Adipose Tissue As an Endocrine Organ

Total Page:16

File Type:pdf, Size:1020Kb

Adipose Tissue As an Endocrine Organ 0021-7557/07/83-05-Supl/S192 Jornal de Pediatria Copyright © 2007 by Sociedade Brasileira de Pediatria ARTIGO DE REVISÃO Adipose tissue as an endocrine organ: from theory to practice O tecido adiposo como órgão endócrino: da teoria à prática Miriam Helena Fonseca-Alaniz1, Julie Takada2, Maria Isabel Cardoso Alonso-Vale3, Fabio Bessa Lima4 Resumo Abstract Objetivos: Mostrar os avanços na pesquisa sobre o papel Objectives: To describe the advances in research into the fisiológico do tecido adiposo branco, ressaltando o seu papel physiological role of white adipose tissue, with emphasis on its endócrino em processos inflamatórios, no comportamento alimentar, endocrinal role in inflammatory processes, feeding behavior, insulin na sensibilização à insulina e na modulação do processo de sensitization and modulation of the atherogenetic process. To deal aterogênese. Abordar o potencial papel do tecido adiposo como with the potential role of adipose tissue as a source of stem cells for fonte de células-tronco para regeneração de tecidos, com especial regeneration of tissues, with special emphasis on adipogenesis and ênfase para a adipogênese e suas conseqüências para a geração de obesidade. its consequences for development of obesity. Fontes dos dados: Informações importantes constantes da Sources: Important information was compiled from the scientific literatura científica foram compiladas de modo a que esta leitura literature in order that this analysis contains an explanatory synthesis contenha uma síntese esclarecedora dos aspectos mencionados of the aspects mentioned above. acima. Summary of the findings: In addition to its classical functions Síntese dos dados: O tecido adiposo possui, além das suas as primary metabolic energy store, meeting energy requirements funções clássicas como principal estoque de energia metabólica, during periods of deprivation by means of lypolisis, adipose tissue suprindo as necessidades energéticas em períodos de carência also has the capacity to synthesize and secrete a variety of hormones mediante a lipólise, a capacidade de sintetizar e secretar vários – the adipokines. These are active in a range of processes, such as hormônios, as adipocinas. Estas agem em diversos processos, como control of nutritional intake (leptin) and control of sensitivity to o controle da ingestão alimentar (leptina) e o controle da insulin and inflammatory processes (TNF-α, IL-6, resistin, visfatin, sensibilidade à insulina e de processos inflamatórios (TNF-α, IL-6, adiponectin). Furthermore, since adipose tissue also contains resistina, visfatina, adiponectina). Além disso, como o tecido adiposo undifferentiated cells, it has the ability to generate new adipocytes, contém também células indiferenciadas, tem a habilidade de gerar regenerating its own tissue (adipogenesis), and also the ability to novos adipócitos, regenerando o próprio tecido (adipogênese), bem give rise to other cells (myoblasts, chondroblasts, osteoblasts), como originar outras células (mioblastos, condroblastos, which has great therapeutic potential in the not-too-distant future. osteoblastos), fato este que tem grande potencial terapêutico em futuro não muito distante. Conclusions: The range of functional possibilities of adipose Conclusão: Amplia-se o leque de possibilidades funcionais do tissue has widened. An understanding of these potentials could tecido adiposo. A compreensão dessas potencialidades pode fazer make this tissue a great ally in the fight against conditions that are deste tecido o grande aliado no combate de moléstias que atualmente currently assuming epidemic proportions (obesity, diabetes mellitus, vêm assumindo proporções epidêmicas (obesidade, diabetes melito, arterial hypertension and arteriosclerosis) and in which adipose hipertensão arterial e arteriosclerose), nas quais o tecido adiposo tissue is still seen as the enemy. ainda é tido como um grande vilão. J Pediatr (Rio J). 2007;83(5 Supl):S192-203: Adipócito, lipogênese, J Pediatr (Rio J). 2007;83(5 Suppl):S192-203: Adipocyte, lipólise, adipocinas, adipogênese. lipogenesis, lypolisis, adipokines adipogenesis. 1. Farmacêutica. Doutora, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP. 2. Nutricionista. Mestra e Doutoranda, Programa de Fisiologia Humana, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP. 3. Farmacêutica. Doutora e Pós-doutoranda, Laboratório de Fisiologia do Tecido Adiposo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédi- cas (ICB), Universidade de São Paulo (USP), São Paulo, SP. 4. Professor associado, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo,SP. Como citar este artigo: Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J). 2007;83(5 Suppl):S192-203. doi 10.2223/JPED.1709 S192 Tecido adiposo: órgão endócrino - Fonseca-Alaniz MH et al. Jornal de Pediatria - Vol. 83, Nº 5(Supl), 2007 S193 Introdução Nos mamíferos, existem dois tipos de TA: tecido adiposo Aspectos gerais branco (TAB) e tecido adiposo marrom (TAM). Os adipócitos destes apresentam diferenças importantes. O adipócito As espécies animais precisam garantir a sobrevivência sob branco maduro armazena TAG em uma única e grande gota condições inóspitas ou desfavoráveis. Vertebrados em geral lipídica que ocupa a porção central da célula, correspon- e mamíferos em particular,por possuírem tecido adiposo (TA), dendo a 85-90% da massa celular, e desloca citoplasma, conseguem armazenar o excesso de calorias como lipídeos núcleo e demais organelas para a periferia, onde se acomo- (triacilgliceróis – TAG). Estes, que são hidrofóbicos, podem dam dentro de uma fina camada de citosol. Curiosamente, ser estocados em grandes quantidades sem usar água como durante seu desenvolvimento, o adipócito jovem contém múl- solvente e carregam duas vezes mais energia por unidade de tiplas gotículas lipídicas que coalescem para formar uma inclu- massa que os demais nutrientes. são lipídica unitária com o amadurecimento. Embora tenham Sendo o principal reservatório energético, o TA sempre foi volume variável, os adipócitos brancos maduros são células conhecido como reservatório energético e como isolante tér- grandes, centenas a alguns milhares de vezes maiores que mico. Estas duas propriedades, por muito tempo, foram apli- hemácias, fibroblastos e células do sistema imune e podem cadas ao estudo da regulação do metabolismo energético e alterar acentuadamente seu tamanho conforme a quanti- pouca atenção se deu à análise de outras habilidades suas. dade de TAG acumulada4. As pesquisas sobre o TA o encaravam como tendo um padrão único e uniforme de respostas, sem levar em consideração Além dos adipócitos, o TA contém matriz de tecido con- características como localização ou participação em deman- juntivo (fibras colágenas e reticulares), fibras nervosas, das locais desvinculadas de processos mais globais de con- estroma vascular,nódulos linfáticos, células imunes (leucóci- trole metabólico. Por isso, os estudos mais antigos, em sua tos, macrófagos), fibroblastos e pré-adipócitos (células adi- 1 maioria, analisaram respostas metabólicas em amostras de posas indiferenciadas) . uma determinada região, tomando-a como representativa de Tecido adiposo marrom toda a massa adiposa. Esses estudos menosprezaram aspec- tos regionais de ajuste metabólico distorcendo ou ocultando O TAM, especializado na produção de calor (termogê- uma importante dimensão funcional sua. nese), está praticamente ausente em humanos adultos, mas é encontrado em fetos e recém-nascidos. Seu adipócito, com É também verdade que, conforme a origem do TA (por 30-40 µm de diâmetro médio, é menor que o branco (diâme- exemplo, se periepididimal ou retroperitoneal), tro médio de 60-100 µm). Possui várias gotículas lipídicas cito- detectavam-se diferenças na sua capacidade lipolítica ou lipo- plasmáticas de diferentes tamanhos, citoplasma gênica. O tecido periepididimal, em roedores em geral, foi lar- relativamente abundante, núcleo esférico e ligeiramente gamente utilizado como padrão para avaliar respostas frente excêntrico e numerosas mitocôndrias que liberam calor pela às mais diferentes condições, normais ou patológicas. Ques- oxidação de ácidos graxos5. A calorigênese é garantida pela tionamentos sobre a representatividade deste coxim gordu- proteína desacopladora-1 (UCP-1 ou termogenina) locali- roso foram surgindo, indicando que uma revisão detalhada zada na membrana mitocondrial interna, que atua como um sobre o seu papel fisiológico era imperiosa. canal de próton que descarrega o potencial gerado pelo acú- Os adipócitos são as únicas células especializadas e per- mulo de prótons no espaço intermembranoso durante o ciclo feitamente adaptadas para armazenar lipídeos sem que isso de Krebs, desviando-os do complexo F1F0 (ATP sintase), impe- comprometa a sua integridade funcional. Possuem a maqui- dindo a síntese de ATP e permitindo que se dissipe em calor5. naria enzimática necessária para sintetizar ácidos graxos A alta concentração de citocromo oxidase dessas mitocôn- (processo denominado de lipogênese) e estocar TAG em perí- drias contribui para a sua coloração mais escurecida6. odos de oferta abundante de energia e para mobilizá-los pela lipólise quando há déficit calórico (lipólise). O sistema ner- Tecido adiposo branco voso central participa da regulação desses dois processos Embora a sua participação
Recommended publications
  • Regulation of the Gastrin Promoter by Epidermal Growth Factor and Neuropeptides JUANITA M
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 3036-3040, May 1989 Biochemistry Regulation of the gastrin promoter by epidermal growth factor and neuropeptides JUANITA M. GODLEY AND STEPHEN J. BRAND Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114 Communicated by Kurt J. Isselbacher, December 30, 1988 ABSTRACT The regulation of gastrin gene transcription gastrin secretion (12, 13), the effect of GRP on gastrin gene was studied in GH4 pituitary cells transfected with constructs expression has not been reported. Antral G cells are also comprised of the first exon of the human gastrin gene and inhibited by the paracrine release of somatostatin from various lengths of 5' regulatory sequences ligated upstream of adjacent antral D cells (14), and local release of somatostatin the reporter gene chloramphenicol acetyltransferase. Gastrin inhibits gastrin gene expression as well as gastrin secretion reporter gene activity in GH4 cells was equal to the activity of (15). a reporter gene transcribed from the endogenously expressed In contrast to the detailed studies on gastrin secretion, the growth hormone promoter. The effect of a variety of peptides regulation of gastrin gene expression has not been well on gastrin gene transcription including epidermal growth investigated. The cellular mechanisms controlling gastrin factor (normally present in the gastric lumen), gastrin- secretion have been analyzed using isolated primary G cells releasing peptide, vasoactive intestinal peptide, and somato- (12, 13); however, the limited viability of these cells has statin (present in gastric nerves) was assessed. Epidermal precluded their use in studying the regulation of gastrin gene growth factor increased the rate ofgastrin transcription almost transcription using DNA transfection techniques.
    [Show full text]
  • Adrenocorticotrophic and Melanocyte-Stimulating Peptides in the Human Pituitary by ALEXANDER P
    Biochem. J. (1974) 139, 593-602 593 Printed in Great Britain Adrenocorticotrophic and Melanocyte-Stimulating Peptides in the Human Pituitary By ALEXANDER P. SCOTT and PHILIP J. LOWRY* Department ofChemical Pathology, St. Bartholomew's Hospital, London EC1A 7BE, U.K. and CIBA Laboratories, Horsham, Sussex RH12 4AB, U.K. (Received 7 December 1973) The adrenocorticotrophic and melanocyte-stimulating peptides of the human pituitary were investigated by means of radioimmunoassay, bioassay and physicochemical pro- cedures. Substantial amounts of adrenocorticotrophin and a peptide resembling /8-lipotrophin were identified in pituitary extracts, but a-melanocyte-stimulating hormone, ,B-melanocyte-stimulating hormone and corticotrophin-like intermediate lobe peptide, which have been identified in thepars intermedia ofpituitaries from other vertebrates, were not found. The absence of fJ-melanocyte-stimulating hormone appears to contradict previous chemical and radioimmunological studies. Our results suggest, however, that it is not a natural pituitary peptide but an artefact formed by enzymic degradation of ,6-lipotrophin during extraction. Melanocyte-stimulating and corticotrophic pep- extraction of human pituitaries for growth hormone tides have been identified in the pituitaries of all (Dixon, 1960). Its stucture was determined by Harris vertebrate species studied, and several have been (1959) and shown to be similar to ,B-MSH isolated isolated and characterized. They belong to two from other species, except for the presence of an structually related classes, namely those related to extra four amino acids at the N-terminus. The adrenocorticotrophin (ACTH) including ACTH, presence of sufficient amounts of 8-MSH in human a-melanocyte-stimulating hormone (a-MSH) and pituitaries to account alone for the bulk of the 'corticotrophin-like intermediate lobepeptide' ACTH melanocyte-stimulating activity in the pituitary (18-39) peptide (CLIP), and others related to fi- extracts was shown by radioimmunoassay (Abe et al., melanocyte-stimulating hormone (,B-MSH) including 1967b).
    [Show full text]
  • Resistin Levels and Inflammatory Markers in Patients with Morbid Obesity
    Nutr Hosp. 2010;25(4):630-634 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Original Resistin levels and inflammatory markers in patients with morbid obesity D. A. De Luis, M. González Sagrado, R. Conde, R. Aller and O. Izaola Instituto de Endocrinología y Nutrición Clínica. Medicine School and Unit of Investigation. Hospital Rio Hortega. RD-056/0013 RETICEF. University of Valladolid. Valladolid. Spain. Abstract NIVELES DE RESISTINA Y MARCADORES INFLAMATORIOS EN PACIENTES Background: The aim of the present study was to CON OBESIDAD MÓRBIDA explore the relationship of resistin levels with inflamma- tory markers and anthropometric parameters in morbid obese patients. Resumen Subjects: A population of 46 morbid obese was ana- lyzed. A complete nutritional and biochemical evaluation Introducción: El objetivo del presente estudio es eva- was performed. Patients were divided in two groups by luar la relación entre los niveles de resistina con los mar- median resistin value (3.49 ng/ml), group I (low values, cadores inflamatorios y parámetros antropométricos en average value 2.60 ± 0.5) and group II (high values, aver- pacientes obesos morbidos. age value 5.71 ± 2.25). Sujetos y métodos: Una muestra de 46 obesos morbidos Results: Patients in the group II had higher weight, fue analizada. Se realizó una valoración nutricional y bio- BMI, fat mass, waist circumference, LDL-cholesterol, química completa. Los pacientes fueron divididos en dos triglycerides, fibrinogen and C reactive protein than grupos en función de la mediana de resistina (3,49 ng/ml), patients in group I. In the multivariate analysis with age- grupo I (valores bajos, media del valor 2,60 ± 0,5 ng/ml) y and sex-adjusted basal resistin concentration as a depen- grupo II (valores altos, media del valor 5,71 ± 2,25 ng/ml).
    [Show full text]
  • Regulatory Micrornas in Brown, Brite and White Adipose Tissue
    cells Review Regulatory microRNAs in Brown, Brite and White Adipose Tissue Seley Gharanei 1,2, Kiran Shabir 3 , James E. Brown 3,4, Martin O. Weickert 1,2,5 , 1,2 1,2,3, 1,2,3, , Thomas M. Barber , Ioannis Kyrou y and Harpal S. Randeva * y 1 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; [email protected] (S.G.); [email protected] (M.O.W.); [email protected] (T.M.B.); [email protected] (I.K.) 2 Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 3 Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] (K.S.); [email protected] (J.E.B.) 4 School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK 5 Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK * Correspondence: [email protected] Joint senior authors; contributed equally to the manuscript. y Received: 30 September 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes).
    [Show full text]
  • (Title of the Thesis)*
    THE PHYSIOLOGICAL ACTIONS OF ADIPONECTIN IN CENTRAL AUTONOMIC NUCLEI: IMPLICATIONS FOR THE INTEGRATIVE CONTROL OF ENERGY HOMEOSTASIS by Ted Donald Hoyda A thesis submitted to the Department of Physiology In conformity with the requirements for the degree of Doctor of Philosophy Queen‟s University Kingston, Ontario, Canada (September, 2009) Copyright © Ted Donald Hoyda, 2009 ABSTRACT Adiponectin regulates feeding behavior, energy expenditure and autonomic function through the activation of two receptors present in nuclei throughout the central nervous system, however much remains unknown about the mechanisms mediating these effects. Here I investigate the actions of adiponectin in autonomic centers of the hypothalamus (the paraventricular nucleus) and brainstem (the nucleus of the solitary tract) through examining molecular, electrical, hormonal and physiological consequences of peptidergic signalling. RT-PCR and in situ hybridization experiments demonstrate the presence of AdipoR1 and AdipoR2 mRNA in the paraventricular nucleus. Investigation of the electrical consequences following receptor activation in the paraventricular nucleus indicates that magnocellular-oxytocin cells are homogeneously inhibited while magnocellular-vasopressin neurons display mixed responses. Single cell RT-PCR analysis shows oxytocin neurons express both receptors while vasopressin neurons express either both receptors or one receptor. Co-expressing oxytocin and vasopressin neurons express neither receptor and are not affected by adiponectin. Median eminence projecting corticotropin releasing hormone neurons, brainstem projecting oxytocin neurons, and thyrotropin releasing hormone neurons are all depolarized by adiponectin. Plasma adrenocorticotropin hormone concentration is increased following intracerebroventricular injections of adiponectin. I demonstrate that the nucleus of the solitary tract, the primary cardiovascular regulation site of the medulla, expresses mRNA for AdipoR1 and AdipoR2 and mediates adiponectin induced hypotension.
    [Show full text]
  • Resistin, Is There Any Role in the Mediation of Obesity, Insulin Resistance and Type-II Diabetes Mellitus?
    Review Article JOJ Case Stud Volume 6 Issue 3 - March 2018 Copyright © All rights are reserved by Rajeev Pandey DOI: 10.19080/JOJCS.2018.06.555686 Resistin, Is There any Role in the Mediation of Obesity, Insulin Resistance and Type-II Diabetes Mellitus? Rajeev Pandey1* and Gurumurthy2 1Department of Biochemistry, Spartan Health Science University, West Indies 2Department of Neurosciences, Spartan Health Science University, West Indies Submission: February 21, 2018; Published: March 05, 2018 *Corresponding author: Rajeev Pandey, Department of Biochemistry, Spartan Health Science University, St. Lucia, West Indies, Email: Abstract Resistin is a member of a class of cystein-rich proteins collectively termed as resistin-like molecules. Resistin has been implicated in tothe date pathogenesis there has ofbeen obesity-mediated considerable controversy insulin resistance surrounding and T2DM this 12.5kDa(Type II polypeptidediabetes mellitus). in understanding In addition, its resistin physiological also appears relevance to be in a bothpro- inflammatory cytokine. Taken together, resistin, like many other adipocytokines, may possess a dual role in contributing to disease risk. However, involvementhuman and rodent of resistin systems. molecule Furthermore, in the causation this has and led progression question, ofwhether obesity resistin and type represents II diabetes an mellitus important and pathogenicfactors associated factor within the alteration etiology inof theT2DM expression or not. Inof this magicreview, molecule authors athave physiological made an attemptand genetic to discuss levels. the key controversies and developments made so far towards the Keywords: Resistin; Obesity; T2DM; Insulin resistance Introduction Adipose tissue is known to produce a vast array of In addition, we will highlight the continuing complexity of the adipocyte-derived factors, known as adipocytokines.
    [Show full text]
  • Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells
    Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. M Schalling, … , T Hökfelt, J F Rehfeld J Clin Invest. 1990;86(2):660-669. https://doi.org/10.1172/JCI114758. Research Article In previous studies we have shown that the gene encoding cholecystokinin (CCK) is expressed in spermatogenic cells of several mammalian species. In the present study we show that a gene homologous to the CCK-related hormone, gastrin, is expressed in the human testis. The mRNA hybridizing to a human gastrin cDNA probe in the human testis was of the same size (0.7 kb) as gastrin mRNA in the human antrum. By in situ hybridization the gastrinlike mRNA was localized to seminiferous tubules. Immunocytochemical staining of human testis revealed gastrinlike peptides in the seminiferous tubules primarily at a position corresponding to spermatids and spermatozoa. In ejaculated spermatozoa gastrinlike immunoreactivity was localized to the acrosome. Acrosomal localization could also be shown in spermatids with electron microscopy. Extracts of the human testis contained significant amounts of progastrin, but no bioactive amidated gastrins. In contrast, ejaculated sperm contained mature carboxyamidated gastrin 34 and gastrin 17. The concentration of gastrin in ejaculated human spermatozoa varied considerably between individuals. We suggest that amidated gastrin (in humans) and CCK (in other mammals) are released during the acrosome reaction and that they may be important for fertilization. Find the latest version: https://jci.me/114758/pdf Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells Martin Schalling,* Hhkan Persson,t Markku Pelto-Huikko,*9 Lars Odum,1I Peter Ekman,I Christer Gottlieb,** Tomas Hokfelt,* and Jens F.
    [Show full text]
  • Pathophysiology of Gestational Diabetes Mellitus: the Past, the Present and the Future
    6 Pathophysiology of Gestational Diabetes Mellitus: The Past, the Present and the Future Mohammed Chyad Al-Noaemi1 and Mohammed Helmy Faris Shalayel2 1Al-Yarmouk College, Khartoum, 2National College for Medical and Technical Studies, Khartoum, Sudan 1. Introduction It is just to remember that “Pathophysiology” refers to the study of alterations in normal body function (physiology and biochemistry) which result in disease. E.g. changes in the normal thyroid hormone level causes either hyper or hypothyroidism. Changes in insulin level as a decrease in its blood level or a decrease in its action will cause hyperglycemia and finally diabetes mellitus. Scientists agreed that gestational diabetes mellitus (GDM) is a condition in which women without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. From our experience most women with GDM in the developing countries are not aware of the symptoms (i.e., the disease will be symptomless). While some of the women will have few symptoms and their GDM is most commonly diagnosed by routine blood examinations during pregnancy which detect inappropriate high level of glucose in their blood samples. GDM should be confirmed by doing fasting blood glucose and oral glucose tolerance test (OGTT), according to the WHO diagnostic criteria for diabetes. A decrease in insulin sensitivity (i.e. an increase in insulin resistance) is normally seen during pregnancy to spare the glucose for the fetus. This is attributed to the effects of placental hormones. In a few women the physiological changes during pregnancy result in impaired glucose tolerance which might develop diabetes mellitus (GDM). The prevalence of GDM ranges from 1% to 14% of all pregnancies depending on the population studied and the diagnostic tests used.
    [Show full text]
  • New Insights Into the Secretory Functions of Brown Adipose Tissue
    243 2 Journal of J Villarroya et al. Secretory functions of brown 243:2 R19–R27 Endocrinology adipose tissue REVIEW New insights into the secretory functions of brown adipose tissue Joan Villarroya, Rubén Cereijo, Aleix Gavaldà-Navarro, Marion Peyrou, Marta Giralt and Francesc Villarroya Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain Correspondence should be addressed to F Villarroya: [email protected] Abstract In recent years, an important secretory role of brown adipose tissue (BAT) has emerged, Key Words which is consistent, to some extent, with the earlier recognition of the important f brown adipose tissue secretory role of white fat. The so-called brown adipokines or ‘batokines’ may play an f brown adipokine autocrine role, which may either be positive or negative, in the thermogenic function f batokine of brown adipocytes. Additionally, there is a growing recognition of the signalling f thermogenesis molecules released by brown adipocytes that target sympathetic nerve endings (such as neuregulin-4 and S100b protein), vascular cells (e.g., bone morphogenetic protein-8b), and immune cells (e.g., C-X-C motif chemokine ligand-14) to promote the tissue remodelling associated with the adaptive BAT recruitment in response to thermogenic stimuli. Moreover, existing indications of an endocrine role of BAT are being confirmed through the release of brown adipokines acting on other distant tissues and organs; a recent example is the recognition that BAT-secreted fibroblast growth factor-21 and myostatin target the heart and skeletal muscle, respectively.
    [Show full text]
  • Human Skeletal Muscles Replaced to a High Degree by White Adipose Tissue
    Okajimas Folia Anat. Jpn.,Replacement 87(4): 165–170, of muscle February, by fat 2011165 Human skeletal muscles replaced to a high degree by white adipose tissue By Keisuke INA1, Hirokazu KITAMURA1, Takayuki MASAKI2, Shuji TATSUKAWA1, Hironobu YOSHIMATSU2 and Yoshihisa FUJIKURA1 1 Department of Molecular Anatomy, Faculty of Medicine, Oita University 2 Department of Internal Medicine 1, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan –Received for Publication, August 28, 2010– Key Words: fatty degeneration, skeletal muscle, diabetes mellitus, renal failure, hypothyroidism Summary: Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hy- pothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown. Introduction tally denerved muscle atrophy (Dulor et al., 19984)). A recent report has demonstrated that, when a muscle There are two distinct types of fat accumulation in is injured, the event which subsequently occurs is either skeletal muscles: intramyocellular fat deposits and extra- myocyte regeneration or fatty degeneration, depending myocellular adipocyte accumulation.
    [Show full text]
  • Supplementary Table 1. Clinico-Pathologic Features of Patients with Pancreatic Neuroendocrine Tumors Associated with Cushing’S Syndrome
    Supplementary Table 1. Clinico-pathologic features of patients with pancreatic neuroendocrine tumors associated with Cushing’s syndrome. Review of the English/Spanish literature. Other hormones Age of Cortisol Other hormones Other ACTH Size (ICH or assay) ENETS Follow- Time Year Author Sex CS onset level (Blood syndromes or Site MET Type AH level (cm) corticotrophic Stage up (months) (years) (µg/dl) detection) NF other differentiation 1 1 1946 Crooke F 28 uk uk none no 4.5 H liver/peritoneum NET uk uk yes IV DOD 6 2 1956 Rosenberg 2 F 40 uk 92 none no 10 B liver NET uk uk yes IV PD 3 & p 3 1959 Balls F 36 uk elevated insulin Insulinoma 20 B liver/LNl/lung NET uk uk yes IV DOD 1 4 & 4 1962 Meador F 47 13~ elevated none no uk T liver/spleen NET ACTH uk yes IV uk 5 1963 Liddle5 uk uk uk elevated uk uk uk uk uk NET ACTH uk uk uk uk 6 1964 Hallwright6 F 32 uk uk none no large H LN/liver NET ACTH, MSH uk yes IV DOD 24 7 1965 Marks7 M 43 uk elevated insulin insulinomas 1.8 T liver NET uk uk yes IV DOD 7 8 1965 Sayle8 F 62 uk uk none carcinoidb 4 H LN/liver NET uk uk yes IV DOD 6 9 1965 Sayle8 F 15 uk uk none no 4 T no NET ACTH uk yes IIa DOD 5 9 b mesentery/ 10 1965 Geokas M 59 uk uk gastrin ZES large T NET uk uk yes IV DOD 2 LN/pleural/bone 11 1965 Law10 F 35 1.2 ∞ 91 gastrin ZESs uk B LN/liver NET ACTH, MSH gastrin yes IV PD 12 1967 Burkinshaw11 M 2 uk 72 none no large T no NET uk uk no uk AFD 12 13 1968 Uei12 F 9 uk uk none ZESs 7 T liver NET ACTH uk yes IV DOD 8 13 PTH, ADH, b gastrin, 14 1968 O'Neal F 52 13~ uk ZES uk T LN/liver/bone NET
    [Show full text]
  • Altered Adipose Tissue and Adipocyte Function in the Pathogenesis of Metabolic Syndrome
    Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn, … , Guoxiao Wang, Kevin Y. Lee J Clin Invest. 2019;129(10):3990-4000. https://doi.org/10.1172/JCI129187. Review Series Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis. Find the latest version: https://jci.me/129187/pdf REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME The Journal of Clinical Investigation Series Editor: Philipp E. Scherer Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn,1 Guoxiao Wang,1 and Kevin Y.
    [Show full text]