Scanning Electrochemical Microscopy: Principles and Applications to Biophysical Systems

Total Page:16

File Type:pdf, Size:1020Kb

Scanning Electrochemical Microscopy: Principles and Applications to Biophysical Systems INSTITUTE OF PHYSICS PUBLISHING PHYSIOLOGICAL MEASUREMENT Physiol. Meas. 27 (2006) R63–R108 doi:10.1088/0967-3334/27/12/R01 TOPICAL REVIEW Scanning electrochemical microscopy: principles and applications to biophysical systems Martin A Edwards, Sophie Martin, Anna L Whitworth, Julie V Macpherson and Patrick R Unwin Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK E-mail: [email protected] Received 20 April 2006, accepted for publication 18 September 2006 Published 17 October 2006 Online at stacks.iop.org/PM/27/R63 Abstract This review highlights numerous and wide ranging biophysical and biochemical applications of scanning electrochemical microscopy (SECM). SECM instrumentation and theoretical modelling, necessary for experimental interpretation, are outlined, followed by a detailed discussion of the diverse applications of this technique. These include the measurement of flow through membranes, the determination of kinetic parameters of reactions, the investigation of the permeability of small molecules in tissues and monitoring biological processes, such as the production of oxygen or nitric oxide by cells. The significant impact of micro-electrochemical techniques on our understanding of basic physicochemical processes at biologically relevant interfaces is also considered. Studies reviewed include transport across and within bilayers and monolayers. Recent advances in SECM include the combination of SECM with other techniques, such as atomic force microscopy and optical microscopy. These developments are highlighted, along with prospects for the future. Keywords: scanning electrochemical microscopy, bilayers, monolayers, scanned probe microscopy, interfaces, electrochemistry, mass transport (Some figures in this article are in colour only in the electronic version) 1. Introduction Scanning electrochemical microscopy (SECM; the same acronym is used to describe the instrument) has developed into a powerful technique for quantitative investigations of interfacial physicochemical processes, in a wide variety of areas, as considered in several recent reviews (Barker et al 1999, 2001,Mirkin1999, Amemiya et al 2000, Mirkin and 0967-3334/06/120063+46$30.00 © 2006 IOP Publishing Ltd Printed in the UK R63 R64 Topical Review Figure 1. A selection of modes of operation of a SECM, illustrating how the current response, expressed as a normalized quantity (see the text), changes upon imaging certain features. Arrows represent the flow of the electroactive species (or ions) to the UME. Horrocks 2000, Yasukawa et al 2000b, Gyurcsanyia´ et al 2004,Puet al 2005). This review will provide a background to SECM, with particular reference to its use in characterizing biophysical processes and biomaterials. In the simplest terms, SECM involves the use of a mobile ultramicroelectrode (UME) probe, either amperometric or potentiometric, to investigate the activity and/or topography of an interface on a localized scale. The attractive features of SECM, for the study of biomaterials on a local scale, were recognized soon after the technique was formally established (Bard et al 1989, Kwak and Bard 1989a, 1989b). Early applications included quantitative studies of immobilized enzyme activity (Pierce et al 1992, Pierce and Bard 1993, Shiku et al 1995, 1996, 1997) and photosynthetic processes on leaves (Lee et al 1990, Tsionsky et al 1997b). These studies provided the foundations for the expansion into many new areas, as described in this review. These include the investigation of transfer processes, such as the passage of small molecules, e.g. oxygen, across biomimetic membranes (lipid bilayers and monolayers), and mapping the micron-scale porous nature of dentine or the sub-micron pores in membranes. Also included herein are applications that examine cellular activity and respiration and its variance with conditions (metastatic breast cancer cells, protoplasts and embryos), and studies of the permeability of oxygen in cartilage. SECM is able to resolve differences on the micron or sub-micron length scale, an advantage which is clear in the aforementioned examples and in many other biological situations. We begin with a basic overview of the principles and instrumentation for SECM, introduce the modelling techniques needed to understand the underlying processes and analyse experimental data, before considering specific methods and applications. We conclude with a brief overview of very recent developments and potential future developments, including hybrid techniques that involve SECM and the study of processes at the single-cell level. Several modes of SECM have been developed to allow the local chemical properties of interfaces to be investigated. A comprehensive review of all of the techniques can be found in Bard and Mirkin (2001). Figure 1 demonstrates the wide ranging information that can be extracted from the current of an amperometric UME, used as the probe in SECM. The arrows represent the flux of a redox-active species (or ion in the case of a microcapillary probe; see section 2.3.5 on micro-ITIES probes) to the UME. These examples will be developed further in section 4. Topical Review R65 (a) (b) Figure 2. Schematic views of (a) a rig, for SECM, and (b) a submarine electrode. 2. Instrumentation Although commercial instruments for SECM are available from several companies, including CH Instruments (USA), Windsor Scientific (UK) and Uniscan (UK), many instruments are still constructed by individual research groups; these are then tailored to specific applications. At the heart of SECM is the amperometric or potentiometric tip, whose location is controlled remotely, with appropriate positioners, relative to the sample interface. The type of experimental cell or vessel in which measurements can be made ranges from a simple beaker (Zhang et al 2000) to a Langmuir trough in a controlled atmosphere (Slevin et al 1998,Slevin and Unwin 2000). Electrochemical control and measurement in SECM is relatively simple as discussed in the next section. 2.1. Electrochemical instrumentation For amperometric control of the tip, with externally unbiased interfaces, a simple two-electrode system suffices (figure 2(a)). A potential is applied to the tip, with respect to a suitable reference electrode, to drive the process of interest at the tip and the corresponding current that flows is typically amplified by a current-to-voltage converter. If the sample is also to be biased externally, a bipotentiostat is required. For some studies of membrane transport, ion flow is driven from a donor to receptor compartment galvanostatically, and a potentiostatically controlled tip serves as a detector (Bath et al 2001). Potentiometric detection with UMEs R66 Topical Review of various types is readily accomplished (Amman 1986,Weiet al 1995), typically using a voltage follower with an input impedance appropriate to the type of indicator electrode used. 2.2. Positioning The tip is attached to positioners, which allow it to be moved and positioned relative to the interface under investigation. A variety of positioners have been employed in SECM instruments, with the choice depending on the type of measurement and spatial resolution required. For the highest (nanometre) resolution, piezoelectric positioners similar to those used in scanning tunnelling microscopy (STM) are mandatory (Liu et al 1986). There has also been some use of stepper motors to control the position of the tip in the x–y plane (Kranz et al 1995a, 1995b,Hlivaet al 1998), parallel to the interface of interest. In the application of SECM at solid/liquid interfaces (section 4.1), high-resolution x, y, z positioning and scanning is usually required. However, many SECM measurements, e.g. at air/liquid interfaces (section 6.1.2), simply involve the translation of a tip towards and/or away from a specific spot on an interface, in the perpendicular (z) direction. In this situation, it is only necessary to have high-resolution z-control of the tip, typically using a piezoelectric positioner, while manual stages suffice for the other two axes (Slevin et al 1996,Barkeret al 1998). It has further been shown that SECM measurements can be made with manual stages on all axes, with the z-axes driven by a differential micrometer and the x–y stages controlled by fine adjustment screws. This simple cost-effective set-up allows tip approach measurements to be made with a spatial resolution of ±0.25 µm (Martin and Unwin 1997, 1998b). The use of a video microscope, aligned such that the electrode may be observed from the side, has proved useful in facilitating the positioning of the UME probe relative to the interface of interest (Slevin et al 1996,Barkeret al 1998). 2.3. Probes The type of probe electrode used in SECM depends on the particular process under investigation. A diversity of probes is available for amperometry and potentiometry. Since these often have to be prepared in house, we highlight some of the most important tip designs in this section. In-depth reviews of UME design, fabrication and characterization can be found in Zoski (2002) and Forster (2003). 2.3.1. Micron-sized disc-shaped electrodes sealed in glass. Typically, amperometry involves electrolysis at a solid UME, usually a disc-shaped electrode, with a diameter of 0.6–25 µm. This type of electrode is readily fabricated by sealing a wire of the material of interest, in a glass capillary, making an electrical connection and polishing the end flat; see figures 3(a) and (b) for illustrations of such an electrode (Bard et al 1989, 1993, Wightman and Wipf 1989). Pt, Au and C electrodes have been successfully fabricated in this way. For most SECM studies, the ratio of the diameter of the tip (electrode plus surrounding insulator, 2rs) to that of the electrode itself, 2a,RG= rs/a is typically around 10. This minimizes effects from back diffusion (from behind the probe), making the electrode response more sensitive to the surface process. SECM images may be convoluted with both activity and topographical contributions. To resolve such effects, it may be possible to scan the sample twice, with the mediator of interest and then with a moiety that is inert with respect to the sample, so mapping the topography (Gonsalves et al 2000a, 2000b).
Recommended publications
  • Application of AFM-Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys
    corrosion and materials degradation Review Application of AFM-Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys Kiryl Yasakau Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus of Santiago, 3810-193 Aveiro, Portugal; [email protected] Received: 7 October 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: In this review several scanning probe microscopy techniques are briefly discussed as valuable assets for corrosionists to study corrosion susceptibility and inhibition of metals and alloys at sub-micrometer resolution. At the beginning, the review provides the reader with background of atomic force microscopy (AFM) and related techniques such as scanning Kelvin probe force microscopy (SKPFM) and electrochemical AFM (EC-AFM). Afterwards, the review presents the current state of corrosion research and specific applications of the techniques in studying important metallic materials for the aircraft and automotive industries. Different corrosion mechanisms of metallic materials are addressed emphasizing the role of intermetallic inclusions, grain boundaries, and impurities as focal points for corrosion initiation and development. The presented information demonstrates the importance of localized studies using AFM-based techniques in understanding corrosion mechanisms of metallic materials and developing efficient means of corrosion prevention. Keywords: AFM; SKPFM; EC-AFM: localized corrosion; corrosion inhibition; metallic alloys 1. Introduction Corrosion of metallic materials and structures is a heavy burden for the economy which costs about 3.4% of the global GDP (2013) according to the Application and Economics of Corrosion Technology (IMPACT) study released by NACE International [1]. The study also acknowledged that corrosion prevention strategies could increase global savings by about 15–35% of the cost of the damage (NACE International, Houston, TX, USA, 2016).
    [Show full text]
  • Polymer Films on Electrodes Part 29. Electropolymerized
    www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 498 (2001) 67–74 Polymer films on electrodes Part 29. Electropolymerized poly(7,14-diphenylacenaphtho[1,2-k]fluoranthene): electrochemistry and conductance of a novel electrochromic hydrocarbon ladder polymer film Maurizio Quinto, Allen J. Bard * Department of Chemistry and Biochemistry, The Uni6ersity of Texas at Austin, Austin, TX 78712, USA Received 13 April 2498; received in revised form 13 June 2000; accepted 22 June 2000 Dedicated to Fred C. Anson for his distinguished contributions to electrochemistry Abstract The electropolymerization of 7,14-diphenylacenaphtho[1,2-k]fluoranthene on a platinum or indium tin oxide (ITO) electrode produces an electroactive film which displays fluorescence and electrochromism. We report a study of the electrochemical properties and other characteristics of this film, such as the resistance dependence by the potential applied to the electrode. In particular, the film showed dramatic changes in the resistance and color as a function of the potential applied to the film because of changes in the electronic state of the polymer. Atomic force microscopy, scanning electrochemical microscopy, and electrochemical quartz crystal microbalance studies were also carried out to characterize the polymer film. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Polymer films; Electrochromic films; Conductance 1. Introduction In a previous preliminary study, a new hydrocarbon ladder polymer (PANF), obtained by electropolymer- In addition to fundamental interest in the properties ization of 7,14-diphenylacenaphtho[1,2-k]fluoranthene of polymer films on electrode surfaces, practical appli- (ANF), showing interesting electrochromic behavior cations, such as electrochromic behavior, have been and high stability of the surface layers was described suggested.
    [Show full text]
  • Dynamic Perturbation of the Electrical Double Layer with an Electrochemical AFM for Confined Metal Electrodeposition
    Dynamic perturbation of the electrical double layer with an electrochemical AFM for confined metal electrodeposition Mark Aarts1 and Esther Alarcon-Llado1 1Center for Nanophotonics, NWO-I Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands May 17, 2019 Abstract Understanding and directing electrochemical reactions below the micrometer is a long-standing challenge in electrochemistry. Confining reactions to nanoscale areas paradoxically requires both isolation and communication with the bulk electrolyte in terms of potential and access of ions, respectively. Here, we demonstrate the directed electrochemical deposition of copper nanostructures by using an oscillating nanoelectrode operated with an atomic force microscope (AFM). Strikingly, the writing is only possible in highly dilute electrolytes and for a particular combination of AFM and electrochemical parameters. We propose a mechanism based on cyclic charging and discharging of the electrical double layer (EDL). The extended screening length and slower charge dynamics in dilute electrolytes allows the nanoelectrode to operate inside, and disturb, the EDL even for large oscillation amplitudes (~100 nm). Our unique approach can not only be used for controlled additive nano-fabrication but also provides insights into ion behavior and EDL dynamics at the solid-liquid interface. Introduction Electrochemical deposition can revolutionize the fabrication of (opto)electronic nanodevices if carefully con- trolled at the nanoscale. Among its advantages are its relatively small infrastructure
    [Show full text]
  • Complementary Electrochemical ICP-MS Flow Cell and In-Situ AFM
    Graphical Abstract Complementary electrochemical ICP-MS flow cell and in-situ AFM study of the anodic desorption of molecular adhesion promotors arXiv:2105.00280v1 [cond-mat.mtrl-sci] 1 May 2021 Dominik Dworschak, Carina Brunnhofer, Markus Valtiner in situ EC-AFM E (V) t (s) OH CH3 Au in situ EC-ICP-MS HS HS Highlights Complementary electrochemical ICP-MS flow cell and in-situ AFM study of the anodic desorption of molecular adhesion promotors Dominik Dworschak, Carina Brunnhofer, Markus Valtiner • Anodic corrosion protection of SAMs on Au with varying hydrophobicity are compared. • Intermolecular forces control the behaviour of SAMs during anodic polarization • Hydrophobic SAM enhances corrosion resistance via micelle formation at interface. • Hydrophilic SAM remains weakly surface bound as a highly mobile layer. Complementary electrochemical ICP-MS flow cell and in-situ AFM study of the anodic desorption of molecular adhesion promotors Dominik Dworschaka, Carina Brunnhofera, Markus Valtinera aInstitute of Applied Physics, Vienna University of Technology, Vienna, Austria Abstract Molecular adhesion promoters are a central component of modern coating systems for the corrosion protection of structural materials. They are interface active and form ultrathin corrosion inhibiting and adhesion-promoting layers. Here we utilize thiol-based self-assembled monolayers (SAMs) as model system for demonstrating a comprehensive combinatorial approach to understand molecular level corrosion protection mechanisms under anodic polarization. Specifically, we compare hydrophilic 11-Mercapto-1-undecanol and hydropho- bic 1-Undecanethiol SAMs and their gold-dissolution inhibiting properties. We can show that the intermolecular forces (hydrophobic vs hydrophilic effects) control how SAM layers perform under oxidative conditions. Specifi- cally, using in situ electrochemical AFM and a scanning-flow cell coupled to an ICP-MS a complementary view on both corrosion resistance, as well as on changes in surface morphology/adhesion of the SAM is possible.
    [Show full text]
  • University of Birmingham Tailoring the Electrochemical Properties Of
    University of Birmingham Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium Hicks, Jacqueline M.; Wong, Zhi Yi; Scurr, David J.; Silman, Nigel; Jackson, Simon K.; Mendes, Paula M.; Aylott, Jonathan W.; Rawson, Frankie J. DOI: 10.1021/acs.langmuir.7b00494 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Hicks, JM, Wong, ZY, Scurr, DJ, Silman, N, Jackson, SK, Mendes, PM, Aylott, JW & Rawson, FJ 2017, 'Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium', Langmuir, vol. 33, no. 20, pp. 4924-4933. https://doi.org/10.1021/acs.langmuir.7b00494 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Nanoscale Electrodeposition of Copper on an AFM Tip and Its Morphological Investigations
    8 Nanoscale Electrodeposition of Copper on an AFM Tip and Its Morphological Investigations Udit Surya Mohanty, S. Y. Chen and Kwang-Lung Lin Department of Materials Science and Wngineering, National Cheng Kung University Tainan, R.O.C, Taiwan 1. Introduction Electrocrystallisation processes occurring at electrochemical solid/liquid interfaces have attracted the interest of many researchers from both fundamental and applied viewpoints. After the pioneering works of Max Volmer at the beginning of the last century (Volmer, 1934a, 1939b), the processes of electrocrystallisation have been the subject of numerous intensive studies, the results of which have been documented in several books (Bockris & Razumney 1967; Budevski, et al., 1996; Fischer,1954). The electrochemical method offers several advantages over vapour deposition techniques such as molecular beam epitaxy for depositing nanoscale superlattices. Additional technological advantages over the vapour deposition techniques consist in the relatively low processing temperature and the high selectivity. The low processing temperatures minimizes interdiffusion whereas the high selectivity of electrocrystallisation process allows uniform modification of surfaces and structures with complicated profiles. Phase formation and crystal growth phenomena are the most common morphological parameters observed in many technological important cathodic and anodic electrochemical reactions. One of the most frequently studied electrocrystallisation process is the cathodic metal deposition on foreign and native substrates from electrolytes containing complex metal ions (Fleischmann & Thirsk, 1963; Milchev, 2002; Paunovic & Schlesinger, 2006). Some of the typical cited examples are electrocrystallisation of Ag from Ag+ containing electrolytes (Budevski et al., 1980; Fischer, 1969) and the electrodeposition of Cu (Budevski, 1983; Danilov et al., 1994; Hozzle et al., 1995; Michhailova et al.
    [Show full text]
  • Time-Resolved in Situ Electrochemical Atomic Force Microscopy Imaging Of
    Article DOI: 10.1557/jmr.2020.275 Time-resolved in situ electrochemical atomic force microscopy imaging of the corrosion dynamics of https://doi.org/10.1557/jmr.2020.275 . AA2024-T3 using a new design of cell Ahmed Kreta1,a) , Miran Gaberšček1, Igor Muševič2,3 1National Institute of Chemistry, SI-1000 Ljubljana, Slovenia 2Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia 3Department of Condensed Matter Physics, Jozef Stefan Institute, Ljubljana 1000, Slovenia a)Address all correspondence to this author. e-mail: [email protected] Received: 1 June 2020; accepted: 15 September 2020 An electrochemical cell was designed to enable in situ atomic force microscopy (AFM) measurements. The finite- https://www.cambridge.org/core/terms element method was implemented using COMSOL Multiphysics to simulate the electrical field within the cell and to find the current and potential distribution. A comparative three-dimensional simulation study was made to compare two different designs and to elucidate the importance of the geometry on the electrical field distribution. The design was optimized to reduce the uncertainty in the measurement of the electrochemical impedance. Then, an in situ, simultaneous electrochemical and time-resolved AFM experiments were conducted to study the surface evolution of the aluminum alloy AA2024-T3 exposed to 0.5 M NaCl. The temporal change of the surface topography was recorded during the application of chrono-amperometric pulses using a newly designed electrochemical cell. Electrochemical impedance spectroscopy was conducted on the sample to confirm the recorded topographical change. The newly developed cell made it possible to monitor the surface change and the growth of the oxyhydroxide layer on the AA2024-T3 with the simultaneous application of electrochemical methods.
    [Show full text]
  • On Magnetite and Computational Modeling of the UO2-Hfo2 Solid S
    Electrochemical investigations of redox reactions of uranyl(VI) on magnetite and computational modeling of the UO2-HfO2 solid solution by Ke Yuan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Earth and Environmental Sciences) in the University of Michigan 2015 Doctoral Committee: Professor Udo Becker, Chair Professor Joel D. Blum Professor Mark E. Meyerhoff Professor David W. Shoesmith, University of Western Ontario Professor Youxue Zhang Dedication ii Acknowledgements I would like to thank my advisor Udo Becker, who guides me into this field and provides me the freedom and support to explore every possibility. Thank you for the valuable comments and insightful discussions made by my past and present thesis committee members Joel D. Blum, Rodney C. Ewing, Mark E. Meyerhoff, David W. Shoesmith, and Youxue Zhang. Thanks for the help from my previous group member Lindsay Shuller on modeling the solid solution, Devon Renock on doing electrochemical experiments, and Jingjie Niu on using the AFM. Thanks for Eugene Ilton from PNNL help on fit the XPS spectra and Mark Antonio from ANL help on electrochemical cell design and on fit the EXAFS data. I appreciate the support from my current group members, starting from my office mate Sandra Taylor who is always ready to answer any questions at any time from me, thoroughly. I thank my first roommate and also our great group member Cameron Lee Tracy who helps me better understand my class materials and research questions through numerous helpful discussions. I thank Ben Gebarski, Sarah Walker, and Zhongrui Li who accompanied me to the Argonne National Lab to complete a series of complicated training and potentially “dangerous” experiments.
    [Show full text]
  • Protein-Resistant Electrode for Biosensing
    Protein-resistant Electrode for Biosensing by Cheng Jiang A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry, Faculty of Science 2016 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Jiang First name: Cheng Other name/s: N/A Abbreviation for degree as given in the University calendar: PhD School: School of Chemistry Faculty: Science Title: Protein-resistant electrode for biosensing Abstract 350 words maximum: (PLEASE TYPE) Electrochemical biosensors are of enormous interests in a variety fields including clinical diagnosis and food analysis. However, in biological media the nonspecific adsorption of proteins, referred to as biofouling, interferes with the performance of such devices in terms of reducing sensitivity and selectivity. Hence, antifouling coatings are needed for electrochemical sensors to deliver on their potential when it comes to biologically derived samples. The common effective solutions to the critical issue of biofouling involves using poly(ethyleneglycol) (PEG) or oligo(ethyleneglycol) (OEG)-alkanethiol layers. This is because a highly compressed hydration layer can be formed with these monolayers which is believed to be the reason this chemistry can effectively preventing nonspecific adsorption of protein. However, the use of such long chain self-assembled monolayers (SAMs) or polymeric layers on electrodes is not desirable because such polymers form a high impedance layer on the electrode, effectively passivating the electrode. Surface modifying layers that do not passivate the electrodes typically are also not effective at providing protection against biofouling. In this concern, we have developed an aryldiazonium salt based mixed layer platform.
    [Show full text]
  • Electrochemical Current-Sensing Atomic Force Microscopy in Conductive Solutions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Electrochemical current-sensing atomic force microscopy in conductive solutions Ilya V Pobelov1,∗, Mikl´os Mohos1,2, Koji Yoshida1, Viliam Kolivoska1, Amra Avdic3, Alois Lugstein3, Emmerich Bertagnolli3, Kelly Leonhardt4, Guy Denuault4, Bernhard Gollas5,6 and Thomas Wandlowski1,∗ 1 Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland. 2 Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ´ut59-67, Budapest, Hungary 3 Solid State Electronics Institute, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria 4 School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom 5 Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria 6 Competence Centre for Electrochemical Surface Technology, Viktor Kaplan Strasse 2, 2700 Wiener Neustadt, Austria E-mail: [email protected], [email protected] Abstract. Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte | downloaded: 16.5.2016 solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current-distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated. PACS numbers: 07.79.Lh, 62.25.-g, 82.45.-h, 82.47.Rs, 81.16.-c, 85.85.+j Submitted to: Nanotechnology https://doi.org/10.7892/boris.39794 source: Electrochemical current-sensing atomic force microscopy in conductive solutions 2 1.
    [Show full text]
  • Application of Scanning Probe Microscopy for New Physical
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Application of Scanning Probe Microscopy for New Physical Measurements and Studies of Surface Chemical Reactions of Materials at the Molecular Level Stephanie Loletha Daniels Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Daniels, Stephanie Loletha, "Application of Scanning Probe Microscopy for New Physical Measurements and Studies of Surface Chemical Reactions of Materials at the Molecular Level" (2011). LSU Doctoral Dissertations. 4028. https://digitalcommons.lsu.edu/gradschool_dissertations/4028 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. APPLICATION OF SCANNING PROBE MICROSCOPY FOR NEW PHYSICAL MEASUREMENTS AND STUDIES OF SURFACE CHEMICAL REACTIONS OF MATERIALS AT THE MOLECULAR LEVEL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Stephanie Loletha Daniels B.S., Jackson State University, 2004 M.S., Jackson State University, 2006 May 2011 DEDICATION This dissertation is dedicated to my mother, Delois Daniels, my sister, Melanie Daniels, nephew Darian Hearn, and to my family and friends who have been on this incredible journey with me. I sincerely thank you for your love and support.
    [Show full text]
  • Potential-Sensing Electrochemical Atomic Force Microscopy for in Operando Analysis of Watersplitting Catalysts and Interfaces Michael R
    Articles https://doi.org/10.1038/s41560-017-0048-1 Potential-sensing electrochemical atomic force microscopy for in operando analysis of watersplitting catalysts and interfaces Michael R. Nellist1, Forrest A. L. Laskowski1, Jingjing Qiu1, Hamed Hajibabaei2, Kevin Sivula3, Thomas W. Hamann2 and Shannon W. Boettcher1* Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the “surface” electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential- dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α -Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena. layer, oxidizing it to potentials where catalytic water oxidation occurs. Because the catalyst is permeable to electrolyte, the effective barrier height at the catalyst–semiconductor junction hotoelectrochemical water-splitting enables the direct increases as the catalyst is oxidized; we termed this an “adaptive conversion and storage of solar energy into energy-dense junction”13–15. The technique was further applied to photoanodes 1 of Si, a model low-bandgap absorber, which illustrated that the P chemical fuel, H2 .
    [Show full text]