Algebraic Numbers, Algebraic Integers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Class Number One Problem for Imaginary Quadratic Fields
MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM JEREMY BOOHER Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th century conjectured he had found all of them. It turns out he was correct, but it took until the mid 20th century to prove this. Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number one. Then K is one of p p p p p p p p Q(i); Q( −2); Q( −3); Q( −7); Q( −11); Q( −19); Q( −43); Q( −67); Q( −163): There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular functions and complex multiplication. It was dismissed since there were gaps in Heegner's paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct proof [16], and then noticed that Heegner's proof was essentially correct and in fact equiv- alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in logarithms [1]. Later, Serre [14] gave a new approach based on modular curve, reducing the class number + one problem to finding special points on the modular curve Xns(n). For certain values of n, it is feasible to find all of these points. He remarks that when \N = 24 An elliptic curve is obtained. This is the level considered in effect by Heegner." Serre says nothing more, and later writers only repeat this comment. This essay will present Heegner's argument, as modernized in Cox [7], then explain Serre's strategy. -
Introduction to Class Field Theory and Primes of the Form X + Ny
Introduction to Class Field Theory and Primes of the Form x2 + ny2 Che Li October 3, 2018 Abstract This paper introduces the basic theorems of class field theory, based on an exposition of some fundamental ideas in algebraic number theory (prime decomposition of ideals, ramification theory, Hilbert class field, and generalized ideal class group), to answer the question of which primes can be expressed in the form x2 + ny2 for integers x and y, for a given n. Contents 1 Number Fields1 1.1 Prime Decomposition of Ideals..........................1 1.2 Basic Ramification Theory.............................3 2 Quadratic Fields6 3 Class Field Theory7 3.1 Hilbert Class Field.................................7 3.2 p = x2 + ny2 for infinitely n’s (1)........................8 3.3 Example: p = x2 + 5y2 .............................. 11 3.4 Orders in Imaginary Quadratic Fields...................... 13 3.5 Theorems of Class Field Theory.......................... 16 3.6 p = x2 + ny2 for infinitely many n’s (2)..................... 18 3.7 Example: p = x2 + 27y2 .............................. 20 1 Number Fields 1.1 Prime Decomposition of Ideals We will review some basic facts from algebraic number theory, including Dedekind Domain, unique factorization of ideals, and ramification theory. To begin, we define an algebraic number field (or, simply, a number field) to be a finite field extension K of Q. The set of algebraic integers in K form a ring OK , which we call the ring of integers, i.e., OK is the set of all α 2 K which are roots of a monic integer polynomial. In general, OK is not a UFD but a Dedekind domain. -
Units and Primes in Quadratic Fields
Units and Primes 1 / 20 Overview Evolution of Primality Norms, Units, and Primes Factorization as Products of Primes Units in a Quadratic Field 2 / 20 Rational Integer Primes Definition A rational integer m is prime if it is not 0 or ±1, and possesses no factors but ±1 and ±m. 3 / 20 Division Property of Rational Primes Theorem 1.3 Let p; a; b be rational integers. If p is prime and and p j ab, then p j a or p j b. 4 / 20 Gaussian Integer Primes Definition Let π; α; β be Gaussian integers. We say that prime if it is not 0, not a unit, and if in every factorization π = αβ, one of α or β is a unit. Note A Gaussian integer is a unit if there exists some Gaussian integer η such that η = 1. 5 / 20 Division Property of Gaussian Integer Primes Theorem 1.7 Let π; α; β be Gaussian integers. If π is prime and π j αβ, then π j α or π j β. 6 / 20 Algebraic Integers Definition An algebraic number is an algebraic integer if its minimal polynomial over Q has only rational integers as coefficients. Question How does the notion of primality extend to the algebraic integers? 7 / 20 Algebraic Integer Primes Let A denote the ring of all algebraic integers, let K = Q(θ) be an algebraic extension, and let R = A \ K. Given α; β 2 R, write α j β when there exists some γ 2 R with αγ = β. Definition Say that 2 R is a unit in K when there exists some η 2 R with η = 1. -
A Concrete Example of Prime Behavior in Quadratic Fields
A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS CASEY BRUCK 1. Abstract The goal of this paper is to provide a concise way for undergraduate math- ematics students to learn about how prime numbers behave in quadratic fields. This paper will provide students with some basic number theory background required to understand the material being presented. We start with the topic of quadratic fields, number fields of degree two. This section includes some basic properties of these fields and definitions which we will be using later on in the paper. The next section introduces the reader to prime numbers and how they are different from what is taught in earlier math courses, specifically the difference between an irreducible number and a prime number. We then move onto the majority of the discussion on prime numbers in quadratic fields and how they behave, specifically when a prime will ramify, split, or be inert. The final section of this paper will detail an explicit example of a quadratic field and what happens to prime numbers p within it. The specific field we choose is Q( −5) and we will be looking at what forms primes will have to be of for each of the three possible outcomes within the field. 2. Quadratic Fields One of the most important concepts of algebraic number theory comes from the factorization of primes in number fields. We want to construct Date: March 17, 2017. 1 2 CASEY BRUCK a way to observe the behavior of elements in a field extension, and while number fields in general may be a very complicated subject beyond the scope of this paper, we can fully analyze quadratic number fields. -
Computational Techniques in Quadratic Fields
Computational Techniques in Quadratic Fields by Michael John Jacobson, Jr. A thesis presented to the University of Manitoba in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Winnipeg, Manitoba, Canada, 1995 c Michael John Jacobson, Jr. 1995 ii I hereby declare that I am the sole author of this thesis. I authorize the University of Manitoba to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Manitoba to reproduce this thesis by photocopy- ing or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. iii The University of Manitoba requires the signatures of all persons using or photocopy- ing this thesis. Please sign below, and give address and date. iv Abstract Since Kummer's work on Fermat's Last Theorem, algebraic number theory has been a subject of interest for many mathematicians. In particular, a great amount of effort has been expended on the simplest algebraic extensions of the rationals, quadratic fields. These are intimately linked to binary quadratic forms and have proven to be a good test- ing ground for algebraic number theorists because, although computing with ideals and field elements is relatively easy, there are still many unsolved and difficult problems re- maining. For example, it is not known whether there exist infinitely many real quadratic fields with class number one, and the best unconditional algorithm known for computing the class number has complexity O D1=2+ : In fact, the apparent difficulty of com- puting class numbers has given rise to cryptographic algorithms based on arithmetic in quadratic fields. -
Algebraic Number Theory
Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai. -
On the Rational Approximations to the Powers of an Algebraic Number: Solution of Two Problems of Mahler and Mend S France
Acta Math., 193 (2004), 175 191 (~) 2004 by Institut Mittag-Leffier. All rights reserved On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mend s France by PIETRO CORVAJA and UMBERTO ZANNIER Universith di Udine Scuola Normale Superiore Udine, Italy Pisa, Italy 1. Introduction About fifty years ago Mahler [Ma] proved that if ~> 1 is rational but not an integer and if 0<l<l, then the fractional part of (~n is larger than l n except for a finite set of integers n depending on ~ and I. His proof used a p-adic version of Roth's theorem, as in previous work by Mahler and especially by Ridout. At the end of that paper Mahler pointed out that the conclusion does not hold if c~ is a suitable algebraic number, as e.g. 1 (1 + x/~ ) ; of course, a counterexample is provided by any Pisot number, i.e. a real algebraic integer c~>l all of whose conjugates different from cr have absolute value less than 1 (note that rational integers larger than 1 are Pisot numbers according to our definition). Mahler also added that "It would be of some interest to know which algebraic numbers have the same property as [the rationals in the theorem]". Now, it seems that even replacing Ridout's theorem with the modern versions of Roth's theorem, valid for several valuations and approximations in any given number field, the method of Mahler does not lead to a complete solution to his question. One of the objects of the present paper is to answer Mahler's question completely; our methods will involve a suitable version of the Schmidt subspace theorem, which may be considered as a multi-dimensional extension of the results mentioned by Roth, Mahler and Ridout. -
The Group of Classes of Congruent Quadratic Integers with Respect to Any Composite Ideal Modulus Whatever
THE GROUPOF CLASSESOF CONGRUENTQUADRATIC INTEGERS WITH RESPECTTO A COMPOSITEIDEAL MODULUS* BY ARTHUR RANUM Introduction. If in the ordinary theory of rational numbers we consider a composite integer m as modulus, and if from among the classes of congruent integers with respect to that modulus we select those which are prime to the modulus, they form a well-known multiplicative group, which has been called by Weber (Algebra, vol. 2, 2d edition, p. 60), the most important example of a finite abelian group. In the more general theory of numbers in an algebraic field we may in a corre- sponding manner take as modulus a composite ideal, which includes as a special case a composite principal ideal, that is, an integer in the field, and if we regard all those integers of the field which are congruent to one another with respect to the modulus as forming a class, and if we select those classes whose integers are prime to the modulus, they also will form a finite abelian group f under multiplication. The investigation of the nature of this group is the object of the present paper. I shall confine my attention, however, to a quadratic number-field, and shall determine the structure of the group of classes of congruent quadratic integers with respect to any composite ideal modulus whatever. Several distinct cases arise depending on the nature of the prime ideal factors of the modulus ; for every case I shall find a complete system of independent generators of the group. Exactly as in the simpler theory of rational numbers it will appear that the solution of the problem depends essentially on the case in which the modulus is a prime-power ideal, that is, a power of a prime ideal. -
Math 154. Class Groups for Imaginary Quadratic Fields
Math 154. Class groups for imaginary quadratic fields Homework 6 introduces the notion of class group of a Dedekind domain; for a number field K we speak of the \class group" of K when we really mean that of OK . An important theorem later in the course for rings of integers of number fields is that their class group is finite; the size is then called the class number of the number field. In general it is a non-trivial problem to determine the class number of a number field, let alone the structure of its class group. However, in the special case of imaginary quadratic fields there is a very explicit algorithm that determines the class group. The main point is that if K is an imaginary quadratic field with discriminant D < 0 and we choose an orientation of the Z-module OK (or more concretely, we choose a square root of D in OK ) then this choice gives rise to a natural bijection between the class group of K and 2 2 the set SD of SL2(Z)-equivalence classes of positive-definite binary quadratic forms q(x; y) = ax + bxy + cy over Z with discriminant 4ac − b2 equal to −D. Gauss developed \reduction theory" for binary (2-variable) and ternary (3-variable) quadratic forms over Z, and via this theory he proved that the set of such forms q with 1 ≤ a ≤ c and jbj ≤ a (and b ≥ 0 if either a = c or jbj = a) is a set of representatives for the equivalence classes in SD. -
Approximation to Real Numbers by Algebraic Numbers of Bounded Degree
Approximation to real numbers by algebraic numbers of bounded degree (Review of existing results) Vladislav Frank University Bordeaux 1 ALGANT Master program May,2007 Contents 1 Approximation by rational numbers. 2 2 Wirsing conjecture and Wirsing theorem 4 3 Mahler and Koksma functions and original Wirsing idea 6 4 Davenport-Schmidt method for the case d = 2 8 5 Linear forms and the subspace theorem 10 6 Hopeless approach and Schmidt counterexample 12 7 Modern approach to Wirsing conjecture 12 8 Integral approximation 18 9 Extremal numbers due to Damien Roy 22 10 Exactness of Schmidt result 27 1 1 Approximation by rational numbers. It seems, that the problem of approximation of given number by numbers of given class was firstly stated by Dirichlet. So, we may call his theorem as ”the beginning of diophantine approximation”. Theorem 1.1. (Dirichlet, 1842) For every irrational number ζ there are in- p finetely many rational numbers q , such that p 1 0 < ζ − < . q q2 Proof. Take a natural number N and consider numbers {qζ} for all q, 1 ≤ q ≤ N. They all are in the interval (0, 1), hence, there are two of them with distance 1 not exceeding q . Denote the corresponding q’s as q1 and q2. So, we know, that 1 there are integers p1, p2 ≤ N such that |(q2ζ − p2) − (q1ζ − p1)| < N . Hence, 1 for q = q2 − q1 and p = p2 − p1 we have |qζ − p| < . Division by q gives N ζ − p < 1 ≤ 1 . So, for every N we have an approximation with precision q qN q2 1 1 qN < N . -
Mop 2018: Algebraic Conjugates and Number Theory (06/15, Bk)
MOP 2018: ALGEBRAIC CONJUGATES AND NUMBER THEORY (06/15, BK) VICTOR WANG 1. Arithmetic properties of polynomials Problem 1.1. If P; Q 2 Z[x] share no (complex) roots, show that there exists a finite set of primes S such that p - gcd(P (n);Q(n)) holds for all primes p2 = S and integers n 2 Z. Problem 1.2. If P; Q 2 C[t; x] share no common factors, show that there exists a finite set S ⊂ C such that (P (t; z);Q(t; z)) 6= (0; 0) holds for all complex numbers t2 = S and z 2 C. Problem 1.3 (USA TST 2010/1). Let P 2 Z[x] be such that P (0) = 0 and gcd(P (0);P (1);P (2);::: ) = 1: Show there are infinitely many n such that gcd(P (n) − P (0);P (n + 1) − P (1);P (n + 2) − P (2);::: ) = n: Problem 1.4 (Calvin Deng). Is R[x]=(x2 + 1)2 isomorphic to C[y]=y2 as an R-algebra? Problem 1.5 (ELMO 2013, Andre Arslan, one-dimensional version). For what polynomials P 2 Z[x] can a positive integer be assigned to every integer so that for every integer n ≥ 1, the sum of the n1 integers assigned to any n consecutive integers is divisible by P (n)? 2. Algebraic conjugates and symmetry 2.1. General theory. Let Q denote the set of algebraic numbers (over Q), i.e. roots of polynomials in Q[x]. Proposition-Definition 2.1. If α 2 Q, then there is a unique monic polynomial M 2 Q[x] of lowest degree with M(α) = 0, called the minimal polynomial of α over Q. -
Small-Span Hermitian Matrices Over Quadratic Integer Rings
MATHEMATICS OF COMPUTATION Volume 84, Number 291, January 2015, Pages 409–424 S 0025-5718(2014)02836-6 Article electronically published on May 19, 2014 SMALL-SPAN HERMITIAN MATRICES OVER QUADRATIC INTEGER RINGS GARY GREAVES Abstract. A totally-real polynomial in Z[x] with zeros α1 α2 ··· αd has span αd−α1. Building on the classification of all characteristic polynomials of integer symmetric matrices having small span (span less than 4), we obtain a classification of small-span polynomials that are the characteristic polynomial of a Hermitian matrix over some quadratic integer ring. Taking quadratic integer rings as our base, we obtain as characteristic polynomials some low- degree small-span polynomials that are not the characteristic (or minimal) polynomial of any integer symmetric matrix. 1. Introduction and preliminaries 1.1. Introduction. Let f be a totally-real monic polynomial of degree d having integer coefficients with zeros α1 α2 ··· αd.Thespan of f is defined to be αd − α1. In this article, for Hermitian matrices A over quadratic integer rings, we are interested in the characteristic polynomials χA(x):=det(xI − A)andthe minimal polynomials pA(x). We build on the work of McKee [17] who classified all integer symmetric matrices whose characteristic polynomials have span less than 4. Following McKee, we call a totally-real monic integer polynomial small-span if its span is less than 4 and a Hermitian matrix is called small-span if its characteristic polynomial is small-span. A set consisting of an algebraic integer and all of its (Galois) conjugates is called a conjugate set.