<<

1

Dr M.A. Thomson e+ q √α γ S g √α √α Qq 1 e- q2 q

Part II, Lent Term 2004 HANDOUT III

Dr M.A. Thomson Lent 2004 2 QCD

QUANTUM ELECTRODYNAMICS: is the quantum theory of the electromagnetic . ★ mediated by massless

couples to electric ,

Ô

★  À  » « 

Strength of interaction : .

¾



« 

 QUANTUM CHROMO-DYNAMICS: is the quantum

theory of the .

¾ Õ ★ mediated by massless , i.e. ½ couples to “strong” charge ★ Only have non-zero “strong” charge, therefore only quarks feel strong interaction

Basic QCD interaction looks like a stronger

«  « Å version of QED, Ë QED q QCD q √α Q √α S q q q

α 2 π α 2 π

= e /4 ~ 1/137 γ S = gS /4 ~ 1 g «

( subscript em is sometimes used to distinguish the Ñ «

of from Ë ).

Dr M.A. Thomson Lent 2004 3 COLOUR

In QED: ★ Charge of QED is . ★ Electric charge - conserved . In QCD: ★ Charge of QCD is called “COLOUR” ★ COLOUR is a conserved quantum number with 3 VALUES labelled “red”, “green” and

“blue”

 

Quarks carry “COLOUR” Ö

 

Anti-quarks carry “ANTI-COLOUR” Ö

¦ ¼

Ï  , ­ , , DO NOT carry colour, i.e.

“have colour charge zero”  DO NOT participate in STRONG interaction. Note: Colour is just a label for states in a

non-examinable SU(3) representation

  

¼ ¼ ½

¼ ½ ¼

    Ö 

½ ¼ ¼

Dr M.A. Thomson Lent 2004 4 GLUONS

In QCD: ★ Gluons are MASSLESS -1

Consider a red off a green quark. Colour is exchanged but always conserved.

q q g gluon r g q q g r

UNLIKE QED: ★ Gluons carry the charge of the interaction. ★ Gluons come in different colours.

Expect 9 gluons (3 colours ¢ 3 anti-colours)

 Ö   Ö    Ö

Ö , , , , ,

Ö    Ö , , However: Real gluons are orthogonal linear

combinations of the above states. The

½

Ô

´Ö ·   · µ

combination Ö is colourless ¿ and does not take part in the strong interaction.

Dr M.A. Thomson Lent 2004 5

Colour at Õ EXAMPLE: Õ q q rr g

q q g g

Normally do not show colour on Feynman diagrams - colour is conserved.

QED POTENTIAL:

«



V É Ö

QCD POTENTIAL:

At short distances QCD potential looks similar

« 

Ë



V É

¿ Ö

apart from colour factor. ¿

Note: the colour factor (4/3) arises because more than one

Õ gluon can participate in the process Õ . Obtain colour factor from averaging over initial colour states and summing over final/intermediate colour states

Dr M.A. Thomson Lent 2004 6 SELF-

At this point, QCD looks like a stronger version of QED. This is true up to a point. However, in practice QCD behaves very differently to QED. The similarities arise from the fact that both involve the exchange of MASSLESS spin-1 bosons. The big difference is that GLUONS carry colour “charge”. GLUONS CAN INTERACT WITH OTHER GLUONS: g g g g g g g

3 GLUON VERTEX 4 GLUON VERTEX

  EXAMPLE: Gluon-Gluon Scattering 

+ +

e.g.rrrrgg + bb→ +

Dr M.A. Thomson Lent 2004 7 CONFINEMENT

NEVER OBSERVE: single FREE quarks/gluons ★ quarks are always confined within ★ This is a consequence of the strong self-interactions of gluons. Qualitatively, picture the colour field between two quarks. The gluons mediating the act as additional sources of the colour field - they attract each other. The gluon-gluon interaction pulls the lines of colour force into a narrow tube or STRING. In this model the string has a ‘tension’ and as the quarks separate the string stores potential .

Energy stored per unit length  constant.

Î ´Ö µ » Ö ★ Requires infinite energy to separate two quarks. Quarks always come in combinations with zero net colour charge: CONFINEMENT.

Dr M.A. Thomson Lent 2004 8 How Strong is Strong ?

QCD Potential between quarks has two

components:

« Ë

★ “COULOMB”-LIKE TERM :

¿ Ö

Ö ★ LINEAR TERM : ·

α 1 -4 s V = 3r +kr (GeV) 0 -4α V = s

QCD 3r -1 V α =0.2 -2 s k=1 GeV/fm -3 0 0.2 0.4 0.6 0.8 1 r(fm)

Force between two quarks at separated by 10 m:

«

Ë

Î  · Ö

É 

Ö

 ½ Î 

with  fm

« Î

Ë

 ·   

¾

Ö Ö

½¼

½ ¢ ½¼

Æ   

at large r 

½

½¼

 ½ ¼¼¼¼ Æ

Equivalent to the weight of approximately 65 Widdecombes.

Dr M.A. Thomson Lent 2004 9

JETS

·

Õ ÕÕ Consider the Õ pair produced in : e+ q γ qq e- q

1 -4α V = s+kr As the quarks separate, the 3r (GeV) 0 energy stored in the colour -4α V = s

QCD 3r field (‘string’) starts to in- -1 crease linearly with separa- V

α  =0.2 tion. When ×ØÓÖ  -2 s

k=1 GeV/fm

¾Ñ ÕÕ

Õ new pairs can be created. -3 0 0.2 0.4 0.6 0.8 1 r(fm)

q q

q q

q q q q

as energy decreases... hadrons freeze out

Dr M.A. Thomson Lent 2004

10 Õ As quarks separate, more Õ pairs are produced from the of the colour field. This process is called . Start out with quarks and end up with narrowly collimated JETS of HADRONS

q π+ q (ud) q q etc... q q q q π+ q q 0 - -π +π q π K π+ q π0π0 π0 p

e+ q q γ e- e+ -

e q q

·

 ÕÕ Typical

The hadrons in a quark(anti-quark) follow the direction of the original quark(anti-

quark). Consequently

·

 ÕÕ  is observed as a pair of back-to-back jets of hadrons

Dr M.A. Thomson Lent 2004 11 aside.....

DALI Run=56698 Evt=7455 ALEPH 3 Gev EC 6 Gev HC

Y" 1cm 0 −1cm

−1cm 0 1cm " Filename: DC056698_007455_000830_1723.PS Made on 30-Aug-2000 17:24:02 by konstant with DALI_F1. Z0<5 D0<2 RO TPC (φ −175)*SIN(θ) x xo o o−xo−oxx−− o x o x

o o − − o x − −− o xo−x x xoo− − x x o − o x o x x o − − x o − − x − o xo − o − − oo− o − x o o x − x − x o x ox − x −−o − x

15 GeV θ=180 θ=0

★ You will now recognize the “Higgs” event from

the cover of Handout I as

·

  ÕÕÕÕ something

Dr M.A. Thomson Lent 2004

12 «

Running of Ë ★ «

Ë specifies the strength of the strong

interaction ★ «

BUT just as in QED, Ë isn’t a constant, it “runs” ★ In QED the bare charge is screened by a cloud of virtual electron- pairs. ★ In QCD a similar effect occurs.

In QCD quantum fluctuations to a ‘cloud’ of Õ virtual Õ pairs q

one of many (an infinite set) q q q such diagrams analogous to q those for QED. q q

In QCD the gluon self-interactions ALSO lead to a ‘cloud’ of virtual gluons g one of many (an infinite set) such diagrams. Here there is no g g q analogy in QED, photons don’t have self-interactions since they g q don’t carry the charge of the in- q teraction.

Dr M.A. Thomson Lent 2004 13 Colour Anti-Screening ★ Due to the gluon self-interactions bare colour charge is screened by both virtual quarks and virtual gluons ★ The cloud of virtual gluons carries colour charge and

the effective colour charge INCREASES with distance !

★ «

At low (large distances) Ë becomes large can’t use perturbation theory (not a weak perturbation) α α EM QED S QCD

1/128 M 1/137 Z Mp

High EnergyMZ Low Energy High Energy Low Energy

s 1 s 1 α α

MZ

Mp 0 0 0246-20 -18 -16 2 2

log10(q /GeV ) log10(r/m) ★ «

At High energies (short distances) Ë is small. In this regime treat quarks as free and can use perturbation theory

ASYMPTOTIC FREEDOM

Ô

★ ×  ½¼¼ Î «  ¼ ½¾

At , Ë .

Dr M.A. Thomson Lent 2004 14 Scattering in QCD

EXAMPLE: High energy - scattering

Jet along u √α u beam direction p S

g g 1 q2

p √α Visible jet u S u

in direction of q

¾

½  ´« µ

Ô Ô

Ë

Å  « « µ 

Ë Ë

¾

Õ ª ×Ò ¾

The upper points are the Geiger and Marsden data (1911) for the elastic scatter-

ing of « particles as they traverse thin gold and silver foils. The lower points show the angular distribution of the quark jets observed in

proton-antiproton scattering

¾ ¾

 ¾¼¼¼Î at Õ Both follow the Rutherford

formula for elastic scatter-

 

ing: ×Ò . ¾

Dr M.A. Thomson Lent 2004

15

·

 Ô EXAMPLE: ÔÔ vs scattering

p π+

g g

p p

·

´ÔÔµ  ´ Ôµ Calculate ratio of  total to total ★ QCD does not distinguish between quark flavours, only COLOUR charge of quarks .

At high energy (E  bind- ing energy of quarks within

hadrons) ratio of ÔÔ and

Ô total cross sections de- pends on number of pos- sible quark-quark combina- tions.

Predict

´Ôµ

¾¢¿ ¾

 

´ÔÔ µ ¿¢¿ ¿

Experiment

´Ôµ

¾ Ñ

´ÔÔµ ¿ Ñ

¼ ¿

Dr M.A. Thomson Lent 2004

16

· QCD in Annihilation

Direct evidence for the existence of colour comes

·

from Annihilation.

· · ·

    ÕÕ

★ Compare , :

·

 ´  ÖÓÒ× µ

Ê 

· ·

 ´    µ

e+ µ+ e+ q γ γ √α √α √α √α Qq 1 1 e- q2 µ- e- q2 q

If we neglect the of the final state

quarks/ then the ONLY difference is the

É  ½ É Õ

charge of the final state particles ( ,

¾ ½

= · or )

¿ ¿

Start by calculating the for the

·

´   µ  

process  .( represent a

·

 ÕÕ

-antifermion pair e.g.  or ).

·

    see Handout II for the case where 

Dr M.A. Thomson Lent 2004 17 + f e µ f p2 γ θ √α √α - + Qf e e µ 1 p - 1 q2 e f f

Electron/Positron beams along Þ -axis



Ô  ´  Ô  Ô  Ô µ

Ü Ý Þ

½



Ô  ´  ¼ ¼ µ Ò Ð ØÒ Ñ

½



 ´  ¼ ¼ µ Ô

¾

 



Õ  Ô · Ô

½ ¾

 ´¾  ¼ ¼ ¼µ

¾ ¾

Õ    ×

¾ µ where × is (centre-of- energy .

Fermi’s Golden rule and Born Approximation

´ µ 

¾

 ¾ Å 

ª ª

Matrix element Å :

½

 É  Ù Å  Ú Ú É Ù 

·

¾



Õ

¾

«É É 

 ÛØ « 

¾

Õ 

¾ ¾

 ´ «É É µ ½

¾

 ¾ ´½ · Ó×  µ

 ¾

ª Õ ´¾ µ 

¾ ¾

« É

¾

 µ ´½ · Ó× 

Dr M.A. Thomson Lent 2004

18

¾

· Ó×  µ ★ ´½ comes from spin-1 photon “decaying” to

two spin-half . see lecture on

·

 

Total cross section for



  ª

¾ ¾

¾

« É

¾

´½ · Ó×  µ×Ò  

¼ ¼

¾ ¾

·½

« É

¾

 ´½ · Ý µÝ ´Ý  Ó×  µ

¾×

½

¾ ¾

« É



¿×

¾

· ·

 ´    µ 

¿×

· ·

 ´    µ

·  for  data at centre-of-mass ener- gies 8-36 GeV

Dr M.A. Thomson Lent 2004 19

Back to

·

 ´  ÖÓÒ×µ

Ê 



· ·

 ´   µ

For a single quark flavour of a given colour

¾

Ê  É

Õ

· ·

! Ø× ÙÙ However, we measure not .A

jet from a u-quark looks just like a jet from a d-quark... Need

   

to sum over flavours (u,d,c,s,t,b) and colours (Ö ).



¾

Ê  ¿ É ´¿ÓÐÓÙÖ× µ

where the sum is over all quark flavours kinematically Ô

accessible at centre-of-mass energy, × , of collider.

Energy Ratio R

Ô

 ½ ½

× ¾Ñ  ¿´ · · µ ¾

× 1 GeV =

  

u,d,s

Ô

 ½ ½ ½ 

× ¾Ñ  ¿´ ¿ · · · µ

 4 GeV =

    ¿

u,d,s,c

Ô

½ ¾

× ¾Ñ  ¿´ · ¿ µ

 10 GeV =

 ¿

u,d,s,c,b

Ô



µ × ¾Ñ  ¿´ · #

Ø 350 GeV =  u,d,s,c,b,t

Dr M.A. Thomson Lent 2004

20

·

 ´  ÖÓÒ×µ

Ê 



· ·

 ´   µ

Ô

¼ ¼

Data: × from GeV

Ô

★ Ê ×

 increases in steps with

Ô

½½ !Î

★ × region complicated by resonances:

$

% 

charmonium (c$) and bottomonium (b ). ★ Ê

 Data exclude ‘no colour’ hypothesis. STRONG EVIDENCE for COLOUR

Dr M.A. Thomson Lent 2004 21

Experimental Evidence for Colour

★ Ê

´×××µ

★ The existence of the ª

¿

´×××µ

The ª is a (L=0) spin- consisting ¾

of 3 strange-quarks. The -function

  × × ×

is SYMMETRIC under particle interchange. However quarks are FERMIONS, therefore require an ANTI-SYMMETRIC wave-function, i.e. need

another degree of freedom, namely COLOUR.

  ´× × × µ

ÓÐÓÙÖ

½

 Ö Ö   Ö  Ö   Ö µ   ´Ö   Ô

ÓÐÓÙÖ + + - - -



¼

 ­­

★  decay rate

¼

 ­­ Need colour to explain  decay rate. u γ π0 u

u γ

¼ ¾

´  ­­µ » Æ

ÓÐÓÙÖ

 Æ  ¾  ¦ ¼ ½¾

EXPT ÓÐÓÙÖ

Dr M.A. Thomson Lent 2004 22 Evidence for Gluons

In QED, can radiate photons. In QCD

quarks can radiate gluons.

·

 ÕÕ e+ q √α γ S g √α √α Qq 1

e- q2 q

Ô «

giving an extra factor of Ë in the matrix «

element, i.e. an extra factor of Ë in cross section. In QED we can detect the photons. In QCD we never see free gluons due to confinement. Experimentally detect gluons as an additional jet: 3-Jet Events. g q q ★ Angular distribution of gluon jet depends on gluon spin

Dr M.A. Thomson Lent 2004 23

3-Jet Events and Gluon Spin

Ô

 ¿½ JADE × GeV Direct Evidence for Glu-

ons (1978)

Ô

 ½ OPAL × GeV (1990)

Distribution of the angle, be- tween the highest energy jet (assumed to be one of the quarks) relative to the flight di- rection of the other two (in their

cms frame). depends on the spin of the gluon.

µ GLUON is SPIN-1

Dr M.A. Thomson Lent 2004 24 Gluon Self-Interactions

Direct Evidence for the exis- tence of the the gluon self- interactions from 4-JET events.

g g g g g g g Y 3 GLUON VERTEX 4 GLUON VERTEX

X Z

e+ q e+ q g g g g e- q e- q

e+ q g e+ q q

g q e- q e- q ★ Angular distribution of jets is sensitive to

existence triple gluon vertex:

½

★ ÕÕ

¯ vertex consists of 2 spin- quarks ¾

and a spin-1 gluon. ★  ¯ vertex consists of 3 spin-1 gluons,

µ different angular distribution.

Dr M.A. Thomson Lent 2004 25 Experimentally:

★ Define the two lowest energy jets as the gluons. (gluon jets are more likely to be low energy than quark jets) ★ Measure angle between the plane containing

the ‘quark’ jets and the plane containing the 

‘gluon’ jets, q q

g g χ χ BZ BZ

g g

q q

Gluon self- interactions are required to describe the experimental data. Theory with- out self-interactions (ABELIAN) is in- consistent with observations

Dr M.A. Thomson Lent 2004

26 «

Measuring Ë «

Ë can be measured in many ways. The cleanest is from Ê

 : In practice measure

+ +....

i.e. don’t distinguish 2/3 jets. So measure

·

´ µ

 hadrons

Ê 



· ·

 ´   µ

·

 ´ Õ Õµ

ÒÓØ Ê 



· ·

 ´   µ

When gluon is included :

 



«

Ë

¾

Ê  ¿ É ½ ·



Õ



È

¾

¾

É  ¿

Õ

Õ

¿

« ¿

Ë

´½ · 

Therefore µ

¿

¾ ¾

« ´Õ  ¾# µ  ¼ ¾¼

giving Ë

Dr M.A. Thomson Lent 2004

27 «

Many other ways to measure Ë ....

·

ÕÕ  e.g. 3 jet rate : e+ q √α γ S g √α √α Qq 1

e- q2 q

 ´Õ ´ µ Õ  µ

 3 jet



´ µ  ´ÕÕµ

 2 jet

» «

Ë «

Ë Summary «

Summary of Ë

measurements «

Ë RUNS !

Dr M.A. Thomson Lent 2004 28 -Nucleon Interactions

★ Bound ÕÕÕ states (e.g. and ) are COLOURLESS (COLOUR SINGLETS).

★ They can only interact via COLOURLESS intermediate states - i.e. not by single gluons. (conservation of colour charge)

★ Interact by exchange of

★ One possible diagram shown below : d d u u pp u u

uu π0

u u u u d d pp

★ Nuclear potential is with

¾



Ñ Ö



Î ´&Öµ  

Ö

½

★  ´Ñ µ

Short range force : range

½

 ´¼ ½¼ Î µ

Range Ê

½

 ' Î

½¼

 '"´½ ¢ ½¼ µ Ñ

 ½  #Ñ

Dr M.A. Thomson Lent 2004