring protocol for the springs has been elaborated. Guidance was developed to identify the fast flowing springs and the slow seeps along the Chesil Bank shore of the Fleet together with advice on timing and methodology for sampling the communities. _____________________________________________________________________________________________________ Lin Baldock & Jon Bass i January 2012 NATURAL ENGLAND Chesil & the Fleet EMS Survey of Shingle Springlines Communities ____________________________________________________________________________________________ 1 Introduction A collaborative agreement schedule between Natural England and Ilchester Estates was recently developed to undertake a preliminary survey of Shingle Springline Communities in the Fleet. These springline communities were identified as a qualifying sub-feature of the Chesil and the Fleet European Marine Site by English Nature (1999). In this publication the distribution of these spring communities was shown diagrammatically as extending continuously the full length of the Fleet from Ferrybridge to the Abbotsbury embayment along the Chesil Bank shore. No methodology for surveying this sub-feature was established at that time and the aim of the present study was to evaluate and develop a methodology for mapping and monitoring the springline communities. The aims of the project were: • to develop a sampling methodology for the spring communities, • compare mollusc species found in 2011 with work reported in 1989, • identify other invertebrate species where possible. The springline communities were first identified by Dennis Seaward as holding an unusual fauna, particularly molluscs most notably De Folin’s lagoon snail Caecum armoricum. Preliminary results were reported in a number of publications (Seaward, 1987a, 1987b, 1989; Little et al., 1989). However little information was provided at the time on the extent of the springline habitat and reports on the composition of the community are scattered in a few publications and within the grey literature. The preliminary survey work and development of methodology reported here was carried out by Lin Baldock and Jon Bass over the summer and early autumn of 2011. Information was obtained on the distribution and characteristics of the springs along the length of the Fleet and methods are proposed for monitoring these features and the associated biotic communities in the future. 2 Spring Classification The first task was to identify the springs following the descriptions provided by Seaward (1987a, 1987b) and develop a preliminary
Recommended publications
  • The Assimineidae of the Atlantic-Mediterranean Seashores

    The Assimineidae of the Atlantic-Mediterranean Seashores

    B72(4-6)_totaal-backup_corr:Basteria-basis.qxd 15-9-2008 10:35 Pagina 165 BASTERIA, 72: 165-181, 2008 The Assimineidae of the Atlantic-Mediterranean seashores J.J. VAN AARTSEN National Museum of Natural History, P.O.Box 9517, 2300 RA Leiden, The Netherlands. A study of the Atlantic – and Mediterranean marine species of the genera Assiminea and Paludinella revealed several new species. The species Assiminea gittenbergeri spec. nov. is estab- lished in the Mediterranean. Assiminea avilai spec. nov. and Assiminea rolani spec. nov. have been found in Terceira, Azores and in Madeira respectively. A species from the Atlantic coast of France, cited as Assiminea eliae Paladilhe, 1875 by Thiele, is described as Paludinella glaubrechti spec. nov. A. eliae cannot be identified today as no type material is known. The name , howev- er, is used for several different species as documented herein. Assiminea ostiorum (Bavay, 1920) is here considered a species in its own right. Paludinella sicana ( Brugnone, 1876), until now con- sidered an exclusively Mediterranean species, has been detected along the Atlantic coast at Laredo ( Spain) in the north as well as at Agadir ( Morocco) in the south. Keywords: Gastropoda, Caenogastropoda, Assimineidae, Assiminea, Paludinella, systematics, Atlantic Ocean east coast, Mediterranean. INTRODUCTION The Assimineidae H. & A. Adams, 1856 are a group of mollusks living worldwide in brackish water, in freshwater as well as terrestrial habitats. In Europe there are only a few species known. They live in usually more or less brackish conditions high in the tidal zone, frequently along tidal mudflats. The two genera recognized to date are Paludinella Pfeiffer, 1841 with Paludinella littorina (Delle Chiaje, 1828) and Paludinella sicana (Brugnone, 1876) and the type-genus Assiminea Leach in Fleming, 1828, with the type- species Assiminea grayana (Fleming, 1828) as well as Assiminea eliae Paladilhe, 1875.
  • Gastropoda, Prosobranchia)

    Gastropoda, Prosobranchia)

    BASTERIA, 64: 151-163, 2000 The genus Alzoniella Giusti & Bodon, 1984, in France. 1 West European Hydrobiidae, 9 (Gastropoda, Prosobranchia) Hans+D. Boeters Karneidstrasse 8, D 81545 Munchen, Germany In France the genusAlzoniella Giusti & Bodon, 1984, is represented with two subgenera, viz. its nominate subgenus and Navarriella subgen. nov. The nominate subgenus comprises six three species, ofwhich are described as viz. A. haicabia A. new, (A.) spec. nov., (A.) junqua spec. A. nov. and A. (A.) provincialis spec. nov., next to (A.) navarrensis Boeters, 1999, A. (A.) perrisii and A. (Dupuy, 1851) (A.) pyrenaica (Boeters, 1983). The new subgenus is proposed for A. (Navarriella) elliptica (Paladilhe, 1874) only. A. (A.) perrisii (Dupuy, 1851) [Hydrobia], the first of this became known from is redefined and species genus that France, described here with two viz. A. and A. subspecies, (A.) p. perrisii (A.) p. irubensis subspec. nov. Key words: Gastropoda, Prosobranchia, Hydrobiidae, Alzoniella (Alzoniella) and Alzoniella (Navarriella), France. INTRODUCTION Giusti & Bodon (1984: 169) described Alzoniella for three eyeless, subterranean, hy- drobiid species from Italy, that might have evolved from small populations that locally survived the Quaternary glaciations. It turned out that Alzoniella is also represented in where mountain inhabited France, regions are that have partially been subject to gla- ciations, viz. the Pyrenees and the MediterraneanAlps. In these regions too, populations ofancestral have Alzoniella might survived locally by invading subterranean waters. This development apparently went less far than in for example Bythiospeum Bourguignat, 1882, andMoitessieria Bourguignat, 1863. Species of these two genera, which are eyeless stygobionts, occur not only in karstic waters, but also in the interstitium and in subter- ranean waters bordering river valleys such as that of the Rhone river (Boeters & Miiller be found 1992).
  • Ein Beitrag Zur Anatomie Von Bythiospeum Tschapecki (CLESSIN, 1878) (Moll., Gastropoda, Prosobranchia)

    Ein Beitrag Zur Anatomie Von Bythiospeum Tschapecki (CLESSIN, 1878) (Moll., Gastropoda, Prosobranchia)

    ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Mitt. Abt. Zool. Landesmus. Joanneum Heft 30 S. 79—82 Graz 1983 Ein Beitrag zur Anatomie von Bythiospeum tschapecki (CLESSIN, 1878) (Moll., Gastropoda, Prosobranchia) Von Peter L. REISCHÜTZ Mit 2 Abbildungen Eingelangt am 27. Mai 1983 Inhalt: Die Genitalmorphologie von Vitretta tschapecki CLESSIN, 1878 wurde erstmals untersucht und die Zugehörigkeit dieser Art zur Gattung Bythiospeum BOURGUIGNAT, 1882. festgestellt. Abstract: The genital morphology of Vitretta tschapecki CLESSIN, 1878 has been examined for the first time and this has proven that this species belongs to the genus Bythiospeum BOURGUIGNAT, 1882. Die Buchkogelhöhle bei St. Martin bei Graz ( = Bründlhöhle, Höhlenkat. Nr. 2793/1) ist locus typicus eines kaum bekannten stygobionten Süßwasser-Proso- branchiers: Vitrella tschapecki CLESSIN, 1878. Bei einer Exkursion mit Dr. E. KREISSL zum locus typicus konnten mehrere Exemplare dieser Art gesammelt und drei anatomisch untersucht werden. Die systematische Stellung der Art war bisher sehr unsicher, da die anatomischen Verhältnisse unbekannt waren. CLESSIN, 1878 beschrieb Vitrella tschapecki mit einem falschen Fundort (Sanriack in Kärnten). Dies wurde später korrigiert (CLESSIN, 1882 und 1887). BOURGUIGNAT, 1882 stellte diese Art zu seiner Gattung Bythiospeum, da Vitrella CLESSIN, 1877 synonym zu Vitrella SWAINSON, 1840 ist. WESTERLUND, 1886 stellte sie in die Gattung Paludinella L. PFEIFFER, 1841, GEYER, 1909 zur Gattung Lartetia BOURGUIGNAT, 1869, FUCHS, 1929 in die Gattung Paladilhiopsis PAVLOVIC, 1913. KLEMM, i960 betrachtete Paladilhiopsis als Untergattung von Paladilhia BOURGUIGNAT. Da die bisherige Gliederung nur auf konchyologischen Merkmalen beruhte (FUCHS, 1925 und 1929, MAHLER, 1949, STOJASPAL, 1978 und REISCHÜTZ, 1981 und 1983), sollte möglichst umfangreiches Material aus dem österreichischen Unter- suchungsgebiet untersucht werden.
  • 24 Relationships Within the Ellobiidae

    24 Relationships Within the Ellobiidae

    Origin atld evoltctiorzai-y radiatiotz of the Mollrisca (ed. J. Taylor) pp. 285-294, Oxford University Press. O The Malacological Sociery of London 1996 R. Clarke. 24 paleozoic .ine sna~ls. RELATIONSHIPS WITHIN THE ELLOBIIDAE ANTONIO M. DE FRIAS MARTINS Departamento de Biologia, Universidade dos Aqores, P-9502 Porzta Delgada, S6o Miguel, Agores, Portugal ssification , MusCum r Curie. INTRODUCTION complex, and an assessment is made of its relevance in :eny and phylogenetic relationships. 'ulmonata: The Ellobiidae are a group of primitive pulmonate gastropods, Although not treated in this paper, conchological features (apertural dentition, inner whorl resorption and protoconch) . in press. predominantly tropical. Mostly halophilic, they live above the 28s rRNA high-tide mark on mangrove regions, salt-marshes and rolled- and radular morphology were studied also and reference to ~t limpets stone shores. One subfamily, the Carychiinae, is terrestrial, them will be made in the Discussion. inhabiting the forest leaf-litter on mountains throughout ago1 from the world. MATERIAL AND METHODS 'finities of The Ellobiidae were elevated to family rank by Lamarck (1809) under the vernacular name "Les AuriculacCes", The anatomy of 35 species representing 19 genera was ~Ctiquedu properly latinized to Auriculidae by Gray (1840). Odhner studied (Table 24.1). )llusques). (1925), in a revision of the systematics of the family, preferred For the most part the animals were immersed directly in sciences, H. and A. Adarns' name Ellobiidae (in Pfeiffer, 1854). which 70% ethanol. Some were relaxed overnight in isotonic MgCl, ochemical has been in general use since that time. and then preserved in 70% ethanol. A reduced number of Grouping of the increasingly growing number of genera in specimens of most species was fixed in Bouin's, serially Gebriider the family was based mostly on conchological characters.
  • Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1

    Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1

    Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1 Satoshi Chiba2,3, Angus Davison,4 and Hideaki Mori3 Abstract: Historically, the Ogasawara Archipelago harbored more than 90 na- tive land snail species, 90% of which were endemic. Unfortunately, about 40% of the species have already gone extinct across the entire archipelago. On Haha- jima, the second-largest island and the one on which the greatest number of species was recorded, more than 50% of species are thought to have been lost. We report here the results of a recent survey of the snails of a remote peninsula, Higashizaki, on the eastern coast of Hahajima. Although the peninsula is small (@0.3 km2) and only part is covered by forest (<0.1 km2), we found 12 land snail species, all of which are endemic to Ogasawara. Among these species, five had been thought to already be extinct on Hahajima, including Ogasawarana yoshi- warana and Hirasea acutissima. Of the former, there has been no record since its original description in 1902. Except for the much larger island of Anijima and the main part of Hahajima, no single region on the Ogasawara Archipelago maintains as great a number of native land snail species. It is probable that the land snail fauna of the Higashizaki Peninsula is exceptionally well preserved be- cause of a lack of anthropogenic disturbance and introduced species. In some circumstances, even an extremely small area can be an important and effective refuge for threatened land snail faunas. The native land snail fauna of the Pacific one such example: of 95 recorded species, islands is one of the most seriously endan- more than 90% are endemic (Kuroda 1930, gered faunas in the world (e.g., Murray et al.
  • Mollusc Fauna of Iskenderun Bay with a Checklist of the Region

    Mollusc Fauna of Iskenderun Bay with a Checklist of the Region

    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 171-184 (2012) DOI: 10.4194/1303-2712-v12_1_20 SHORT PAPER Mollusc Fauna of Iskenderun Bay with a Checklist of the Region Banu Bitlis Bakır1, Bilal Öztürk1*, Alper Doğan1, Mesut Önen1 1 Ege University, Faculty of Fisheries, Department of Hydrobiology Bornova, Izmir. * Corresponding Author: Tel.: +90. 232 3115215; Fax: +90. 232 3883685 Received 27 June 2011 E-mail: [email protected] Accepted 13 December 2011 Abstract This study was performed to determine the molluscs distributed in Iskenderun Bay (Levantine Sea). For this purpose, the material collected from the area between the years 2005 and 2009, within the framework of different projects, was investigated. The investigation of the material taken from various biotopes ranging at depths between 0 and 100 m resulted in identification of 286 mollusc species and 27542 specimens belonging to them. Among the encountered species, Vitreolina cf. perminima (Jeffreys, 1883) is new record for the Turkish molluscan fauna and 18 species are being new records for the Turkish Levantine coast. A checklist of Iskenderun mollusc fauna is given based on the present study and the studies carried out beforehand, and a total of 424 moluscan species are known to be distributed in Iskenderun Bay. Keywords: Levantine Sea, Iskenderun Bay, Turkish coast, Mollusca, Checklist İskenderun Körfezi’nin Mollusca Faunası ve Bölgenin Tür Listesi Özet Bu çalışma İskenderun Körfezi (Levanten Denizi)’nde dağılım gösteren Mollusca türlerini tespit etmek için gerçekleştirilmiştir. Bu amaçla, 2005 ve 2009 yılları arasında sürdürülen değişik proje çalışmaları kapsamında bölgeden elde edilen materyal incelenmiştir.
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T

    An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T

    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
  • Assessment of Mitochondrial Genomes for Heterobranch Gastropod Phylogenetics

    Assessment of Mitochondrial Genomes for Heterobranch Gastropod Phylogenetics

    Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics Rebecca M Varney University of Alabama Bastian Brenzinger Staatliche Naturwissenschaftliche Sammlungen Bayerns Manuel António E. Malaquias Universitetsmuseet i Bergen Christopher P. Meyer Smithsonian Institution Michael Schrödl Staatliche Naturwissenschaftliche Sammlungen Bayerns Kevin Kocot ( [email protected] ) The University of Alabama https://orcid.org/0000-0002-8673-2688 Research article Keywords: Heterobranchia, Gastropoda, mitochondrial genome, mitogenomic Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-30542/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 21st, 2021. See the published version at https://doi.org/10.1186/s12862-020-01728-y. Page 1/19 Abstract Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs.” Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and signicant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs.” Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded.
  • The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe Leonina and Tritonia Diomedea, and Their Impact on Gastropod Phylogeny

    The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe Leonina and Tritonia Diomedea, and Their Impact on Gastropod Phylogeny

    RESEARCH ARTICLE The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny Joseph L. Sevigny1, Lauren E. Kirouac1¤a, William Kelley Thomas2, Jordan S. Ramsdell2, Kayla E. Lawlor1, Osman Sharifi3, Simarvir Grewal3, Christopher Baysdorfer3, Kenneth Curr3, Amanda A. Naimie1¤b, Kazufusa Okamoto2¤c, James A. Murray3, James 1* a11111 M. Newcomb 1 Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America, 2 Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America, 3 Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America ¤a Current address: Massachusetts College of Pharmacy and Health Science University, Manchester, New Hampshire, United States of America OPEN ACCESS ¤b Current address: Achievement First Hartford Academy, Hartford, Connecticut, United States of America ¤c Current address: Defense Forensic Science Center, Forest Park, Georgia, United States of America Citation: Sevigny JL, Kirouac LE, Thomas WK, * [email protected] Ramsdell JS, Lawlor KE, Sharifi O, et al. (2015) The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny. PLoS ONE 10(5): Abstract e0127519. doi:10.1371/journal.pone.0127519 The phylogenetic relationships among certain groups of gastropods have remained unre- Academic Editor: Bi-Song Yue, Sichuan University, CHINA solved in recent studies, especially in the diverse subclass Opisthobranchia, where nudi- branchs have been poorly represented. Here we present the complete mitochondrial Received: January 28, 2015 genomes of Melibe leonina and Tritonia diomedea (more recently named T.
  • Non-Indigenous Species Inventory of Estuarine Intertidal Areas; a Comparison of Estuaries and Habitats Using a Hard Substrate Transect Methodology

    Non-Indigenous Species Inventory of Estuarine Intertidal Areas; a Comparison of Estuaries and Habitats Using a Hard Substrate Transect Methodology

    Non-indigenous species inventory of estuarine intertidal areas; a comparison of estuaries and habitats using a hard substrate transect methodology. Pilot study within the frame of the INTERREG IV A 2 Seas project SEFINS commissioned by the NVWA. Sander Wijnhoven1, Anke Engelberts1, Angela Dekker1, et al. 1Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ) Final report September, 2015 Photos cover from left to lower right: a) View on the marina of Breskens with on the foreground an intertidal habitat gradient from high to low intertidal area; b) Hemigrapsus sanguineus, a non-indigenous species, as here collected at the site of Terneuzen; c) A quadrant in Ascophyllum nodosum dominated habitat, here at the site of Terneuzen, ready to be inventoried. Non-indigenous species inventory of estuarine intertidal areas; a comparison of estuaries and habitats using a hard substrate transect methodology. Pilot study within the frame of the INTERREG IV A 2 Seas project SEFINS commissioned by the NVWA. Sander Wijnhoven1, Anke Engelberts1, Angela Dekker1, et al. 1Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ) Final report September, 2015 Study commissioned by the Netherlands Food and Consumer Product Safety Authority (NVWA) of the Ministry of Economic Affairs (EZ) supervised by Sander Smolders (Office of Risk Assessment and Research). Study performed within the frame of the INTERREG IV A 2 Seas project ‘Safeguarding the Environment from Invasive Non-native Species’ (SEFINS), a project within the cross-border
  • Pedipedinae (Gastropoda: Ellobiidae) from Hong Kong

    Pedipedinae (Gastropoda: Ellobiidae) from Hong Kong

    The marine flora and fauna of Hong Kong and southern China III (ed. B. Morton). Proceedings of the Fourth International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 11-29 April 1989. Hong Kong: Hong Kong University Press, 1992. PEDIPEDINAE (GASTROPODA: ELLOBIIDAE) FROM HONG KONG Ant6nio M. de Frias Martins Departamento de Biologia, Universidade dos A~ores,P-9502 Ponta Delgada, Siio Miguel, A~ores,Portugal ABSTRACT Two species of Pedipedinae are recorded for the first time from Hong Kong and are here provisionally referred to as Pedipes jouani Montrouzier, 1862 and Microtralia alba (Gassies, 1865), described from New Caledonia. A descriptive study of the reproductive and nervous systems was conducted and confirms previous studies that both genera are consubfamilial. The distribution and dispersal of the species is discussed. INTRODUCTION The Indo-Pacific Ellobiidae are particularly well represented by conspicuous, mangrove- dwelling, macroscopic species, relatively few of which have been studied anatomically. Koslowsky (1933) presented a detailed description of Melampus boholensis 'H. and A. Adams' Pfeiffer, 1856. Morton (1955) described the anatomy of Pythia Roding, 1798, Ellobium Roding, 1798 [E.aurisjudae (L. 1758)l and of the small pedipedinian Marinula King, 1832 [M.filholi Hutton, 18781. Knipper and Meyer (1956) provided good illus- trations of the nervous systems of Ellobium (Auriculodes) gaziensis (Preston, 1913), Cassidula labrella (Deshayes, 1830) and Melampus semisulcatus Mousson, 1869. Cassidula Fhssac, 1821, Ellobium and Pythia were discussed by Beny et al. (1967) and Sumikawa and Miura (1978) studied in detail the reproductive system of Ellobium chinense (Pfeiffer, 1854).
  • An Annotated List of the Non-Marine Mollusca of Britain and Ireland

    An Annotated List of the Non-Marine Mollusca of Britain and Ireland

    JOURNAL OF CONCHOLOGY (2005), VOL.38, NO .6 607 AN ANNOTATED LIST OF THE NON-MARINE MOLLUSCA OF BRITAIN AND IRELAND ROY ANDERSON1 Abstract An updated nomenclatural list of the non-marine Mollusca of the Britain and Ireland is provided. This updates all previous lists and revises nomenclature and classification in the context of recent changes and of new European lists, including the Clecom List. Cases are made for the usage of names in the List by means of annotations. The List will provide a basis for the future census and cataloguing of the fauna of Britain and Ireland. Key words Taxonomic, list, nomenclature, non-marine, Mollusca, Britain, Ireland, annotated. INTRODUCTION There has been a need for some time to modernise the list of non-marine Mollusca for Britain and Ireland, a subject last visited in this journal in 1976 (Waldén 1976; Kerney 1976). Many of the changes that have appeared in the literature since then are contentious and Kerney (1999) chose not to incorporate many of these into the latest atlas of non-marine Mollusca of Britain and Ireland. A new European List, the Clecom List (Falkner et al. 2001) has now appeared and it seems appropriate to examine in more detail constituent changes which might affect the British and Irish faunas. This is given additional urgency by the inception of a new census of the molluscs of Britain and Ireland by the Conchological Society. Recorders in the Society are aware of many of the proposed changes but unable to implement them without general agreement. In addition, many field malacologists make use of the recording package RECORDER, a recent form of which has been developed jointly by JNCC and the National Biodiversity Network in the United Kingdom.