Evolutionary Relationships of the Arthropoda I

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Relationships of the Arthropoda I Evolutionary Relationships of the Arthropoda I Insects are a class (Insecta) in the phylum Arthropoda The Arthropoda is the largest phylum of organisms and accounts for over 75% of all species on Earth. Major groups (subphyla) within the Arthropoda are: 1. Trilobitomorpha (extinct) — trilobites 2. Chelicerata — horseshoe crabs, spiders, scorpions, ticks, mites, solifugids 3. Crustacea—brine shrimp, barnacles, fish lice, lobsters, crabs and shrimp 4. Myriapoda — centipedes, millipedes 5. Hexapoda — insects, entognathans Representative Arthropods Trilobitomorpha Hexapoda Chelicerata Crustacea Myriapoda Major Characteristics of the Arthropoda • External and internal body seg- mentation with regional specialization (tagmosis). • Paired articulated (jointed) appendages surrounded by chitinous cuticle. Arthropoda means jointed (arthro) leg (poda). • Cuticle forms a well developed exoskeleton, generally with thick sclerotized plates. • Paired compound eyes usually present (sometimes lost secondarily). • Growth by the process of ecdysis (molting). • Coelom reduced to portions of the reproductive and excretory systems. • Muscles are striated and arranged in isolated, segmental bands. Three major questions regarding the evolutionary relationships of the Arthropoda 1. How are arthropods related to other major phyla of invertebrates, particularly the Annelida (segmented worms) and the Mollusca (snails, bivalves, octopus and squid)? 2. Are arthropods a single evolutionary lineage, or have the characteristics that unite them evolved multiple times? 3. What is the evolutionary relationship of insects to the other major groups (subphyla) in the Arthropoda? To answer these questions we need to review some terms and concepts used in analyzing evolutionary relationships. In particular, we need to define what we mean by an evolutionary relationship, what kind of data we use to determine evolutionary relationships, and how we represent these evolutionary relationships. Three Kinds of Phylogenetic Relationships • Monophyletic. A group of species that includes an ancestral species and all of its descendants. These species comprise a single evolutionary lineage and share a unique history of descent. Monophyletic groups are called “natural” because they represent the “true” evolutionary history of the groups. • Paraphyletic. A group in which member species are all descendent from a common ancestor, but which does not contain all the species descended from that ancestor. Class Reptilia (turtles, snakes, lizards and crocodilians) in the vertebrates is a good example of a paraphyletic group because it excludes birds, which is the sister group of the crocodilians. • Polyphyletic. A group in which member species share more than one immediate ancestor. Polyphyletic groups are “artificial” because they do not shared a common immediate ancestor. They occur when convergent or non-homologous characters are used to define or diagnose a group. Endothermic vertebrates is an example of a polyphyletic group because birds and mammals do not share an immediate common ancestor. Characters Used in Phylogenetic Analysis • Homologous characters are features that have the same evolutionary origin as determined by positional, developmental and genetic studies. Only homologous characters are useful in recovering the evolutionary history of a group of taxa. • Convergent (analogous) characters are features that perform similar functions, but have different evolutionary origins. Convergent characters cannot be used to reconstruct evolutionary history, but they are very useful in comparative studies of performance (e.g., insect versus vertebrate flight). Homologizing structures in the heads of stalk- eyed flies in two different families Fossorial forelegs in five different genera Two Kinds of Similarities in Homologous Characters • Apomorphies are characters that arose in a most recent common ancestor, or a recently evolved (“advanced”) feature that appears only in a group of closely related species. Apomorphies that are unique to a particular taxon are called autapomorphies. Autapomorphies are useful in identifying a taxon and distinguishing it from other groups (a diagnostic trait). Apomorphies that are shared among taxa are called synapomorphies. Other Pterygota Other Apterygota Other Trichoptera Trichoptera Lepidoptera Thysanura • Plesiomorphies are characters that arose in a distant common NeopteraOther ancestor, or “primitive” features that are shared by distantly related species. Plesiomorphic characters that are shared between two or more taxa are called symplesiomorphies. • Determining which characters are apomorphic and which are pleisomorphic is accomplished by a character polarity analysis. Examination of character distribution in groups known to be basal relative to the one under study is one popular way to polarize characters (outgroup comparison). Traits shared between the outgroup and the ingroup are plesiomorphies, whereas those share within the ingroup are apomorphies. • Plesiomorphy and apomorphy are relative terms. Each homologous character is a synapomorphy at only one level of a phylogeny and is a sympleisomorphy at a deeper level of the phylogeny. For example, wings are a plesiomorphy of butterflies because they are shared with butterflies (ingroup) and with their closest relatives (outgroup). Wings are an apomorphy of pterogyotes (winged insects) because they are not shared with pterogyotes and their closest relatives (Thysanurans). Wingless Winged • Taxa based on apomorphies are monophyletic, whereas taxa based on plesiomorphies are paraphyletic. Phylogenetic Analysis • Evolutionary trees are constructed by analyzing the topological arrangement of the homologous traits (apomorphies and plesiomorphies) identified in the taxa under study (ingroup) in comparison with the outgroup. • A cladogram is a graphic representation of the origins Other PterygotaOther Other Apterygota Other Trichoptera Trichoptera Lepidoptera Thysanura of synapomorphies. In its ideal form a cladogram Other Neoptera depicts a completely nested set of synapomorphies. A cladogram is a very general evolutionary tree that indicates only relative relationships and not the timing Wings evolutionary events. A phylogeny is a cladogram covered calibrated with the fossil record and the geological time in scales scale. • Each split or dichotomy in the cladogram produces a pair of newly derived taxa that are called sister-taxa or Wings covered sister-groups. • The more synapomorphies that are nested in a Wings folded consistent manner, the higher the level of congruence for the cladogram. However, not all cladograms show a completely consistent nested set of synamorphies. Low Wings present levels of congruence may be due to mistakes in determining which characters are homologous and which are homoplastic, or the result of evolutionary convergence. Low levels of congruence may also result Dicondylic mandibles from mistakes in determining which characters are plesiomorphic and which are apomorphic. Major Branches in Animal Phylogeny Multicellular Ancestor Radial Ctenophores Radial Porifera Cnidaria Echinoderms Deuterostomes Sea Squirts Lancets Bilateral Vertebrates Molluscs Annelids Rotifers Protostomes Flatworms Nematodes Tardigrades Onychophorans Arthropods Characteristics of Phylum Annelida • Annelids (from Latin annellus for “little ring”) are the segmented worms the include earthworms, marine worms (polychaetes) and leeches. There are about 15,000 species worldwide. • Characteristics shared with the Arthropoda include serial arranged body segmentation (metamerism), double ventral nerve cord, dorsal and ventral longitudinal muscles, and a dorsal blood vessel with forward-going peristalsis. Characteristics of the Mollusca • Molluscs (from Latin molluscus for “soft”) include the gastropods (snails and slugs), bivalves (clams and mussels) and the cephalopods (squids and octopus). There are about 93,000 species worldwide. • Characteristics shared with the Apical tuft (cilia) Annelida include pelagic larvae (trochophore) with one or more Prototroch (cilia) bands of locomotory cilia Stomach located equatorially (near the mouth) and formed before Mouth gastrulation, pelagic larva with Metatroch (cilia) para- or circumanal ciliary tuft, Mesoderm and paired excretory organs Anus and ducts that open externally (nephridiopores). Trochophore larva Relationship of Arthropoda to Other Phyla • Hypothesis 1. Arthropoda is the sister group of the Annelida, which together comprise the Articulata. Mollusca is the sister group of the Articulata. • Hypothesis 2. Annelida and Mollusca are sister groups, which together comprise the Eutrochozoa. Arthropoda is the sister group of the Eutrochozoa. • Hypothesis 3. Arthropoda and Mollusca are sister groups and Annelida is the sister group of the Arthropoda + Mollusca clade. • These 3 phylogenetic hypotheses can be “tested” by mapping apomorphic characters on to cladograms and counting up the number of steps required. By the principle of parsimony, the hypothesis with the least number of steps is more likely to be true. • Parsimony analysis provides equal support for hypothesis 1 (Articulata) and hypothesis 2 (Eutrochozoa). In each instance, a minimum of three evolutionary changes are required. Hypothesis 3 requires at least four evolutionary changes and is therefore less parsimonous. Most Recent Phylogeny for Protostomes • Recent phylogenetic analysis based on molecular characters (Dunn et al 2008) suggest two major lineages within the Protostoma: 1) the Lophotrochozoa,
Recommended publications
  • Lecture Notes: the Mathematics of Phylogenetics
    Lecture Notes: The Mathematics of Phylogenetics Elizabeth S. Allman, John A. Rhodes IAS/Park City Mathematics Institute June-July, 2005 University of Alaska Fairbanks Spring 2009, 2012, 2016 c 2005, Elizabeth S. Allman and John A. Rhodes ii Contents 1 Sequences and Molecular Evolution 3 1.1 DNA structure . .4 1.2 Mutations . .5 1.3 Aligned Orthologous Sequences . .7 2 Combinatorics of Trees I 9 2.1 Graphs and Trees . .9 2.2 Counting Binary Trees . 14 2.3 Metric Trees . 15 2.4 Ultrametric Trees and Molecular Clocks . 17 2.5 Rooting Trees with Outgroups . 18 2.6 Newick Notation . 19 2.7 Exercises . 20 3 Parsimony 25 3.1 The Parsimony Criterion . 25 3.2 The Fitch-Hartigan Algorithm . 28 3.3 Informative Characters . 33 3.4 Complexity . 35 3.5 Weighted Parsimony . 36 3.6 Recovering Minimal Extensions . 38 3.7 Further Issues . 39 3.8 Exercises . 40 4 Combinatorics of Trees II 45 4.1 Splits and Clades . 45 4.2 Refinements and Consensus Trees . 49 4.3 Quartets . 52 4.4 Supertrees . 53 4.5 Final Comments . 54 4.6 Exercises . 55 iii iv CONTENTS 5 Distance Methods 57 5.1 Dissimilarity Measures . 57 5.2 An Algorithmic Construction: UPGMA . 60 5.3 Unequal Branch Lengths . 62 5.4 The Four-point Condition . 66 5.5 The Neighbor Joining Algorithm . 70 5.6 Additional Comments . 72 5.7 Exercises . 73 6 Probabilistic Models of DNA Mutation 81 6.1 A first example . 81 6.2 Markov Models on Trees . 87 6.3 Jukes-Cantor and Kimura Models .
    [Show full text]
  • Species Concepts Should Not Conflict with Evolutionary History, but Often Do
    ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1.
    [Show full text]
  • Phylogenetic Trees and Cladograms Are Graphical Representations (Models) of Evolutionary History That Can Be Tested
    AP Biology Lab/Cladograms and Phylogenetic Trees Name _______________________________ Relationship to the AP Biology Curriculum Framework Big Idea 1: The process of evolution drives the diversity and unity of life. Essential knowledge 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. Learning Objectives: LO 1.17 The student is able to pose scientific questions about a group of organisms whose relatedness is described by a phylogenetic tree or cladogram in order to (1) identify shared characteristics, (2) make inferences about the evolutionary history of the group, and (3) identify character data that could extend or improve the phylogenetic tree. LO 1.18 The student is able to evaluate evidence provided by a data set in conjunction with a phylogenetic tree or a simple cladogram to determine evolutionary history and speciation. LO 1.19 The student is able create a phylogenetic tree or simple cladogram that correctly represents evolutionary history and speciation from a provided data set. [Introduction] Cladistics is the study of evolutionary classification. Cladograms show evolutionary relationships among organisms. Comparative morphology investigates characteristics for homology and analogy to determine which organisms share a recent common ancestor. A cladogram will begin by grouping organisms based on a characteristics displayed by ALL the members of the group. Subsequently, the larger group will contain increasingly smaller groups that share the traits of the groups before them. However, they also exhibit distinct changes as the new species evolve. Further, molecular evidence from genes which rarely mutate can provide molecular clocks that tell us how long ago organisms diverged, unlocking the secrets of organisms that may have similar convergent morphology but do not share a recent common ancestor.
    [Show full text]
  • An Introduction to Phylogenetic Analysis
    This article reprinted from: Kosinski, R.J. 2006. An introduction to phylogenetic analysis. Pages 57-106, in Tested Studies for Laboratory Teaching, Volume 27 (M.A. O'Donnell, Editor). Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 383 pages. Compilation copyright © 2006 by the Association for Biology Laboratory Education (ABLE) ISBN 1-890444-09-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Use solely at one’s own institution with no intent for profit is excluded from the preceding copyright restriction, unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above. Upon obtaining permission or with the “sole use at one’s own institution” exclusion, ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. Although the laboratory exercises in this proceedings volume have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibilities for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in this volume. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises.
    [Show full text]
  • A Phylogenomic Analysis of Turtles ⇑ Nicholas G
    Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny.
    [Show full text]
  • Phylogenetic Comparative Methods: a User's Guide for Paleontologists
    Phylogenetic Comparative Methods: A User’s Guide for Paleontologists Laura C. Soul - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA David F. Wright - Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract. Recent advances in statistical approaches called Phylogenetic Comparative Methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. In this paper, we present guides to the theory behind, and application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, we present example analyses to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution, and macroevolutionary models of morphological change. We emphasize the importance of accounting for sources of uncertainty, and discuss how to evaluate model fit and adequacy. Finally, we discuss several promising methods for modelling heterogenous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective to understanding key patterns in the history of life. 1. Introduction A fundamental prediction of biological evolution is that a species will most commonly share many characteristics with lineages from which it has recently diverged, and fewer characteristics with lineages from which it diverged further in the past. This principle, which results from descent with modification, is one of the most basic in biology (Darwin 1859).
    [Show full text]
  • Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
    PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe.
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • Phylogeny Codon Models • Last Lecture: Poor Man’S Way of Calculating Dn/Ds (Ka/Ks) • Tabulate Synonymous/Non-Synonymous Substitutions • Normalize by the Possibilities
    Phylogeny Codon models • Last lecture: poor man’s way of calculating dN/dS (Ka/Ks) • Tabulate synonymous/non-synonymous substitutions • Normalize by the possibilities • Transform to genetic distance KJC or Kk2p • In reality we use codon model • Amino acid substitution rates meet nucleotide models • Codon(nucleotide triplet) Codon model parameterization Stop codons are not allowed, reducing the matrix from 64x64 to 61x61 The entire codon matrix can be parameterized using: κ kappa, the transition/transversionratio ω omega, the dN/dS ratio – optimizing this parameter gives the an estimate of selection force πj the equilibrium codon frequency of codon j (Goldman and Yang. MBE 1994) Empirical codon substitution matrix Observations: Instantaneous rates of double nucleotide changes seem to be non-zero There should be a mechanism for mutating 2 adjacent nucleotides at once! (Kosiol and Goldman) • • Phylogeny • • Last lecture: Inferring distance from Phylogenetic trees given an alignment How to infer trees and distance distance How do we infer trees given an alignment • • Branch length Topology d 6-p E 6'B o F P Edo 3 vvi"oH!.- !fi*+nYolF r66HiH- .) Od-:oXP m a^--'*A ]9; E F: i ts X o Q I E itl Fl xo_-+,<Po r! UoaQrj*l.AP-^PA NJ o - +p-5 H .lXei:i'tH 'i,x+<ox;+x"'o 4 + = '" I = 9o FF^' ^X i! .poxHo dF*x€;. lqEgrE x< f <QrDGYa u5l =.ID * c 3 < 6+6_ y+ltl+5<->-^Hry ni F.O+O* E 3E E-f e= FaFO;o E rH y hl o < H ! E Y P /-)^\-B 91 X-6p-a' 6J.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]