Therapeutic Potential of Secoisolariciresinol Diglucoside: a Plant Lignan

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Potential of Secoisolariciresinol Diglucoside: a Plant Lignan Available online at www.ijpsdr.com International Journal of Pharmaceutical Sciences and Drug Research 2012; 4(1): 15-18 Review Article ISSN 0975-248X Therapeutic Potential of Secoisolariciresinol Diglucoside: A Plant Lignan Dhaval Patel, Jitendra Vaghasiya, S. S. Pancholi, Arindam Paul* Babaria Institute of Pharmacy, Vadodara, Gujarat, India ABSTRACT Secoisolariciresinol diglucoside (SDG) is a plant lignan mainly found in dietary food and various plants. It belongs to a bioactive polyphenolic chemical class. SDG and its metabolites (mammalian enterolignan) are having various pharmacological activities, viz., antioxidant, partial agonist to estrogen receptor and inhibitor of tyrosine kinase and topoisomerase. Although, human studies are limited, its pharmacological actions explain its use in diabetes, atherosclerosis, breast cancer, colon cancer, prostate cancer and in cardiovascular disease. Keywords: Secoisolariciresinol diglucoside, plant lignan, polyphenols, antioxidant, tyrosine kinase inhibitor, topoisomerase inhibitor. INTRODUCTION Table I: Lignans in selected food [8-9] Secoisolariciresinol Plant lignans are biophenolic compounds and was first Food and foods group th diglucoside content (µg/g) identified in 19 Century from woody tissues of trees. Flaxseed 3699 Several hundreds of lignans have been documented since Seeds Sunflower 6.1 then in roots, stem, cereals, oilseeds, nuts, legumes and fruits. Caraway 2.21 [1] Nowadays, with the growing interest towards Pumpkin 213.7 Soybean 2.73 nutraceuticals, plant lignans are becoming important Legumes Peanut 3.33 therapeutically active class of compounds because of their Pigeon pea 0.5 putative beneficial health effect such as antitumor, Urad Dahl bean 2.4 antioxidant, both estrogenic and antiestrogenic activity [2] and Nuts Walnut 1.63 [3] Almond 1.07 protection against coronary heart disease. This plant Blackberry 37.1 lignans can be converted by intestinal bacteria into the Lingberry 15.1 mammalian lignan such as enterolignans, enterodiol and Berries Strawberry 12.1 enterolactone. [4-6] Cranberry 15.1 Red currant 1.6 Secoisolariciresinol diglucoside (SDG) and matairesinol are Oatmeal 0.1 the major lignans with traces of pinoresinol, lariciresinol and Oat bran 0.24 Cereals isolariciresinol found in roots, stem, cereals, oilseeds, nuts, Rye meal, whole grain 0.5 legumes and fruits. [1-2] Flax seed (Linum usitatissimum L.) is Rye bran 1.32 Broccoli 4.14 Vegetables the richest dietary source of lignans, with SDG as a major Garlic 3.79 compound (% yield being 0.37%), besides that sesame seed, Carrots 1.92 pumpkin seeds, cereals (triticle and wheat), leguminous plant Coffee and Arabica coffee (instant) 7.16 (lentils, soyabeans), fruits (pears, prunes) and certain Tea Green tea 24.6 vegetables (garlic, asparagus, carrot) also contain traces of Black tea 15.9 lignans, but concentration in flaxseed is about 1000 times as Bioavailability can be defined as the fraction of the ingested high as found in other food sources. [7] plant lignans that is absorbed and can be used for metabolic PHARMACOKINETICS OF PLANT LIGNANS process (internal exposure) and storage in the body. Following metabolism of plant lignans in the human colon, *Corresponding author: Dr. Arindam Paul, the metabolites, enterodiol and enterolactone reach the Professor & Head, Department of Pharmacology, Babaria circulation and target tissues. As metabolism is extensive, Institute of Pharmacy (BIT Campus), # NH-8, Varnama, enterodiol and enterolactone might be more important for Vadodara- 391240, Gujarat, India; Tel.: +91-9687567207; potential health effect. The bioavailability of lignans can be E-mail: [email protected] 15 Paul et al. / Therapeutic Potential of Secoisolariciresinol Diglucoside…..…… Fig. I: The possible metabolic pathway for transformation of plant lignans to enterolignans by colonic microflora. form (aglycone or conjugated) of plant lignan, chronic exposure, and other host related factor like age and gender. [10] Fig. III: Schematic overview of main bioavailability of lignans. Fig. II: Conversion of SDG by bacteria in colon. After consumption of SDG, a small fraction is absorbed as [11] [12-13] determined by several process: (a) Conversion of plant such in the small intestine , and excreted in urine. lignans to enterolignans in the human colon; (b) Absorption However, the largest fraction of the SDG is transported to of enterolignans from the colon, which determines whether colon and metabolized by intestinal flora (Fig. II). The or not enterolignans become available in blood circulation; importance of microflora in the metabolism of SDG was [14-15] (c) Distribution and metabolism, which determines whether studied in germfree rats. Although the intestinal metabolites reach the target tissues where they can be have bacteria play a crucial role in lignan metabolism, few studies an effect or further metabolized. Finally, (d) Enterolignans had been published that identify organism involved in lignan are excreted from the body via faeces or urine (Fig. III). breakdown. Two anaerobes (Peptostreptococcus and Various factors may influence lignan bioavailability such as Eubacterium) catalyze the demethylation and [16] intestinal microflora, antibiotic use, food matrix, type and dehydroxylation of SDG. Recently, two microorganisms IJPSDR January-March, 2012, Vol 4, Issue 1 (15-18) 16 Paul et al. / Therapeutic Potential of Secoisolariciresinol Diglucoside…..…… Peptostreptococcus productus and Eggerthella inta were women. [24, 35-38] It showed the suppression of mammary isolated that were able to demethylate and dehydroxylate tumorigenesis by its partial estrogenic activity, antioxidant SDG and pinoresinol. However, concentrations of activity or reduction of plasma insulin like growth factor-1. enterolactone are usually higher than enterodiol in humans. [38-41] Besides, its antioxidant and partial estrogenic activity of [17] One bacterial strain (ED-Mt61/PYCt-s6) was identified to SDG and enterolignans also affect to beta glucouronidase be responsible for transformation of enterodiol to activity, which may be the cause of protective effect against enterolactone. [18] colon cancer. It has been observed that pretreatment of SDG and majority of lignan converted to enterolignans are flaxseed decrease the risk of colon carcinogenesis, with absorbed by the large intestine into the blood stream or reduced total number of aberrant crypts and foci significantly directly excreted via faeces. Plasma enterodiol and by 41-53% and 48-57% respectively. [38, 42-43] Metabolites of enterolactone circulate either as glucouronide and sulfate SDG also appeared to influence steroid metabolism in- vitro, conjugates or as free forms. [19] They are excreted via urine or not only by acting on steroid receptor but also by steroid bile, in urine; enterodiol and enterolactone are excreted in metabolism, for e.g. sex hormone binding globulin synthesis conjugated forms; primarily as monoglucouronides (85 and [44-45] 5α-reductase and 17-β hydroxyl-steroid dehydrogenase. 95% respectively) with small percentage being excreted as [46] On the virtue of these all property and inhibition of monosulfates (2-10%) and free aglycones (0.3-1%). [20-21] tyrosine kinase and topoisomerase contribute the lower Conjugated enterolignans that are excreted via bile can incidence of prostate cancer. [47] undergo enterohepatic circulation (i.e. excreted through bile Anti-diabetic activity: It has been demonstrated that SDG duct into the intestinal tract, further metabolized in the colon, prevented development of diabetes mellitus by 75%. The and reabsorbed from the large intestine into the bloodstream). reactive oxygen species play an important role in [15, 22] The mean residence time and half lives measured after development of debates mellitus (DM) therefore it was single dose of SDG (0.9 mg SDG/kg bodyweight) in healthy suggested that the antioxidant activity may be playing role men and women indicates that enterolignan accumulate in for its antidiabetic activity. [48-49] plasma when consumed 2-3 times a day and reach steady Effect on Cardiovascular system: There are several state. [23] mechanisms by which SDG protect against cardiovascular diseases. It appeared beneficial role in endotoxic shock. [25, 50] PHARMACOLOGICAL ACTIVITIES OF Apart from reducing cholesterol level it also induced SECOISOLARICIRESINOL DIGLUCOSIDE (SDG) angiogenesis mediated cardioprotection by increased Antioxidant activity: The plant lignans demonstrated neovascularization in the peri-infarct zone, leading to less extreme radical scavenging activity. In both lipid and ventricular remodeling. Thus, SDG is a great clinical aqueous, in-vitro model systems SDG and its metabolites potential for treatment of ischemic heart disease. [51] appeared as antioxidant. All three lignans significantly inhibited the linoleic acid peroxidation at 10 and 100µM over REFERENCES a 24-48 h of incubation at 40°C. [24-25] However, it has been 1. Willtor SM, Smeds AI, Holmbom BR. Chromatographic analysis of demonstrated that enterodiol and enterolactone were not Lignans (Review). J Chromatography A. 2006; 1112:64-77. 2. Sicilia T, Niemeyer HB, Honig DM, Metzler M. Identification and effective in preventing H2O2 induced DNA damage in HT-29 stereochemical characterization of lignans in flaxseed and pumpkin cells and enterolactone did not reduced intracellular oxidative seeds. J Agri Food Chem. 2003; 51:1181-1118. stress at similar concentration. [26] 3. Smeds AI, Eklund PC, Sjoholm RE, Willfer SM,
Recommended publications
  • Chemoprotective Effects of Flaxseed Lignans Enterodiol And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M Repository CHEMOPROTECTIVE EFFECTS OF FLAXSEED LIGNANS ENTERODIOL AND ENTEROLACTONE IN NON-TRANSFORMED COLONOCYTES A Thesis by CHRISTINA ALISON CURRY Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Clinton Allred Committee Members, Joseph Awika Jenna Anding Head of Department, Boon Chew December 2015 Major Subject: Nutrition Copyright 2015 Christina Alison Curry ABSTRACT Previous epidemiological studies have shown that colon cancer incidence is correlated to diet and estrogen status. Phytoestrogens are molecules with similar structures to estrogen that occur naturally in plants. There is in vitro and in vivo evidence that phytoestrogens in the diet can inhibit carcinogenesis. The phytoestrogenic mammalian lignans enterolactone (EL) and enterodiol (ED) in flaxseed have been shown to be effective in decreasing tumor incidence in carcinogenic models, but there is little data regarding their effects in non-malignant cells. The following studies used a non- transformed cell line of young adult mouse colonocytes (YAMC) to determine the protective effects of ED and EL in chemoprevention. Our results demonstrate that low levels of EL (1µM) and ED (5µM) are effective at significantly reducing cell growth and increasing apoptosis. These treatments also regulated transcription via significant differences in gene levels related to apoptosis and cell cycle progression. The data collected demonstrate some of the physiological effects of EL and ED on the cellular and molecular level.
    [Show full text]
  • Pinoresinol Reductase 1 Impacts Lignin Distribution During Secondary Cell Wall Biosynthesis in Arabidopsis
    Phytochemistry xxx (2014) xxx–xxx Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis Qiao Zhao a, Yining Zeng b,e, Yanbin Yin c, Yunqiao Pu d,e, Lisa A. Jackson a,e, Nancy L. Engle e,f, Madhavi Z. Martin e,f, Timothy J. Tschaplinski e,f, Shi-You Ding b,e, Arthur J. Ragauskas d,e, ⇑ Richard A. Dixon a,e,g, a Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA b Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA c Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA d Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA e BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA f Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA g Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA article info abstract Article history: Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (À)-pinoresinol to (À)-lariciresinol in Available online xxxx Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detect- Keywords: able in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized Lignan genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different Lignin set of genes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. N0.: US 2014/0221426 A1 Gerk Et Al
    US 20140221426A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2014/0221426 A1 Gerk et al. (43) Pub. Date: Aug. 7, 2014 (54) SELECTIVE METABOLIC APPROACH TO A61K 31/216 (2006.01) INCREASING ORAL BIOAVAILABILITY OF A61K 31/09 (2006.01) PHENYLEPHRINE AND OTHER PHENOLIC A61K 31/05 (2006.01) BIOACTIVITIES A61K 31/353 (2006.01) A61K 31/4525 (2006.01) (71) Applicant: VIRGINIA COMMONWEALTH A61 K 31/3 75 (2006.01) UNIVERSITY, Richmond, VA (US) A61K 31/121 (2006.01) _ _ _ (52) US. Cl. (72) Inventorsl Ph_lll_lP M- Gerk’ Rthmond, VA (Us); CPC ........... .. A61K 31/137 (2013.01); A61K 31/3 75 Wllllam H- Fa", R10hm°nda VA (Us); (2013.01); A61K 31/235 (2013.01); A61K J"sellh K- thter’ Rlchmond, VA (Us) 31/11 (2013.01); A61K 31/085 (2013.01); _ A61K 31/121 (2013.01); A61K 31/09 (21) APP1~ NO" 14/345,689 (2013.01); A61K31/05 (2013.01); A61K . _ 31/353 (2013.01);A61K31/4525 (2013.01); (22) PCT Filed. Sep. 27, 2012 A61K31/216 (201301) USPC ......... .. 514/321' 514/653' 514/474' 514/544' ( 86 ) PCT N 0 .: PCT/U52012/057588 ’ ’ 514/456;’ 514/532’ § 371 (0X1), Related US“ Application Data Presystemic metabolism in intestine of bioactives such as (60) Provisional application No. 61/539,530, ?led on Sep. phenylephrine 1? avoided by administering a Sllbject (human 27, 2011, provisional application No. 61/544,396, 0r 21111111211) the bloactlve(e-g-,Pheny1ephr1ne)1n comblnatlon ?led on Oct 7, 201 1_ With one or more inhibitors of sulfation (e.g., sulfotransferase enzymes aka SULTs).
    [Show full text]
  • Serum Enterolactone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Julkari Annamari Kilkkinen SERUM ENTEROLACTONE D E T E R M I N A N T S A N D A S S O C I A T I O N S W I T H B R E A S T A N D P R O S T A T E C A N C E R S A C A D E M I C D I S S E R T A T I O N To be presented with the permission of the Faculty of Medicine, University of Helsinki, for public examination in Auditorium XII, University Main Building, on June 11th, 2004, at 12 noon. National Public Health Institute, Helsinki, Finland and Department of Public Health, University of Helsinki, Finland Helsinki 2004 P u b l i c a t i o n s o f t h e N a t i o n a l P u b l i c H e a l t h I n s t i t u t e K T L A 1 0 / 2 0 0 4 Copyright National Public Health Institute Julkaisija-Utgivare-Publisher Kansanterveyslaitos (KTL) Mannerheimintie 166 00300 Helsinki Puh. vaihde (09) 474 41, telefax (09) 4744 8408 Folkhälsoinstitutet Mannerheimvägen 166 00300 Helsingfors Tel. växel (09) 474 41, telefax (09) 4744 8408 National Public Health Institute Mannerheimintie 166 FIN-00300 Helsinki, Finland Telephone +358 9 474 41, telefax +358 9 4744 8408 ISBN 951-740-448-4 ISSN 0359-3584 ISBN 951-740-449-2 (pdf) ISSN 1458-6290 (pdf) Hakapaino Oy Helsinki 2004 S u p e r v i s e d b y Professor Pirjo Pietinen Department of Epidemiology and Health Promotion National Public Health Institute, Helsinki, Finland Professor Jarmo Virtamo Department of Epidemiology and Health Promotion National Public Health Institute, Helsinki, Finland R e v i e w e d b y Associate Professor Sari
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Phase I and Ii Enzyme Induction and Inhibition by Secoisolariciresinol Diglucoside and Its Aglycone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Saskatchewan's Research Archive PHASE I AND II ENZYME INDUCTION AND INHIBITION BY SECOISOLARICIRESINOL DIGLUCOSIDE AND ITS AGLYCONE A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Toxicology Graduate Program University of Saskatchewan Saskatoon, Saskatchewan Canada Erin Margaret Rose Boyd ©Copyright Erin Margaret Rose Boyd, April 2007, All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is also understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Chair of the Toxicology Graduate Program Toxicology Centre University of Saskatchewan 44 Campus Drive Saskatoon, SK, Canada, S7N 5B3 i ABSTRACT The flaxseed lignan, secoisolariciresinol diglucoside (SDG), and its aglycone, secoisolariciresinol (SECO), have demonstrated benefits in the treatment and/or prevention of cancer, diabetes and cardiovascular disease.
    [Show full text]
  • Phytoestrogens : Daidzein, Enterodiol, Enterolactone, Equol, Geinstein, O-Desmethylangolensin Matrix: Urine Method: HPLC-ESI-MS/MS Method No: 4069.03
    Laboratory Procedure Manual Analyte: Phytoestrogens : Daidzein, Enterodiol, Enterolactone, Equol, Geinstein, O-Desmethylangolensin Matrix: Urine Method: HPLC-ESI-MS/MS Method No: 4069.03 Revised: March 2018 as performed by: Nutritional Biomarkers Branch (NBB) Division of Laboratory Sciences (DLS) National Center for Environmental Health (NCEH) contact: James L. Pirkle, M.D., Ph.D. Director, Division of Laboratory Sciences Important Information for Users CDC periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Phytoestrogen NHANES 2013-2014 This document details the Lab Protocol for testing the items listed in the following table. This method file describes measurements of U1PHYTO_H_R and U2PHYTO_H_R. One method was used to measure both the 24 hour urine phytoestrogen, 1st urine collection and 24 hour urine phytoestrogen, 2nd urine collection. However, these results are released as 2 separate data files. Variable File Name SAS Label (and SI units) Name Daidzein, Urine 1st collection UR1DAZ (ng/mL) o-Desmethylangolensin, Urine 1st UR1DMA Collection (ng/mL) UR1EQU Equol, Urine 1st Collection (ng/mL) Enterodiol, Urine 1st Collection UR1ETD (ng/mL) Enterolactone, Urine 1st Collection UR1ETL (ng/mL) Genistein, Urine 1st Collection UR1GNS (ng/mL) U1PT_H_R Daidzein, Urine 2nd collection U2PT_H_R UR2DAZ (ng/mL) o-Desmethylangolensin, Urine 2nd UR2DMA Collection (ng/mL) UR2EQU Equol, Urine 2nd Collection (ng/mL) Enterodiol, Urine 2nd Collection UR2ETD (ng/mL) Enterolactone, Urine 2nd Collection UR2ETL (ng/mL) Genistein, Urine 2nd Collection UR2GNS (ng/mL) 2 of 54 Phytoestrogen NHANES 2013-2014 1.
    [Show full text]
  • Preparation of Flaxseed for Lignan Determination by Gas Chromatography-Mass Spectrometry Method
    Czech J. Food Sci. Vol. 30, 2012, No. 1: 45–52 Preparation of Flaxseed for Lignan Determination by Gas Chromatography-Mass Spectrometry Method Hrvoje SARAJLIJA2, Nikolina ČUKELj 1, Dubravka NOVOTNI1, Gordan MRšIć 2, Mladen BRnčIć 1 and Duška ćURIć 1 1Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia; 2Forensic Science Centre “Ivan Vučetić”, Croatian Ministry of the Interior, Zagreb, Croatia Abstract Sarajlija H., Čukelj N., Novotni D., Mršić G., Brnčić M., Ćurić D. (2012): Preparation of flaxseed for lignan determination by gas chromatography-mass spectrometry method. Czech J. Food Sci., 30: 45–52. Since 1980s, several methods for the determination of lignans in food samples have been developed depending on the types of lignans and foods analysed, but mostly on flaxseed as a reference food. In this work, specific steps in flaxseed preparation for lignan secoisolariciresinol analysis by gas chromatography-mass spectrometry method were examined. Ethanol extraction of lignan from defatted and non-defatted flaxseed before acid hydrolysis yielded significantly lower concentrations (5172 ± 49 μg/g; 5159 ± 83 μg/g, respectively), when compared to the direct acid hydrolysis (8566 ± 169 μg/g; 8571 ± 192 μg/g, respectively). In the analysed samples of defatted and dried flaxseed, no significant differ- ence in lignan content was observed when compared to non-defatted flaxseed samples. Keywords: defatting; extraction; GC/MS; hydrolysis; lignans Lignans are defined as a group of phenylpropa- studies on lignans have arisen, giving focus to all noid dimers, in which the phenylpropane units are the aspects of lignan analysis – from their occur- linked by the central carbon (C8) of their propyl rence in nature to their bioactivity in the human side chains.
    [Show full text]
  • Single Laboratory Validation of a Quantitative Core Shell-Based LC
    Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.) Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, Clothilde Ferroud, Joël Doussot, Jean Vanier, Christophe Hano To cite this version: Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, et al.. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Sily- marin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules, MDPI, 2018, 23 (4), pp.904. 10.3390/molecules23040904. hal-02538464 HAL Id: hal-02538464 https://hal.archives-ouvertes.fr/hal-02538464 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Article Single Laboratory Validation of a Quantitative Core Shell-Based
    [Show full text]
  • Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha
    Molecules 2013, 18, 1122-1127; doi:10.3390/molecules18011122 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha Jong-Sik Jin 1, Jong-Hyun Lee 2 and Masao Hattori 1,* 1 Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan 2 College of Pharmacy, Dongduk Women’s University, 23-1 Wolgok-Dong, Sungbuk-Gu, Seoul 136-714, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-766-52-4314. Received: 8 October 2012; in revised form: 10 January 2013 / Accepted: 14 January 2013 / Published: 16 January 2013 Abstract: Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−)-arctigenin, the aglycone of arctiin, was demethylated to (−)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono- desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−)-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)- butyrolactone was 7.9 × 10−4 M. Keywords: arctigenin; estrogen receptor alpha; demethylation; ligand binding affinity 1. Introduction Some plant lignans have been categorized as phytoestrogens or their precursors with isoflavones because natural compounds and/or their metabolites act like estrogen [1–3].
    [Show full text]
  • Mechanistic Evaluation of Phytochemicals in Breast Cancer Remedy: Current Understanding and Future Cite This: RSC Adv.,2018,8,29714 Perspectives
    RSC Advances View Article Online REVIEW View Journal | View Issue Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future Cite this: RSC Adv.,2018,8,29714 perspectives Muhammad Younas,a Christophe Hano,b Nathalie Giglioli-Guivarc'hc and Bilal Haider Abbasi *abc Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene Creative Commons Attribution-NonCommercial 3.0 Unported Licence. products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular Received 7th June 2018 mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, Accepted 15th August 2018 resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, DOI: 10.1039/c8ra04879g quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl rsc.li/rsc-advances isothiocyanate, a-mangostin, 3,30-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
    [Show full text]
  • Enterolactone Induces Apoptosis in Human Prostate Carcinoma Lncap Cells Via a Mitochondrial-Mediated, Caspase-Dependent Pathway
    2581 Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway Li-Hua Chen,1 Jing Fang,1 Huaixing Li,1 United States and China (1, 2). Diet is considered a primary Wendy Demark-Wahnefried,2 and Xu Lin1 factor contributing to the huge differential in the preva- lence of prostatic carcinoma (3). Although there are several 1 Institute for Nutritional Sciences, Shanghai Institutes for dietary factors that may be important for this disease, we Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai, China; propose a study that specifically focuses on dietary lignans and 2School of Nursing and Department of Surgery, Duke because the traditional plant-based diet in Asia is rich University Medical Center, Durham, North Carolina in lignans as compared with the omnivorous diet of the United States and Northern Europe (4). Moreover, our previous studies suggest an inhibitory effect of this Abstract phytochemical on prostate cancer growth (5). The mammalian lignan enterolactone is a major metabolite Dietary lignans have phytoestrogenic properties (6) and of plant-based lignans that has been shown to inhibit the are broadly available in cereals, legumes, fruits, vegetables, growth and development of prostate cancer. However, and grains, with the highest concentration in flaxseed and little is known about the mechanistic basis for its anti- sesame seeds (7, 8). Plant-based lignans, secoisolariciresinol cancer activity. In this study, we report that enterolactone and matairesinol, are converted by the intestinal microflora selectively suppresses the growth of LNCaP prostate to mammalian lignans of enterodiol and enterolactone, the cancer cells by triggering apoptosis.
    [Show full text]