Irrational Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Irrational Numbers AMS / MAA THE CARUS MATHEMATICAL MONOGRAPHS VOL 11 Irrational Numbers Ivan Niven 10.1090/car/011 CARUS MATHEMATICAL MONOGRAPHS 11 Irrational Numbers Ivan Niven Published and Distributed by The Mathematical Association of America Sixth Printing 2006 Copyright ©1956, 1985 by The Mathematical Association of America Paperbound edition issued March 2005 Library of Congress Number: 56009936 Paperbound ISBN 978-0-88385-038-1 eISBN 978-1-61444-011-6 Hardcover (out of print) ISBN 978-0-88385-011-4 Printed in the United States of America THE CARUS MATHEMATICAL MONOGRAPHS Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Editorial Committee Tibor Rado, Chairman Samuel Eilenberg P. R. Halmos C. G. Latimer Ν. H. McCoy I. S. Sokolnikoff The following Monographs have been published: 1. Calculus of Variations, by G. A. Bliss (out of print) 2. Analytic Functions of a Complex Variable, by D. R. Curtiss (out of print) 3. Mathematical Statistics, by H. L. Rietz (out of print) 4. Projective Geometry, by J. W. Young (out of print) 5. A History of Mathematics in America before 1900, by D. E. Smith and Jekuthiel Ginsburg (out of print) 6. Fourier Series and Orthogonal Polynomials, by Dunham Jackson (out of print) 7. Vectors and Matrices, by C. C. MacDuffee (out of print) 8. Rings and Ideals, by Ν. H. McCoy (out of print) 9. The Theory of Algebraic Numbers, second edition, by Harry Pollard and Harold G Diamond 10. The Arithmetic Theory of Quadratic Forms, by B. W. Jones (out of print) 11. Irrational Numbers, by Ivan Niven 12. Statistical Independence in Probability, Analysis and Number Theory, by Mark Kac 13. A Primer of Real Functions, fourth edition, by Ralph P. Boas, Jr. Revised and updated by Harold P. Boas 14. Combinatorial Mathematics, by Herbert J. Ryser 15. Noncommutative Rings, by I. N. Herstein 16. Dedekind Sums, by Hans Rademacher and Emil Grosswald 17. The Schwarz Function and its Applications, by Philip J. Davis 18. Celestial Mechanics, by Harry Pollard 19. Field Theory and its Classical Problems, by Charles Robert Hadlock 20. The Generalized Riemann Integral, by Robert M. McLeod 21. From Error-Correcting Codes through Sphere Packings to Simple Groups, by Thomas M. Thompson 22. Random Walks and Electric Networks, by Peter G. Doyle and J. Laurie Snell 23. Complex Analysis: The Geometric Viewpoint, second edition, by Steven G Krantz 24. Knot Theory, by Charles Livingston 25. Algebra and Tiling: Homomorphisms in the Service of Geometry, by Sherman Stein and Sandor Szabo 26. The Sensual (Quadratic) Form, by John H. Conway assisted by Francis Y. C. Fung 27. A Panorama of Harmonic Analysis, by Steven G Krantz 28. Inequalities from Complex Analysis, by John P. D'Angelo 29. Ergodic Theory of Numbers, by Karma Dajani and Cor Kraaikamp 30. A Tour through Mathematical Logic, by Robert S. Wolf PREFACE This monograph is intended as an exposition of some central results on irrational numbers, and is not aimed at providing an exhaustive treatment of the problems with which it deals. The term "irrational numbers," a usage inherited from ancient Greece which is not too felicitous in view of the everyday meaning of the word "irrational," is employed in the title in a generic sense to include such related categories as transcendental and normal num- bers. The entire subject of irrational numbers cannot of course be encompassed in a single volume. In the selec- tion of material the main emphasis has been on those as- pects of irrational numbers commonly associated with number theory and Diophantine approximations. The top- ological facets of the subject are not included, although the introductory part of Chapter I has a sketch of some of the simplest set-theoretic properties of the irrationals as a part of the continuum. The axiomatic basis for irra- tional numbers, proceeding say from the Peano postulates for the natural numbers to the construction of the real numbers, is purposely omitted, because in the first place the aim is not in the direction of the foundations of math- ematics, and in the second place there are excellent treat- ments of this topic readily available. vii viii PREFACE The customary organization of a book with related sub- jects grouped together has been modified in part by con- sideration of the degree of difficulty of the topics, proceed- ing from the easiest to the most difficult. For example, al- most all the theorems on irrational numbers in Chapter II are implied by the stronger results of Chapter IX, but, whereas Chapter II requires only calculus and the barest rudiments of number theory for understanding, Chapter IX presupposes some basic results on algebraic numbers and complex functions. The first seven chapters are dis- tinctly easier reading than the last three, with fewer pre- requisite results needed and less mathematical maturity required of the reader. The chapters are for the most part independent of one another and so can be read separately; the major exception to this statement is the use in Chapter VI of some results from Chapter V. The only knowledge required of the reader beyond quite elementary mathematics is some algebraic number theory in Chapters III, IX and X, and some function theory in Chapters VI, VIII, IX and X. Most of the results needed are well-known theorems, central to the mainstream of mathematics, and complete references are given to stand- ard works. In those few instances where the prerequisite material is at all special, it has been included in the text. The books by Hardy and Wright, Koksma, Perron, and Siegel listed on page 157 have been very helpful, and I have made free use of these excellent sources. Further source material is listed in the notes at the ends of the chapters. These references, along with the remarks in the Notes, may be taken or left alone at the reader's choice. Some further results beyond the scope of this book are also listed in the Notes; however, as any expert in the subject will readily see, I have not attempted to be either systematic or complete about this. For the convenience of the reader PREFACE ix there is appended a list of notation and a glossary on pages 151 to 156. * * * Substantial improvements in the book have resulted from discussion of many points with my colleagues at the Uni- versity of Oregon, and from bibliographic suggestions by Professor C. D. Olds. I am also indebted to the Edito- rial Committee of the Carus Monographs for help in remov- ing several errors and obscurities. But especially I wish to acknowledge my indebtedness to Professor H. S. Zucker- man who has been actively interested in this project from the start. Discussions with him during the early stages in- fluenced markedly the final versions of Chapters I and V. In addition he has read the manuscript very thoroughly and critically. However I did not invariably follow the suggestions of these friendly critics; so the responsibility for the shortcomings of the monograph is entirely mine. IVAN NIVEN University of Oregon July 1956 CONTENTS CHAPTER PAGE I. RATIONALS AND IRRATIONALS 1. The preponderance of irrationals 1 2. Countability 4 3. Dense sets 5 4. Decimal expansions 6 II. SIMPLE IRRATIONALITIES 1. Introduction 15 2. The trigonometric functions and χ 16 3. The hyperbolic, exponential, and logarithmic functions. 22 III. CERTAIN ALGEBRAIC NUMBERS 1. Introduction 28 2. Further background material 30 3. The factorization of xn - 1 33 4. Certain trigonometric values 36 5. Extension to the tangent 38 IV. THE APPROXIMATION OF IRRATIONALS BY RATIONALS 1. The problem 42 2. A generalization 44 3. Linearly dependent sets 48 V. CONTINUED FRACTIONS 1. The Euclidean algorithm 51 2. Uniqueness 53 3. Infinite continued fractions 54 4. Infinite continued fraction expansions 59 5. The convergents as approximations 61 6. Periodic continued fractions 63 VI. FURTHER DIOPHANTINE APPROXIMATIONS 1. A basic result 68 2. Best possible approximations 70 xi xii CONTENTS CHAPTER PAGE 3. Uniform distributions 71 4. A proof by Fourier analysis 75 VII. ALGEBRAIC AND TRANSCENDENTAL NUMBERS 1. Closure properties of algebraic numbers 83 2. A property of algebraic integers 85 3. Transcendental numbers 87 4. The order of approximation 88 VIII. NORMAL NUMBERS 1. Definition of a normal number 94 2. The measure of the set of normal numbers 98 3. Equivalent definitions 104 4. A normal number exhibited 112 IX. THE GENERALIZED LINDEMANN THEOREM 1. Statement of the theorem 117 2. Preliminaries 118 3. Proof of the theorem 124 4. Applications of the theorem 131 5. Squaring the circle 132 X. THE GELFOND-SCHNEIDER THEOREM 1. Hubert's seventh problem 134 2. Background material 135 3. Two lemmas 137 4. Proof of the Gelfond-Schneider theorem 142 LIST OP NOTATION 151 GLOSSARY 153 REFERENCE BOOKS 157 INDEX OF TOPICS 159 INDEX OF NAMES 163 LIST OF NOTATION The g.o.d., or greatest common divisor, of the in- tegers h and k. The same notation is used for the interval from Λ to A; on the real line, where h and k are any real numbers. The greatest integer less than or equal to x, i.e., the unique integer η satisfying the inequality η £ χ < η + 1. The fractional part of x; thus (χ) = χ — [χ]. Euler's φ function. The finite field having the ρ elements 0, 1, 2, · · ·, ρ — 1, with addition and multiplication defined modulo the prime number p. The set of all polynomials in χ with coefficients in Jp. The nth cyclotomic polynomial, i.e., the monic polynomial whose zeros are the primitive nth roots of unity. The field of rational numbers. The degree of the field Κ over the field F, it being presumed that Κ contains F.
Recommended publications
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • On the Rational Approximations to the Powers of an Algebraic Number: Solution of Two Problems of Mahler and Mend S France
    Acta Math., 193 (2004), 175 191 (~) 2004 by Institut Mittag-Leffier. All rights reserved On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mend s France by PIETRO CORVAJA and UMBERTO ZANNIER Universith di Udine Scuola Normale Superiore Udine, Italy Pisa, Italy 1. Introduction About fifty years ago Mahler [Ma] proved that if ~> 1 is rational but not an integer and if 0<l<l, then the fractional part of (~n is larger than l n except for a finite set of integers n depending on ~ and I. His proof used a p-adic version of Roth's theorem, as in previous work by Mahler and especially by Ridout. At the end of that paper Mahler pointed out that the conclusion does not hold if c~ is a suitable algebraic number, as e.g. 1 (1 + x/~ ) ; of course, a counterexample is provided by any Pisot number, i.e. a real algebraic integer c~>l all of whose conjugates different from cr have absolute value less than 1 (note that rational integers larger than 1 are Pisot numbers according to our definition). Mahler also added that "It would be of some interest to know which algebraic numbers have the same property as [the rationals in the theorem]". Now, it seems that even replacing Ridout's theorem with the modern versions of Roth's theorem, valid for several valuations and approximations in any given number field, the method of Mahler does not lead to a complete solution to his question. One of the objects of the present paper is to answer Mahler's question completely; our methods will involve a suitable version of the Schmidt subspace theorem, which may be considered as a multi-dimensional extension of the results mentioned by Roth, Mahler and Ridout.
    [Show full text]
  • Number Theory and Graph Theory Chapter 3 Arithmetic Functions And
    1 Number Theory and Graph Theory Chapter 3 Arithmetic functions and roots of unity By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: [email protected] 2 Module-4: nth roots of unity Objectives • Properties of nth roots of unity and primitive nth roots of unity. • Properties of Cyclotomic polynomials. Definition 1. Let n 2 N. Then, a complex number z is called 1. an nth root of unity if it satisfies the equation xn = 1, i.e., zn = 1. 2. a primitive nth root of unity if n is the smallest positive integer for which zn = 1. That is, zn = 1 but zk 6= 1 for any k;1 ≤ k ≤ n − 1. 2pi zn = exp( n ) is a primitive n-th root of unity. k • Note that zn , for 0 ≤ k ≤ n − 1, are the n distinct n-th roots of unity. • The nth roots of unity are located on the unit circle of the complex plane, and in that plane they form the vertices of an n-sided regular polygon with one vertex at (1;0) and centered at the origin. The following points are collected from the article Cyclotomy and cyclotomic polynomials by B.Sury, Resonance, 1999. 1. Cyclotomy - literally circle-cutting - was a puzzle begun more than 2000 years ago by the Greek geometers. In their pastime, they used two implements - a ruler to draw straight lines and a compass to draw circles. 2. The problem of cyclotomy was to divide the circumference of a circle into n equal parts using only these two implements.
    [Show full text]
  • Monic Polynomials in $ Z [X] $ with Roots in the Unit Disc
    MONIC POLYNOMIALS IN Z[x] WITH ROOTS IN THE UNIT DISC Pantelis A. Damianou A Theorem of Kronecker This note is motivated by an old result of Kronecker on monic polynomials with integer coefficients having all their roots in the unit disc. We call such polynomials Kronecker polynomials for short. Let k(n) denote the number of Kronecker polynomials of degree n. We describe a canonical form for such polynomials and use it to determine the sequence k(n), for small values of n. The first step is to show that the number of Kronecker polynomials of degree n is finite. This fact is included in the following theorem due to Kronecker [6]. See also [5] for a more accessible proof. The theorem actually gives more: the non-zero roots of such polynomials are on the boundary of the unit disc. We use this fact later on to show that these polynomials are essentially products of cyclotomic polynomials. Theorem 1 Let λ =06 be a root of a monic polynomial f(z) with integer coefficients. If all the roots of f(z) are in the unit disc {z ∈ C ||z| ≤ 1}, then |λ| =1. Proof Let n = degf. The set of all monic polynomials of degree n with integer coefficients having all their roots in the unit disc is finite. To see this, we write n n n 1 n 2 z + an 1z − + an 2z − + ··· + a0 = (z − zj) , − − j Y=1 where aj ∈ Z and zj are the roots of the polynomial. Using the fact that |zj| ≤ 1 we have: n |an 1| = |z1 + z2 + ··· + zn| ≤ n = − 1 n |an 2| = | zjzk| ≤ − j,k 2! .
    [Show full text]
  • Finite Fields: Further Properties
    Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial xn − 1. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields. Definition 8.1 Let n ∈ N. The splitting field of xn − 1 over a field K is called the nth cyclotomic field over K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of unity over K and the set of all these roots is denoted by E(n). The following result, concerning the properties of E(n), holds for an arbitrary (not just a finite!) field K. Theorem 8.2 Let n ∈ N and K a field of characteristic p (where p may take the value 0 in this theorem). Then (i) If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication in K(n). (ii) If p | n, write n = mpe with positive integers m and e and p ∤ m. Then K(n) = K(m), E(n) = E(m) and the roots of xn − 1 are the m elements of E(m), each occurring with multiplicity pe. Proof. (i) The n = 1 case is trivial. For n ≥ 2, observe that xn − 1 and its derivative nxn−1 have no common roots; thus xn −1 cannot have multiple roots and hence E(n) has n elements.
    [Show full text]
  • Approximation to Real Numbers by Algebraic Numbers of Bounded Degree
    Approximation to real numbers by algebraic numbers of bounded degree (Review of existing results) Vladislav Frank University Bordeaux 1 ALGANT Master program May,2007 Contents 1 Approximation by rational numbers. 2 2 Wirsing conjecture and Wirsing theorem 4 3 Mahler and Koksma functions and original Wirsing idea 6 4 Davenport-Schmidt method for the case d = 2 8 5 Linear forms and the subspace theorem 10 6 Hopeless approach and Schmidt counterexample 12 7 Modern approach to Wirsing conjecture 12 8 Integral approximation 18 9 Extremal numbers due to Damien Roy 22 10 Exactness of Schmidt result 27 1 1 Approximation by rational numbers. It seems, that the problem of approximation of given number by numbers of given class was firstly stated by Dirichlet. So, we may call his theorem as ”the beginning of diophantine approximation”. Theorem 1.1. (Dirichlet, 1842) For every irrational number ζ there are in- p finetely many rational numbers q , such that p 1 0 < ζ − < . q q2 Proof. Take a natural number N and consider numbers {qζ} for all q, 1 ≤ q ≤ N. They all are in the interval (0, 1), hence, there are two of them with distance 1 not exceeding q . Denote the corresponding q’s as q1 and q2. So, we know, that 1 there are integers p1, p2 ≤ N such that |(q2ζ − p2) − (q1ζ − p1)| < N . Hence, 1 for q = q2 − q1 and p = p2 − p1 we have |qζ − p| < . Division by q gives N ζ − p < 1 ≤ 1 . So, for every N we have an approximation with precision q qN q2 1 1 qN < N .
    [Show full text]
  • Mop 2018: Algebraic Conjugates and Number Theory (06/15, Bk)
    MOP 2018: ALGEBRAIC CONJUGATES AND NUMBER THEORY (06/15, BK) VICTOR WANG 1. Arithmetic properties of polynomials Problem 1.1. If P; Q 2 Z[x] share no (complex) roots, show that there exists a finite set of primes S such that p - gcd(P (n);Q(n)) holds for all primes p2 = S and integers n 2 Z. Problem 1.2. If P; Q 2 C[t; x] share no common factors, show that there exists a finite set S ⊂ C such that (P (t; z);Q(t; z)) 6= (0; 0) holds for all complex numbers t2 = S and z 2 C. Problem 1.3 (USA TST 2010/1). Let P 2 Z[x] be such that P (0) = 0 and gcd(P (0);P (1);P (2);::: ) = 1: Show there are infinitely many n such that gcd(P (n) − P (0);P (n + 1) − P (1);P (n + 2) − P (2);::: ) = n: Problem 1.4 (Calvin Deng). Is R[x]=(x2 + 1)2 isomorphic to C[y]=y2 as an R-algebra? Problem 1.5 (ELMO 2013, Andre Arslan, one-dimensional version). For what polynomials P 2 Z[x] can a positive integer be assigned to every integer so that for every integer n ≥ 1, the sum of the n1 integers assigned to any n consecutive integers is divisible by P (n)? 2. Algebraic conjugates and symmetry 2.1. General theory. Let Q denote the set of algebraic numbers (over Q), i.e. roots of polynomials in Q[x]. Proposition-Definition 2.1. If α 2 Q, then there is a unique monic polynomial M 2 Q[x] of lowest degree with M(α) = 0, called the minimal polynomial of α over Q.
    [Show full text]
  • Lesson 3: Roots of Unity
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 3: Roots of Unity Student Outcomes . Students determine the complex roots of polynomial equations of the form 푥푛 = 1 and, more generally, equations of the form 푥푛 = 푘 positive integers 푛 and positive real numbers 푘. Students plot the 푛th roots of unity in the complex plane. Lesson Notes This lesson ties together work from Algebra II Module 1, where students studied the nature of the roots of polynomial equations and worked with polynomial identities and their recent work with the polar form of a complex number to find the 푛th roots of a complex number in Precalculus Module 1 Lessons 18 and 19. The goal here is to connect work within the algebra strand of solving polynomial equations to the geometry and arithmetic of complex numbers in the complex plane. Students determine solutions to polynomial equations using various methods and interpreting the results in the real and complex plane. Students need to extend factoring to the complex numbers (N-CN.C.8) and more fully understand the conclusion of the fundamental theorem of algebra (N-CN.C.9) by seeing that a polynomial of degree 푛 has 푛 complex roots when they consider the roots of unity graphed in the complex plane. This lesson helps students cement the claim of the fundamental theorem of algebra that the equation 푥푛 = 1 should have 푛 solutions as students find all 푛 solutions of the equation, not just the obvious solution 푥 = 1. Students plot the solutions in the plane and discover their symmetry.
    [Show full text]
  • Algebraic Numbers, Algebraic Integers
    Algebraic Numbers, Algebraic Integers October 7, 2012 1 Reading Assignment: 1. Read [I-R]Chapter 13, section 1. 2. Suggested reading: Davenport IV sections 1,2. 2 Homework set due October 11 1. Let p be a prime number. Show that the polynomial f(X) = Xp−1 + Xp−2 + Xp−3 + ::: + 1 is irreducible over Q. Hint: Use Eisenstein's Criterion that you have proved in the Homework set due today; and find a change of variables, making just the right substitution for X to turn f(X) into a polynomial for which you can apply Eisenstein' criterion. 2. Show that any unit not equal to ±1 in the ring of integers of a real quadratic field is of infinite order in the group of units of that ring. 3. [I-R] Page 201, Exercises 4,5,7,10. 4. Solve Problems 1,2 in these notes. 3 Recall: Algebraic integers; rings of algebraic integers Definition 1 An algebraic integer is a root of a monic polynomial with rational integer coefficients. Proposition 1 Let θ 2 C be an algebraic integer. The minimal1 monic polynomial f(X) 2 Q[X] having θ as a root, has integral coefficients; that is, f(X) 2 Z[X] ⊂ Q[X]. 1i.e., minimal degree 1 Proof: This follows from the fact that a product of primitive polynomials is again primitive. Discuss. Define content. Note that this means that there is no ambiguity in the meaning of, say, quadratic algebraic integer. It means, equivalently, a quadratic number that is an algebraic integer, or number that satisfies a quadratic monic polynomial relation with integral coefficients, or: Corollary 1 A quadratic number is a quadratic integer if and only if its trace and norm are integers.
    [Show full text]
  • Cyclotomic Extensions
    CYCLOTOMIC EXTENSIONS KEITH CONRAD 1. Introduction For a positive integer n, an nth root of unity in a field is a solution to zn = 1, or equivalently is a root of T n − 1. There are at most n different nth roots of unity in a field since T n − 1 has at most n roots in a field. A root of unity is an nth root of unity for some n. The only roots of unity in R are ±1, while in C there are n different nth roots of unity for each n, namely e2πik=n for 0 ≤ k ≤ n − 1 and they form a group of order n. In characteristic p there is no pth root of unity besides 1: if xp = 1 in characteristic p then 0 = xp − 1 = (x − 1)p, so x = 1. That is strange, but it is a key feature of characteristic p, e.g., it makes the pth power map x 7! xp on fields of characteristic p injective. For a field K, an extension of the form K(ζ), where ζ is a root of unity, is called a cyclotomic extension of K. The term cyclotomic means \circle-dividing," which comes from the fact that the nth roots of unity in C divide a circle into n arcs of equal length, as in Figure 1 when n = 7. The important algebraic fact we will explore is that cyclotomic extensions of every field have an abelian Galois group; we will look especially at cyclotomic extensions of Q and finite fields. There are not many general methods known for constructing abelian extensions (that is, Galois extensions with abelian Galois group); cyclotomic extensions are essentially the only construction that works over all fields.
    [Show full text]
  • Totally Ramified Primes and Eisenstein Polynomials
    TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS KEITH CONRAD 1. Introduction A (monic) polynomial in Z[T ], n n−1 f(T ) = T + cn−1T + ··· + c1T + c0; is Eisenstein at a prime p when each coefficient ci is divisible by p and the constant term c0 is not divisible by p2. Such polynomials are irreducible in Q[T ], and this Eisenstein criterion for irreducibility is the way essentially everyone first meets Eisenstein polynomials. Here we will show Eisenstein polynomials at a prime p give us useful information about p-divisibility of coefficients of a power basis and ramification of p in a number field. Let K be a number field, with degree n over Q. A primep number p is said to be totally n 2 ramified in Kpwhen pOK = p . For example, in Z[i] and Z[ p−5] we have (2) = (1 + i) and (2) = (2; 1 + −5)2, so 2 is totally ramified in Q(i) and Q( −5). 2. Eisenstein polynomials and p-divisibility of coefficients Our first use of Eisenstein polynomials will be to extract information about coefficients for algebraic integers in the power basis generated by the root of an Eisenstein polynomial. Lemma 2.1. Let K=Q be a number field with degree n. Assume K = Q(α), where α 2 OK and its minimal polynomial over Q is Eisenstein at p. For a0; a1; : : : ; an−1 2 Z, if n−1 (2.1) a0 + a1α + ··· + an−1α ≡ 0 mod pOK ; then ai ≡ 0 mod pZ for all i. Proof. Assume for some j 2 f0; 1; : : : ; n − 1g that ai ≡ 0 mod pZ for i < j (this is an empty condition for j = 0).
    [Show full text]
  • Math 402 Assignment 1. Due Wednesday, October 3, 2012. 1
    Math 402 Assignment 1. Due Wednesday, October 3, 2012. 1(problem 2.1) Make a multiplication table for the symmetric group S3. Solution. (i). Iσ = σ for all σ ∈ S3. (ii). (12)I = (12); (12)(12) = I; (12)(13) = (132); (12)(23) = (123); (12)(123) = (23); (12)(321) = (13). (iii). (13)I = (13); (13)(12) = (123); (13)(13) = I; (13)(23) = (321); (13)(123) = (12); (13)(321) = (23). (iv). (23)I = (23); (23)(12) = (321); (23)(13) = (123); (23)(23) = I; (23)(123) = (13); (23)(321) = (12). (v). (123)I = (123); (123)(12) = (13); (123)(13) = (23); (123)(23) = (12); (123)(123) = (321); (123)(321) = I. (vi). (321)I = (321); (321)(12) = (23); (321)(13) = (12); (321)(23) = (13); (321)(123) = I; (321)(321) = (123). 2(3.2) Let a and b be positive integers that sum to a prime number p. Show that the greatest common divisor of a and b is 1. Solution. Begin with the equation a + b = p, where 0 <a<p and 0 <b<p. Since the g.c.d. (a, b) divides both a and b, (a, b) divides their sum a + b = p, i.e., (a, b) divides the prime p; hence, (a, b)=1or(a, b) = p. If(a, b) = p, then p =(a, b) divides a, which is not possible since 0 <a<p. 3(3.3) (a). Define the greatest common divisor of a set {a1, a2, ..., an} of integers, prove that it exists, and that it is an integer combination of a1, ..., an. Assume that the set contains a nonzero element.
    [Show full text]