THE EFFECT of ALAKALIZATION on MECHANICAL PRPERTIES of KENAF BAST FIBERS ______J V G Shivakrishna1,D.Venkata Rao2,A

Total Page:16

File Type:pdf, Size:1020Kb

THE EFFECT of ALAKALIZATION on MECHANICAL PRPERTIES of KENAF BAST FIBERS ______J V G Shivakrishna1,D.Venkata Rao2,A INTERNATIONAL JOURNAL FOR RESEARCH & DEVELOPMENT IN Volume-8,Issue-5,(Nov-17) TECHNOLOGY ISSN (O) :- 2349-3585 THE EFFECT OF ALAKALIZATION ON MECHANICAL PRPERTIES OF KENAF BAST FIBERS __________________________________________________________________________________________ J v g shivaKrishna1,D.Venkata Rao2,A. Lakshumu Naidu3 1Scholar,2,3Assistant Professor, GMR IT, Mechanical Engineering, Rajam, India. Abstract :The instant in using natural fibers in composites Plant Fiber: Abaca, Bagasse, Bamboo, Coir, Cotton, Fique, has increased in recent years due to their non-abrasive, Flax (Linen), Hemp, Jute, Kapok, Kenaf, Piña, Pine, Raffia, combustible, non-toxic, low cost, and light weight and Ramie, Sisal, Wood. biodegradable properties. In this session discussion about Animal Fiber: Alpaca, Angora, Byssus, Camel hair, the manufacturing methods by variable possible and deserve Cashmere, Catgut, Chiengora, Guanaco, Human hair, Llama, methods that permits the conversion of kenafbastfiber to rein Mohair, Pashmina, Qiviut, Rabbit, Silk, Sinew, Spider silk, form epoxy composites into wide variety of industrial Wool, Vicuña, Yak. applications products. The kenaffibers were used in the as- received condition and alkalized with a 0.06 M NaOH solution. They were combined with polyester resin and hot- pressed to form natural fiber composites. A general trend was observed where by alkalized and long fiber composites gave higher flexural modulus and flexural strength compared with composites made from as-received fibers. Scanning electron microscopy micrographs of the treated hemp and kenaf fibres showed the absence of surface impurities which were present on the untreated fibres. Apparent density measurements on kenaf fibres did not show significant change after alkalization with 0.06 M NaOH. Introduction Kenaf, Hibiscus cannabinusbast fibres are biodegradable and Environmentally friendly crops. The most rapidly expanding application for kenaf fibres at present is as reinforcement in composites. The matrix materials popularly used in natural fiber composites range from thermoplastics such as polypropylene and polyethylene, to thermosets such as Composite Materials:- polyester Fibers or fibers are a class of hair-like materials that A Composite material (additionally called a synthesis material are continuous "filaments” or are in discrete elongated pieces, or abbreviated to composite, which is the normal name) is a similar to pieces of thread that are produced by plants and material produced using at least two constituent materials with animals. They can be used as a component of composite essentially unique physical or compound properties that, when materials. They can also be matted into sheets to make joined, deliver a material with qualities not quite the same as products such as paper or felt. Natural Fibers include the the individual parts. The individual parts stay isolated and following: particular inside the completed structure. 88 All rights reserved by www.ijrdt.org Paper Title:-THE EFFECT OF ALAKALIZATION ON MECHANICAL PRPERTIES OF KENAF BAST FIBERS FiberReinforced Composites: -A fiber-fortified composite (FRC) is a composite building material that comprises of three segments: (i) the filaments as the intermittent or scattered stage, (ii) the grid as the consistent stage, and (iii) the fine interphase locale, otherwise called the interface. This is a sort of cutting edge composite gathering, which influences utilization of rice husk, to rice frame, and plastic as fixings. Particulate Composite: - Concrete is most ordinarily utilized particulate composite. It comprises of bond as restricting medium and finely scattered particulates of rock notwithstanding fine total (sand) and water. It is otherwise called Portland bond concrete. their lightweight, high firmness and their high quality Structural Composites: -Organized composite is an Based on the type of matrix in the composites uncommon class of composite materials that is created by Ceramic matrix composite: ceramic matrix composites appending two thin yet hardened skins to a lightweight yet (CMCs) are a subgroup of composite materials and a subgroup thick center. The center material is regularly low quality of earthenware production. They comprise of clay filaments material. however its higher thickness furnishes the composite installed in an artistic grid, along these lines shaping an with high bowing solidness with general low thickness earthenware fiber fortified fired (CFRC) material. The grid 2. Experimental methods:- and filaments can comprise of any artistic material, where by 2.1. Materials carbon and carbon strands can likewise be viewed as a clay Kenaf raw filaments utilized as a part of this work is provided material. by MARDI (Malaysian Agricultural Research and Polymer matrix Composites: A polymer matrix composite Development Foundation) and came in twisted long strands. (PMC) is a composite material made out of an assortment of The polymers utilized were high-thickness polyethylene (PE) short or consistent strands bound together by a natural and polypropylene (PP) and were provided by Thai polymer framework. PMCs are intended to exchange stacks Polyethylene Co. Constrained (2). Furthermore, the coupling between filaments through the network. A portion of the operators utilized as a part of these tests were maleated favorable circumstances with PMCs incorporate along the polyethylene (MAPE) and maleated polypropylenes course of their fortifications. Different favorable (MAPP)which were provided by DuPont Bundling and circumstances are great scraped spot resistance and great Industrial Polymers .Sodium Hydroxide (NaOH) utilized was erosion resistance. provided by Merck Sdn Bhd. Polymer matrix composites under classified into two types: 2.2. Fiber treatment:- a) thermoplastic matrix composites, b) thermoset matrix Fibers were absorbed 6% NaOH arrangement in a water composites. shower where the temperature was kept up all through at 19± Metal Matrix composites: A metal grid composite (MMC) 2ºC for 48 hr.*(.2 ) The treated fibers were flushed seven is composite material with no less than two constituent parts, times and left to dry at room temperature some time recently one being a metal fundamentally, the other material might be being placed in a broiler for 5 h at 110 ºC( 2). Scathing pop an alternate metal or another material, for example, an treatment was picked in light of the fact that it is modest and earthenware or natural compound. At the point when no less successful. Untreated strands were likewise dried in an than three materials are available, it is known as a half and oven.(10) In this examination, substance treatment has been half composite. A MMC is reciprocal to a corm. connected to the examples. The strands were treated with Based on the type reinforcement of the composites: 89 ISSN:-2349-3585 |www.ijrdt.org Paper Title:-THE EFFECT OF ALAKALIZATION ON MECHANICAL PRPERTIES OF KENAF BAST FIBERS 3%,6% and 9% of sodium hydroxide(NaOH) for a day. The arranged and broke down.Three-point bend tests were sodium hydroxide focus has an effect on the mechanical performed utilizing an Intron-machine. The width and properties, thermo physical properties of the composites. After thickness of the specimens were measured and recorded. The the treatment, the strands were completely washed with specimens had a traverse to profundity proportion of 16:1. running water what's more, permitted to dry at raised Tests were tested at a crosshead speed of 1 mm/min. The tests temperature 100℃ for 24 hours.(3) were conveyed out as per ASTM D 790. The flexural modulus 2.3. Density measurement of Fibers: - and flexural quality were calculated from this test. (3) Charpy The clear thickness of the fiber was measured by utilizing the affect tests were performed utilizing an Avery Denison affect Archimedes guideline which includes the immersion of a analyzer. The width and thickness of the unnotched specimens known weight of fiber into a dissolvable of bring down were measured and recorded. The tests were completed as per thickness than the fiber. Benzene with a thickness of around ASTM D 256. Crafted by crack esteems were computed by 875 kg/m3 was utilized as a dissolvable (3.10.) partitioning the vitality in kJ recorded on the analyzer by the 2.4.ManufacturingTechniques:- cross sectional zone of the specimen. SEM micrographs of Generally conventional assembling methods are connected for treated and untreated fiber surfaces were taken utilizing a the normal fiber polymer composites, which are intended for filtering electron magnifying lens Model JEOL 6310. ordinary fiber-strengthened polymer composites with Preceding SEM assessment, the tests were covered with gold thermoplastics and thermosets. These methods incorporate utilizing the plasma sputtering mechanical assembly Edwards coordinate expulsion, vacuum implantation, pressure forming, sputter coater model S150B. sap exchange shaping, intensifying and infusion shaping.(11) 3. Results and discussion Typically techniques for example, expulsion, pressure and 3.1. Apparent density of kenaffibers:- infusion shaping are utilized to present fibers into the The bulk (obvious) density includes all the strong material and thermoplastic matrix. Assembling of regular fiber polymer the pores inside the fibers. The bulk density is constantly not composites is arranged in two sorts as open and closed as much as the total density, which avoids every one of the moulding procedures.(15). Closed moulding procedures are pores and lumen because
Recommended publications
  • Cuba: Informe Nacional Sobre Los Rfaa
    CUBA: INFORME NACIONAL SOBRE LOS RFAA La Habana, abril 2007 1 INDICE Página LISTA DE ACRÓNIMOS 4 SECCIÓN I: SUMARIO EJECUTIVO. 5 SECCIÓN II: INTRODUCCIÓN AL PAÍS Y AL SECTOR AGRÍCOLA. 9 II.1. Principales características de la naturaleza y la biodiversidad de Cuba. 9 II. 2. Características socio-económicas de Cuba. El Plan Turquino y su papel en la agricultura cubana. 10 II.3. Principales sistemas de producción, cultivos y productos animales, así como exportaciones. 11 SECCIÓN III. CUERPO PRINCIPAL DEL INFORME DE PAÍS. 15 Capítulo 1: Estado de la Diversidad. 15 1.1. El estado de la diversidad e importancia relativa para la seguridad alimentaria de granos básicos y cereales. 15 1.2. El estado de la diversidad e importancia relativa de raíces, tubérculos y rizomas, plátanos y bananos. 17 1.3. El estado de la diversidad e importancia relativa para la seguridad alimentaria de los frutales. 18 1.4. El estado de la diversidad e importancia relativa para la seguridad alimentaria en hortalizas y oleaginosas. 18 1.5. El estado de la diversidad en los cultivos industriales (caña de azúcar, café, cacao, tabaco y fibras). 20 1.6. El estado de la diversidad de los pastos y forrajes y plantas silvestres útiles. 21 1.7. El estado de la diversidad en los recursos genéticos forestales. 22 1.8. El estado de la diversidad en los cultivos subutilizados. 24 1.9. Consideraciones generales. 24 Capítulo 2: El Estado del Manejo In Situ de los RFAA. 25 2.1. Inventarios de la agrobiodiversidad in situ. 25 2.2. Apoyo para el ordenamiento en y mejoramiento en fincas de los 26 RFAA.
    [Show full text]
  • Complete Sequence of Kenaf (Hibiscus Cannabinus)
    www.nature.com/scientificreports OPEN Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis Received: 2 November 2017 Accepted: 27 July 2018 with the mitochondrial genomes of Published: xx xx xxxx other plants Xiaofang Liao1,2,3, Yanhong Zhao3, Xiangjun Kong2, Aziz Khan2, Bujin Zhou 2, Dongmei Liu4, Muhammad Haneef Kashif2, Peng Chen2, Hong Wang5 & Ruiyang Zhou2 Plant mitochondrial (mt) genomes are species specifc due to the vast of foreign DNA migration and frequent recombination of repeated sequences. Sequencing of the mt genome of kenaf (Hibiscus cannabinus) is essential for elucidating its evolutionary characteristics. In the present study, single- molecule real-time sequencing technology (SMRT) was used to sequence the complete mt genome of kenaf. Results showed that the complete kenaf mt genome was 569,915 bp long and consisted of 62 genes, including 36 protein-coding, 3 rRNA and 23 tRNA genes. Twenty-fve introns were found among nine of the 36 protein-coding genes, and fve introns were trans-spliced. A comparative analysis with other plant mt genomes showed that four syntenic gene clusters were conserved in all plant mtDNAs. Fifteen chloroplast-derived fragments were strongly associated with mt genes, including the intact sequences of the chloroplast genes psaA, ndhB and rps7. According to the plant mt genome evolution analysis, some ribosomal protein genes and succinate dehydrogenase genes were frequently lost during the evolution of angiosperms. Our data suggest that the kenaf mt genome retained evolutionarily conserved characteristics. Overall, the complete sequencing of the kenaf mt genome provides additional information and enhances our better understanding of mt genomic evolution across angiosperms.
    [Show full text]
  • Tensile Properties of Bamboo, Jute and Kenaf Mat-Reinforced Composite
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 56 ( 2014 ) 72 – 79 11th Eco-Energy and Materials Science and Engineering (11th EMSES) Tensile Properties of Bamboo, Jute and Kenaf Mat-Reinforced Composite Toshihiko HOJOa,Zhilan XUb, Yuqiu YANGb*, Hiroyuki HAMADAa aKyoto Institute of Technology,Matsugasaki,Sakyo-ku, Kyoto, 6068585,Japan b Donghua University,Songjiang District,Shanghai, 201620,China Abstract Natural fibers, characterized by sustainability, have gained a considerable attention in recent years, due to their advantages of environmental acceptability and commercial viability. In this paper, several kinds of composites with natural fiber mat as reinforcement and unsaturated polyester(UP) as matrix, including jute/UP, kenaf/UP and bamboo/UP, were fabricated by hand lay-up and compression molding methods. Their tensile properties were tested and discussed, as well as the low cycle fatigue(LCF) behavior of three composites, which was compared with glass/UP. After the test, the fracture cross sectional observations were carried out on the selected test specimens using a scanning electron microscope(SEM),with a focus on the fracture morphologies. © 2014 Elsevier The Authors. Ltd. This Published is an open by access Elsevier article Ltd. under the CC BY-NC-ND license Peer-review(http://creativecommons.org/licenses/by-nc-nd/3.0/ under responsibility of COE of Sustainalble). Energy System, Rajamangala University of Technology Thanyaburi (RMUTT).Peer-review under responsibility of COE of Sustainalble Energy System, Rajamangala University of Technology Thanyaburi (RMUTT) Keywords: tensile property ; natural fiber mat; composites 1. Introduction Over the past few decades, there has been a growing interest in the use of natural fibers [1].
    [Show full text]
  • Experimentally and Investigation on Mechanical Properties of Kenaf & Flax with Different Compositions Using Hand Layup Technique
    || Volume 5 || Issue 12 || December 2020 || ISO 3297:2007 Certified ISSN (Online) 2456-3293 EXPERIMENTALLY AND INVESTIGATION ON MECHANICAL PROPERTIES OF KENAF & FLAX WITH DIFFERENT COMPOSITIONS USING HAND LAYUP TECHNIQUE 1PYLA SATYA SAIRAM, 2Mr. K. SIVA RAJU 1M.Tech student, Dept.of Mechanical Engineering, Helapuri Institute of Technology and Science(Vegavaram, Denduluru (M), ELURU, West Godavari District – 534 450)Andhrapradesh. 2Internal Guide, Assistant professor, Head of the department, Dept.of Mechanical Engineering, Helapuri Institute of Technology and Science (Vegavaram, Denduluru (M), ELURU, West Godavari District – 534 450) Andhrapradesh. [email protected],[email protected] ------------------------------------------------------------------------------------------------------------ Abstract: A composite material is made from two or more constituent materials; having better properties compared two both two parent materials. The composite is stronger, lighter, and less expensive compared with the traditional materials. In current years composites have considerable importance as a potential operational material. Less cost, less weight , more specific modulus, biodegradability and renew ability are the most basic and common attractive features of composites that make them useful for industrial applications. With less cost, ,more specific mechanical properties natural fiber signifies a worthy renewable and biodegradable composite. Among those kenaf, flax and its hybrid fibers. The present work has been done with an
    [Show full text]
  • Mechanical Behaviour of Hybrid Composites Prepared Using Sisal-Pineapple-Kenaf Fibre
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-5, January 2020 Mechanical Behaviour of Hybrid Composites Prepared using Sisal-Pineapple-Kenaf Fibre D Tamilvendan, G Mari Prabu, S Sivaraman, A. R. Ravikumar durability, tensile strength, impact strength, rupture strengths, Abstract: Variety of application use fibre reinforced composites stiffness and fatigue characteristics. Due to these numerous because of their intrinsic properties in mechanical strength, superior properties, they are extensively used in the machine renewability and low production cost compared to conventional parts like drive shafts, tanks, pressure vessels , automotive, materials. Natural fibres are environmentally friendly their use will not break the budget when used as an alternative to the combustion engines, thermal management, railway coaches regular materials. Reinforcement used in polymer is either and aircraft structures and power plant structures. man-made or natural. Man-made synthetic, metallic, Composites are made up of chemically distinct multiphase semi-synthetic, polymer fibres have superior specific strength but materials separated by distinct interface that exhibit better their high cost of production limits its application and feasibility to combination of properties compared to the constituent make composites. Recently there is a rise in use of natural fibres materials. Composite material is a combination of robust from various natural resources which are available abundantly. Composites based on natural fibres have their advantages of cost load-carrying material (known as reinforcement) imbedded in making the fibres from different vegetables, wood, animals and with weaker materials (known as matrix) differing in minerals. In this work a thorough and systematic inquiry composition on a macro scale.
    [Show full text]
  • Attachment Properties of Blue Mussel (Mytilus Edulis L.) Byssus Threads on Culture-Based Artificial Collector Substrates
    Aquacultural Engineering 42 (2010) 128–139 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at ScienceDirect provided by Electronic Publication Information Center Aquacultural Engineering journal homepage: www.elsevier.com/locate/aqua-online Attachment properties of blue mussel (Mytilus edulis L.) byssus threads on culture-based artificial collector substrates M. Brenner a,b,c,∗, B.H. Buck a,c,d a Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany b Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany c Institute for Marine Resourses (IMARE), Klußmannstraße 1, 27570 Bremerhaven, Germany d University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany article info abstract Article history: The attachment strength of blue mussels (Mytilus edulis) growing under exposed conditions on 10 differ- Received 25 May 2009 ent artificial substrates was measured while assessing microstructure of the applied substrate materials. Accepted 9 February 2010 Fleece-like microstructure attracted especially mussel larvae, however, most settled individuals lost attachment on this type of microstructure with increasing size during the time of experiment. Sub- Keywords: strates with thick filaments and long and fixed appendices were less attractive to larvae but provided a Spat collectors better foothold for juvenile mussels as shown by the results of the dislodgement trials. In addition these Offshore aquaculture appendices of substrates could interweave with the mussels, building up a resistant mussel/substrate con- Offshore wind farms Mytilus edulis glomerate. Our results show that a mussel byssus apparatus can withstand harsh conditions, if suitable Dislodgement substrates are deployed.
    [Show full text]
  • The Peculiar Protein Ultrastructure of Fan Shell and Pearl Oyster Byssus
    Soft Matter View Article Online PAPER View Journal | View Issue A new twist on sea silk: the peculiar protein ultrastructure of fan shell and pearl oyster byssus† Cite this: Soft Matter, 2018, 14,5654 a a b b Delphine Pasche, * Nils Horbelt, Fre´de´ric Marin, Se´bastien Motreuil, a c d Elena Macı´as-Sa´nchez, Giuseppe Falini, Dong Soo Hwang, Peter Fratzl *a and Matthew James Harrington *ae Numerous mussel species produce byssal threads – tough proteinaceous fibers, which anchor mussels in aquatic habitats. Byssal threads from Mytilus species, which are comprised of modified collagen proteins – have become a veritable archetype for bio-inspired polymers due to their self-healing properties. However, threads from different species are comparatively much less understood. In particular, the byssus of Pinna nobilis comprises thousands of fine fibers utilized by humans for millennia to fashion lightweight golden fabrics known as sea silk. P. nobilis is very different from Mytilus from an ecological, morphological and evolutionary point of view and it stands to reason that the structure– Creative Commons Attribution 3.0 Unported Licence. function relationships of its byssus are distinct. Here, we performed compositional analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate byssal threads of P. nobilis, as well as a closely related bivalve species (Atrina pectinata) and a distantly related one (Pinctada fucata). Received 20th April 2018, This comparative investigation revealed that all three threads share a similar molecular superstructure Accepted 18th June 2018 comprised of globular proteins organized helically into nanofibrils, which is completely distinct from DOI: 10.1039/c8sm00821c the Mytilus thread ultrastructure, and more akin to the supramolecular organization of bacterial pili and F-actin.
    [Show full text]
  • Raffia Palm Fibre, Composite, Ortho Unsaturated Polyester, Alkali Treatment
    American Journal of Polymer Science 2014, 4(4): 117-121 DOI: 10.5923/j.ajps.20140404.03 The Effect of Alkali Treatment on the Tensile Behaviour and Hardness of Raffia Palm Fibre Reinforced Composites D. C. Anike1,*, T. U. Onuegbu1, I. M. Ogbu2, I. O. Alaekwe1 1Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University Awka, Anambra State, Nigeria 2Department of Chemistry Federal University Ndufu-Alike, Ikwo Ebonyi State, Nigeria Abstract The effects of alkali treatment and fibre loads on the properties of raffia palm fibre polyester composite were studied. Some clean raffia palm fibres were treated with 10% NaOH, and ground. The ground treated and untreated fibres were incorporated into the ortho unsaturated polyester resin. The treated and the untreated fibre composites samples were subjected to tensile tests according to ASTM D638 using instron model 3369. The microhardness test was done by forcing a diamond cone indenter into the surface of the hard specimen, to create an indentation. The significant findings of the results showed that alkali treatment improved the microhardness and extension at break at all fibre loads, better than the untreated fibre composites, with the highest values at 20% (14.40 and 3.47mm for microhardness and extension at break respectively). Tensile strength, tensile strain and modulus of elasticity also improved for alkali treated fibre composites, except in 5% and 20% for tensile strength, 15% for tensile strain, and 15% and 20% for modulus of elasticity, compared to the corresponding fibre loads of untreated fibre composites. Keywords Raffia palm fibre, Composite, Ortho unsaturated polyester, Alkali treatment The main drawbacks of such composites are their water 1.
    [Show full text]
  • Natural Fibers and Fiber-Based Materials in Biorefineries
    Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom.
    [Show full text]
  • Jute and Kenaf Chapter 7
    7 Jute and Kenaf Roger M. Rowell and Harry P. Stout CONTENTS 7.1 Introduction......................................................................................................................406 7.2 Formation of Fiber .......................................................................................................407 7.3 Separation of Blast Fiber from Core ............................................................................408 7.4 Fiber Structure................................................................................................................ 409 7.5 Chemical Composition..................................................................................................................411 7.6 Acetyl Content ................................................................................................................412 7.7 Changes in Chemical and Fiber Properties during the Growing Season ................. 414 7.8 Fine Structure ...............................................................................................................419 7.9 Physical Properties ..........................................................................................................420 7.10 Grading and Classification............................................................................................421 7.11 Fiber and Yarn Quality..................................................................................................................... 423 7.12 Chemical Modification for Property Improvement.......................................................424
    [Show full text]
  • Extensible Byssus of Pinctada Fucata
    www.nature.com/scientificreports OPEN Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein Received: 18 June 2015 1,2 1 1 1 1 1 Accepted: 15 September 2015 Chuang Liu , Shiguo Li , Jingliang Huang , Yangjia Liu , Ganchu Jia , Liping Xie & 1 Published: 08 October 2015 Rongqing Zhang The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater. In recent years, marine animals have attracted considerable attention in various areas of bioinspired engineering1–4.
    [Show full text]
  • Thermal Behaviour of Flax Kenaf Hybrid Natural Fiber Composite
    ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology Vol. 2, Issue 10 , October 2015 Thermal Behaviour of Flax Kenaf Hybrid Natural Fiber Composite V.S. Srinivasan, S. Rajendra Boopathy, B. Vijaya Ramnath Department of Mechanical Engineering, CEGC, Anna University, Chennai-25. Department of Mechanical Engineering, CEGC, Anna University, Chennai-25. Department of Mechanical Engineering, Sri Sairam Engineering College, Chennai-44. ABSTRACT: In this work, natural fibers of flax and kenaf are used. Hybrid materials are given importance as they play very important role in all applications and characterizations. This paper deals with one of such hybrid composite made of natural fibers namely, kenaf and flax fibers. The hybrid built-up is such that one layer of kenaf is sandwiched between two layers of flax fibres by hand layup method with a volume fraction of 40% using Epoxy resin and HY951 hardener. Glass fiber reinforcement polymer (GFRP) is used for lamination on both sides. Thermal properties are investigated for single fiber composites and kenaf - flax with GFRP hybrid composites. The hybrid composites have better thermal stability than single fibre composites. KEYWORDS: Flax, Kenaf, GFRP, Thermal behavior 1. INTRODUCTION The usage of natural fiber- reinforced composite materials is rapidly growing both in industries and in various research activities. The advantages of fibers are cheap, recyclable and biodegradable. Plants such as flax, hemp, cotton sisal, kenaf, banana etc., are the most used reinforcements of composites. They are used widely for manufacturing composites because of their easy availability, renewability, low density, and low price. The natural fiber containing composites are more environmental friendly and are used in transportation (automobiles, railway coaches, aerospace etc.,), military applications, building and construction industries in paneling and partition boards, packaging, consumer products etc.
    [Show full text]