Cycad-Species.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ozzie Da Ros Pond Completed
NEWSLETTER • WINTER 2019 A LOTUSLAND LEGEND Ozzie Da Ros JAPANESE GARDEN RENOVATION Pond Completed LETTER FROM THE CHIEF EXECUTIVE OFFICER Dear Members and Friends, IN THIS FIRST ISSUE OF YOUR 2019 newsletter we share stories of the past and plans for the future. 695 Ashley Road We dedicate the lead article to Ozzie Da Ros, whose recent Santa Barbara, California 93108 passing signaled the end of an era. Ozzie was the last of 805.969.3767 • www.lotusland.org many talented craftsmen and expert plantsmen who worked 2019 BOARD OF TRUSTEES directly with Ganna Walska over several decades to make Daniel Bifano, President her dream of a “most outstanding center of horticultural Geoff Crane significance and educational use” become a reality, a top Lesley Cunningham Dorothy H. Gardner ten garden of the world. Fortunately, we were able to gather Anthony Grumbine written or oral memoirs from most of Walska’s collaborators Belle Hahn so their accounts may guide us as we tend the Garden now David M. Jones and in perpetuity. Joseph Marek Suzanne Mathews Nowhere is this commitment better exemplified than in the renovation of the Japanese Mimi Michaelis Garden. Over six years we conducted intensive research, peeling away the multiple historic Alexandra Morse Connie Pearcy layers of the garden to understand and preserve the significant aspects of each. We honor Eileen Rasmussen the garden and its makers even as we conscientiously add a new layer that addresses Stephen P. Schaible the modern obligations of an historic estate turned public garden. With the garden’s George Schoellkopf completion this year, all guests will have safe, comfortable access to the garden and new, Mick Thomas Caroline R. -
Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied. -
Sex Change in Cycads
Palms& CycadsNo 76 July - September2002 1 Sex Change in Cycads Rov Osbornet and Root Gorelick2 tP O Box 244, Burpengary, Queensland,4505Australia :Department of Biology, Arizona State University, Tbmpe,AZ 85287-1501, U.S.A. Introduction Trees", also mentionstwo cycad sex changeincidents: a fernalespecirnen of Becausecycads are strictly and Cycascircinalis fagain,rlore probably C. unifonnly dioecious,occasional early rumphiil that changedto male after being reportsof sex changein theseplants were mechanicallydarnaged fthis rnay be the largely discountedas erroneous(Mehra samecase as referredto by Charnberlain]. 1986).lndeed, there have been some claims and a male of the salnespecies which of sexchanges for which otherexplanations produceda fernalecone after severefrost are rrore appropriate.Nevertheless, exposure. attentionmust be paid to the increasing A detailedaccount of a particularcycad numberof apparentlygenuine cases of sex sex reversalis given by Van Wyk & changesthat have been reportedover the Claassen( l98l) andrelates to oneof several past70 years.In this articlewe sutnmarise specirnens of Encephalartos incidentsof 30 cycad sex reversals, umbeluziensisgrowing in Dr Claassen's including several previously un- garden in Pretoria, South Africa. The documentedcases. We alsomention details particularspecimen produced a malecone of some"false" cases and suggest possible in 1970,but a fernalecone in l9l9 and controlling mechanisms. A table thereafter.As theplant in questionwas in a summarisesthe known casesof cycad sex rlore exposedsituation that others in the change,and a bibliographyis provided. salnegarden, it is speculatedthat a freak cold weatherspell in 1972may haveinitiated Know,n cases o.f'sex change - listed the change. chronologicalllt "Encephalartos",the journal of the Cycad Society of South Africa, has The earliestreference to sex changein publicisednurlerous incidents of cycadsex cycadsis that given by Schuster(1932) change.These are summarised in this and who tells of a Cvc'asrevoluta plant that the following paragraph.H.J. -
Encephalartos Aemulans (Zamiaceae), a New Species From
S. Afr.J. Bot., 1990, 56(2): 239-243 239 EncephaJartos aemuJans (Zamiaceae), a new species from northern Natal P. Vorster Botany Department, University of Stellenbosch, Stellenbosch, 7600 Republic of South Africa Accepted 12 December 1989 Encephalartos aemulans Vorster is described from the Ngotshe district in northern Natal. It resembles E. natalensis R.A. Dyer & Verdoorn by the tuberculose bullae of the female cones, and E. lebomboensis Verdoorn by the relatively narrow leaflets which are reduced to prickles towards the base of the frond; but differs from both by the thick indumentum covering the cone surfaces, the sessile male cones without drooping beaks on the bullae, and by the morphological similarity between the submature male and female cones. Encephalartos aemulans word beskryf vanuit die Ngotshe-distrik in Noord-Natal. Dit stem ooreen met E. natalensis R.A. Dyer & Verdoorn op grond van die vratterige bullae van die vroulike keels, en E. lebomboensis Verdoorn op grond van die relatief smal pinnae wat reduseer is tot dorinkies na die basis van die blaar toe; maar dit verskil van beide deur die digte haarbedekking van die keeloppervlaktes, die sittende manlike keels waarvan die bullae nie afbuigende snawels vorm nie, en deur die morfologiese ooreenkoms tussen die byna volwasse manlike en vroulike keels. Keywords: Encephalartos, new species, Zamiaceae A critical study of Encephalartos natalensis R.A. Dyer & both ends, apices oblique and pungent, margins very Verdoorn led to the conclusion that plants from northern slightly revolute (more conspicuously so in dried than Natal represent a distinct and undescribed species: fresh material) with 1-3 teeth on upper margin and 1-2 on lower margin . -
Download the PDF File
ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P. -
Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing. -
35 Ideal Landscape Cycads
3535 IdealIdeal LandscapeLandscape CycadsCycads Conserve Cycads by Growing Them -- Preservation Through Propagation Select Your Plant Based on these Features: Exposure: SunSun ShadeShade ☻☻ ColdCold☻☻ Filtered/CoastalFiltered/Coastal SunSun ▲▲ Leaf Length and Spread: Compact, Medium or Large? Growth Rate and Ultimate Plant Size Climate: Subtropical, Mediterranean, Temperate? Dry or Moist? Leaves -- Straight or Arching? Ocean-Loving, Salt-Tolerant, Wind-Tolerant CeratozamiaCeratozamiaCeratozamiaCeratozamia SpeciesSpeciesSpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun 16 named + several undescribed species Native to Mexico, Guatemala & Belize Name originates from Greek ceratos (horned), and azaniae, (pine cone) Pinnate (feather-shaped) leaves, lacking a midrib, and horned, spiny cones Shiny, darker green leaves arching or upright, often emerging red or brown Less “formal” looking than other cycads Prefer Shade ½ - ¾ day, or afternoon shade Generally cold-tolerant CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia mexicana Tropical looking but cold-tolerant, native to dry mountainous areas in the Sierra Madre Mountains (Mexican Rockies). Landscape specimen works well with water features, due to arching habit. Prefers shade, modest height, with a spread of up to 10 feet. Trunk grows to 2 feet tall. Leaflets can be narrow or wider (0.75-2 inches). CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia latifolia Rare Ceratozamia named for its broad leaflets. Native to cloud forests of the Sierra Madre mountains of Mexico, underneath oak trees. Emergent trunk grows to 1 foot tall, 8 inches in diameter. New leaves emerge bronze, red or chocolate brown, hardening off to bright green, semiglossy, and grow to 6 feet long. They are flat lance-shaped, asymmetric, and are broadest above middle, growing to 10 inches long and 2 inches wide. -
Inducing Sex Change and Organogenesis from Tissue Culture
114 SouthAfrican Journal of Science98, March/April2002 Gommentary reveals slight heterochromatin differ- lnducing sex change and ences,"'" which is itself due to differential methylation."''n Therefore, it is distinctly organogenesis from tissue possible that methylation controls sex determination. culture in the endangered African Methylation and accompanying hetero- chromatin can be removed by various cycad Encephalartos woodii f actors - such as temper attJte,'5''6 lighft ,27 osmotic stress,28or hormones2e-31- result- (Gycadales, Zamiaceael ing in sex change.3''33Sex change occurs only in organisms that have (virtually) indistinguishable sex chromosomes, indi- Root Gorelicku" and Roy Osborneb cating that incipient sex chromosomes are formed by slight differences in methylation. Differential methylation is I F INCIPIENT SEX CHROMOSOME DIFFEREN- Fourth, if backcrossing is the only realistic evolutionarily the first difference between I tiutiott is caused by differential methy- approach to conservation, then it is pref- females and males3nand is the likely cause I lation between females and males, then erableto use E.woodiiasthe female parent of reported sex changes in cycads. methylating or demethylating cytosine because of maternal inheritance of nucleotides may induce sex change. chloroplast genomes. Fifth, induced sex Methylation may also stimulate regeneration Application of theory to sex change of roots and shoots from tissue culture callus change may assist in the conservation of in cycads and increase genetic variation via greater -
Summary Report Non-Detriment Findings Made by the Scientific Authority
SUMMARY REPORT NON-DETRIMENT FINDINGS MADE BY THE SCIENTIFIC AUTHORITY 5 April 2019 Contents Introduction ............................................................................................................................................... 3 1. NDFs approved by the Scientific Authority ........................................................................................ 5 A. NDFs published for implementation ....................................................................................................... 5 Ceratotherium simum simum (white rhinoceros) (May 2016) ......................................................................... 5 Encephalartos aemulans (Ngotshe cycad) (May 2016) .................................................................................. 5 Encephalartos cerinus (waxen cycad) (May 2016) ......................................................................................... 6 Encephalartos cupidus (Blyde River cycad) (May 2016) ................................................................................ 6 Encephalartos dolomiticus (Wolkberg cycad) (May 2016).............................................................................. 7 Encephalartos dyerianus (Lowveld cycad / Lillie cycad) (May 2016) ............................................................. 8 Encephalartos heenanii (woolly cycad) (May 2016) ....................................................................................... 9 Encephalartos hirsutus (Venda cycad) (May 2016) ....................................................................................... -
Technical Report for the Mpumalanga Biodiversity Sector Plan – MBSP 2015
Technical Report for the Mpumalanga Biodiversity Sector Plan – MBSP 2015 June 2015 Authored by: Mervyn C. Lötter Mpumalanga Tourism &Parks Agency Private bag X1088 Lydenburg, 1120 1 Citation: This document should be cited as: Lötter, M.C. 2015. Technical Report for the Mpumalanga Biodiversity Sector Plan – MBSP. Mpumalanga Tourism & Parks Agency, Mbombela (Nelspruit). ACKNOWLEDGMENTS There are many individuals and organisations that contributed towards the success of the MBSP. In particular we gratefully acknowledge the ArcGIS software grant from the ESRI Conservation Program. In addition the WWF-SA and SANBIs Grasslands Programme played an important role in supporting the development and financing parts of the MBSP. The development of the MBSP spatial priorities took a few years to complete with inputs from many different people and organisations. Some of these include: MTPA scientists, Amanda Driver, Byron Grant, Jeff Manuel, Mathieu Rouget, Jeanne Nel, Stephen Holness, Phil Desmet, Boyd Escott, Charles Hopkins, Tony de Castro, Domitilla Raimondo, Lize Von Staden, Warren McCleland, Duncan McKenzie, Natural Scientific Services (NSS), South African National Biodiversity Institute (SANBI), Strategic Environmental Focus (SESFA),Birdlife SA, Endangered Wildlife Trust, Graham Henning, Michael Samways, John Simaika, Gerhard Diedericks, Warwick Tarboton, Jeremy Dobson, Ian Engelbrecht, Geoff Lockwood, John Burrows, Barbara Turpin, Sharron Berruti, Craig Whittington-Jones, Willem Froneman, Peta Hardy, Ursula Franke, Louise Fourie, Avian Demography -
2019 IUCN SSC Cycad Specialist Group Report
IUCN SSC Cycad Specialist Group 2019 Report John Donaldson M. Patrick Griffith Co-Chairs Mission statement Targets for the 2017-2020 quadrennium John Donaldson (1) The Cycad Specialist Group (CSG) exists to bring Assess (2) M. Patrick Griffith together the world’s cycad conservation exper- Red List: update the Cycad Red List Index by tise, and to disseminate this expertise to organ- undertaking a third global assessment of 350 Vice-Chairs isations and agencies which can use this guid- species. (3) ance to advance cycad conservation. Cristina Lopez-Gallego Research activities: strengthen information, (2) Michael Calonje knowledge and capacity to support cycad Projected impact for the 2017-2020 conservation actions. Red List Authority Coordinator quadrennium Act De Wet Bösenberg (1) By 2020, we want to ensure that no cycad has Conservation actions: (1) increase the represen- become extinct because all high risk taxa are tation of threatened cycads in ex situ collec- Location/Affiliation adequately represented in botanic gardens, that tions with at least 90% of Critically Endangered (1) South African National Biodiversity Institute, substantial advances are made in identifying species in collections, beginning with bench- South Africa and securing habitat for Critically Endangered marking; (2) initiate projects to secure habitat (2) Montgomery Botanical Center, US species, and that reintroduction programmes and/or restore populations for at least five Criti- (3) University of Antioquia, Medellin, Colombia are supported to start to increase population cally Endangered species. numbers for species reduced to <250 individ- Number of members uals. This will be achieved through our own Activities and results 2019 57 efforts as well as collaboration with other organisations and will be supported by tradi- Assess Social networks tional strengths within the Cycad Specialist Red List Facebook: Cycad Specialist Group Group such as compiling the World List of i. -
Swaziland: 118/119 Biodiversity and Forest Assessment
Swaziland: 118/119 Biodiversity and Forest Assessment 20 September 2007 This publication was produced for review by the United States Agency for International Development. It was prepared by the Biodiversity Analysis and Technical Support team. MARMARCHMAR 118/119 Biodiversity and Tropical Forest Assessment for Swaziland EPIQ IQC: EPP-I-00-03-00014-00, Task Order 02 Biodiversity Analysis and Technical Support for USAID/Africa is funded by the U.S. Agency for International Development, Bureau for Africa, Office of Sustainable Development (AFR/SD) and is implemented by Chemonics International Inc., World Conservation Union, World Wildlife Fund, and International Program Consortium. The assessment was led by the U.S. Forest Service/International Programs, with support from Chemonics International Inc. The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS ACRONYMS ................................................................................................................................... i EXECUTIVE SUMMARY............................................................................................................. 1 INTRODUCTION........................................................................................................................... 5 Environment and Natural Resource Management in Swaziland................................................. 5 Background on USAID Activities .............................................................................................