Rudi Mathematici

Total Page:16

File Type:pdf, Size:1020Kb

Rudi Mathematici Rudi Mathematici x4-8184x 3+25144736x 2-34251153024x+17515362723840=0 Rudi Mathematici Gennaio 1 1 G (1803) Guglielmo LIBRI Carucci dalla Sommaja USAMO 1994 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Siano k1<k 2<k 3<… interi positivi non (1912) Boris GNEDENKO consecutivi, e sia sm= k 1+k 2+…+k m per 2 V (1822) Rudolf Julius Emmanuel CLAUSIUS m=1 ;2;…;m. Provate che per ogni intero (1905) Lev Genr ichovich SHNIRELMAN positivo n, l’inter vallo [s n;s n+1 ) contiene (1938) Anatoly SAMOILENKO almeno un quadrato perfetto. 3 S (1917) Yuri Alexeievich MITROPOLSHY Perché un Regolo Calcolatore, Carta e 4 D (1643) Isaac NEWTON Matita sono meglio di qualsiasi computer 2 5 L (1838) Marie Ennemond Camille JORDAN (1871) Federigo ENRIQUES Un Regolo Calcolatore non si spegne (1871) Gino FANO improvvisamente quando fa troppo caldo. (1807) Jozeph Mitza PETZVAL 6 M Il Meraviglioso Mondo della Statistica (1841) Rudolf STURM 7 M (1871) Felix Edouard Justin Emile BOREL 1. Il 10% dei ladri d’auto sono mancini. (1907) Raymond Edward Alan Christopher PALEY 2. Tutti gli orsi polari sono mancini 8 G (1888) Richard COURANT Se vi hanno rubato la macchina, ci sono il (1924) Paul Moritz COHN 10% di probabilità che ve l'abbia soffiata (1942) Stephen William HAWKING un orso polare. 9 V (1864) Vladimir Adreievich STELKOV Someone told me that each equation I 10 S (1875) Issai SCHUR (1905) Ruth MOU FANG included in the book would halve its 11 D (1545) Guidobaldo DEL MONTE sales. (1707) Vincenzo RICCATI Step hen William HAWKING (1734) Achille Pierre Dionis DU SEJOUR 3 12 L (1906) Kurt August HIRSCH Physics is becoming too difficult for the 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN physicists. (1876) Luther Pfahler EISENHART David HILBERT (1876) Erhard SCHMIDT 14 M (1 902) Alfred TARSKI The proof of the Hilbert Basis Theorem is 15 G (1704) Johann CASTILLON not mathematics; it is theology. (1717) Mattew STEWART Camille JORDAN (1850) Sofia Vasilievna KOVALEVSKAJA 16 V (1801) Thomas KLAUSEN Say what you know, do what you must, come what may. 17 S (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS Sofia Vasilievna KOVALEVSK AJA 18 D (1856) Luigi BIANCHI (1880) Paul EHRENFEST When we ask advice, we are usually 4 19 L (1813) Rudolf Friedrich Alfred CLEBSCH looking for an accomplice. (1879) Guido FUBINI (1908) Aleksandr Gennadievich KUROS Joseph -Louis LAGRANGE 20 M (1775) Andrè Marie AMPERE It gives me the same pleasure when (1895) Gabor SZEGO (1904) Renato CACCIOPPOLI someone else proves a good theorem as 21 M (1846) Pieter Hendrik SCHOUTE when I do it myself. (1915) Yuri Vladimirovich LINNIK Lev Davidovich LANDAU 22 G (1 592) Pierre GASSENDI (1908) Lev Davidovich LANDAU I have no certainties, at most probabilities. (1840) Ernst ABBE 23 V Renato CACCIOPPOLI (1862) David HILBERT 24 S (1891) Abram Samoilovitch BESICOVITCH "When I use a word," Humpty Dumpty (1914) Vladimir Petrovich POTAPOV said, in a rather scornful tone, "it means 25 D (1627) Robert BOYLE (1736) Joseph -Louis LAGRANGE just what I choose it to mean - neither (1843) Karl Herman Amandu s SCHWARTZ more nor less." 5 26 L (1799) Benoit Paul Emile CLAPEYRON "The question is," said Alice, "whether 27 M (1832) Charles Lutwidge DODGSON you can make words mean so many 28 M (1701) Charles Marie de LA CONDAMINE different things." (1892) Carlo Emilio BONFERRONI "The question is," said Humpty Dumpty, 29 G (1817) William FERREL (1888) Sidney CHAPMAN "which is to be master - that's all." 30 V (1619) Michelangelo RICCI Charles DODGSON 31 S (1715) Giovanni Francesco FAGNANO dei Toschi (1841) Samuel LOYD (1896) Sofia Alexandrovna JANOWSKAJA www.rudimathematici.com Rudi Mathematici Febbraio 5 1 D (1900) John Charles BURKILL USAMO 1994 [2] 6 2 L (1522) Lodovico FERRARI I lati di un 99 -agono sono inizialmente colorati 3 M (1893) Gaston Maurice JULIA in modo tale che i lati consecutivi siano rosso, blu, rosso, blu, …, rosso, blu, giallo. Generiamo 4 M (1905) Eric Cristopher ZEEMAN una sequenza di modifiche nella colorazione 5 G (1757) Jean Marie Constant D UHAMEL cambiando colore ad un lato per volta e 6 V (1612) Antoine ARNAULD scegliendo tra i tre colori dati, sotto la (1695) Nicolaus (II) BERNOULLI restrizione che due lati adiace nti non siano mai 7 S (1877) Godfried Harold HARDY dello stesso colore. È possibile generare una (1883) Eric Temple BELL sequenza tale che la successione dei colori sia 8 D (1700) Daniel BERNOULLI (1875) Francis Ysidro EDGEWORTH rosso, blu, rosso, blu, rosso, blu, …, rosso, giallo, blu? 7 9 L (1775) Farkas Wolfgang BOLYAI (1907) Harod Scott MacDonald COXETER Perché un Regolo Calcolatore, Carta e 10 M (1747) A ida YASUAKI Matita sono meglio di qualsiasi computer (1800) William Henry Fox TALBOT 11 M Cent o persone che stiano usando Regoli (1839) Josiah Willard GIBBS (1915) Richard Wesley HAMMING Calcolatori, Carta e Matita non si mettono a strillare per un errore in virgola mobile. 12 G (1914) Hanna CAEMMERER NEUMANN If you have a cross-CAP on your sphere, 13 V (1805) Johann Peter Gustav Lejeune DIRICHLET And you give it a circle -shaped tear, (1468) Johann WERNER 14 S Then just shake it about (1849) Hermann HANKEL (1896) Edward Artur M ILNE And untangle it out 15 D (1564) Galileo GALILEI And a Moe bius strip will appear! (1861) Alfred North WHITEHEAD Measure what is measurable, and make (1946) Douglas HOFSTADTER measurable what is not so. 8 16 L (1822) Francis GALTON (1853) Georgorio RICCI -CURBASTRO Galileo GALILEI (1903) Beniamino SEGRE Whenever you can, count. 17 M (1890) Sir Ronald Aymler FISHER (1891) Adolf Abraham Halevi FRAENKEL Francis GALTON 18 M (1404) Leon Batti sta ALBERTI Mathematics is a language 19 G (1473) Nicolaus COPERNICUS Josiah Willard GIBBS 20 V (1844) Ludwig BOLTZMANN Mathematics is an interesting intellectual 21 S (1591) Girard DESARGUES (1915) Evgenni Michailovitch LIFSHITZ sport but it should n ot be allowed to stand 22 D (1903) Frank Plumpton RAMSEY in the way of obtaining sensible information about physical processes. 9 23 L (1583) Jean -Baptiste MORIN (1951) Shigefumi MORI Richard Wesley HAMMING 24 M (1871) Felix BERNSTEIN In most sciences one generation tears down 25 M (1827) Henry WATSON what another has built, and what one has 26 G (1786) Dominique Francois Jean ARAGO established, another undoes. In 27 V (1881) Luitzen Egbertus Jan BROUWER mathematics alone each generation adds a 28 S (1735) Alexandre Theophile VANDERMONDE new storey to the old structure. 29 D (1860) Herman HOLLERITH Hermann HANKEL I am interested in mathematics only as a creative art. Godfried Harold HARDY www.rudimathematici.com Rudi Mathematici arzo 10 1 L (1611) John PELL USAMO 1994 [3] 2 M (1836) Julius WEINGARTEN Un esagono convesso ABCDEF è iscritto in 3 M (1838) George William HILL una circonferenza in modo tale che (1845) Georg CANTOR AB=CD=EF e le diagonali AD , BE e CF sono 4 G (1822) Jules Antoine LISSAJUS concorrenti. Sia P l’intersezione di AD con CE . 5 V (1512) Gerardus MERCATOR Provate che CP/PE=(AC/CE) 2. (1759) Benjamin GOMPERTZ (1817) Angelo GENOCCHI Perché un Regolo Calcolatore, Carta e 6 S (1866) Ettore BORTOLOTTI Matita sono meglio di qualsiasi computer 7 D (1792) William HERSCHEL Un Regolo Calcolatore non comincia a fumare (1824) Delfino CODAZZI quando l’alimentazione ha il singhiozzo. E non 11 8 L (1851) George CHRYSTAL si preoccupa se cominciate a fumare o avete il 9 M (1818) Ferdinand JOACHIMSTHAL singhiozzo. (1900) Howard Hathaway AIKEN When I set k equal to 0, 10 M (1864) William Fogg OSGOOD I can be a mathema tical hero: 11 G (1811) Urbain Jean Joseph LE VERRIER If I should decide (1853) Salvatore PINCHERLE By k to divide, 12 V (1685) George BERKELEY Then it's clear that 1 = 0. (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO We [he and Halmos] share a philosophy 13 S (1861) Jules Joseph DRACH about linear algebra: we think basis -free, (1957) Rudy D'ALEMBERT we write basis -free, but when the chips are 14 D (1864) Jozef KURSCHAK down we close the office door and (1879) Albert EINSTEIN compute with matrices like fury. 12 15 L (1860) Walter Frank Raphael WELDON (1868) Grace CHISOLM YOUNG Irving KAPLANSKY 16 M (1750) Caroline HERSCHEL (1789) Georg Simon OHM Nature laughs at the difficulties of (1846) Magnus Gosta MITTAG -LEFFLER integration. 17 M (1876) Ernest Benja min ESCLANGON (1897) Charles FOX Pierre -Simon de LAPLACE 18 G (1640) Philippe de LA HIRE The mathematician's best work is art, a (1690) Christian GOLDBACH (1796) Jacob STEINER high perfect art, as daring as the most 19 V (1862) Adolf KNESER secret dreams of imagination, clear and (1910) Jacob WOLFOWITZ limpid. Mathematical genius and a rtistic 20 S (1840) Franz MERTENS (1884) Philip FRANCK genius touch one another. (1938) Sergi Petrovich NOVIKOV Magnus Gosta MITTAG- LEFFLER 21 D (1768 ) Jean Baptiste Joseph FOURIER (1884) George David BIRKHOFF A mathematician is a person who can find 13 22 L (1917) Irving KAPLANSKY analogies between theorems; a better mathematician is one who can see 23 M (1754) Georg Freiherr von VEGA (1882) Emmy Amalie NOETHER analogies between proofs and the best (1897) John Lighton SYNGE mathematician can notice analogies 24 M (1809) Joseph LIOUVILLE (1948) Sun -Yung (Alice) CHANG between th eories. One can imagine that the 25 G (153 8) Christopher CLAUSIUS ultimate mathematician is one who can see 26 V (1848) Konstantin ADREEV analogies between analogies. (1913) Paul ERDOS Stefan BANACH 27 S (1857) Karl PEARSON The essence of mathematics lies in its 28 D (1749) Pierre Simon de LAPLACE freedom.
Recommended publications
  • Fabio Tonini –
    Fabio Tonini Personal Data Date of Birth May 16, 1984 Citzenship Italy Current Position Since Researcher (RTDA) at University of Florence November 2018 Positions Held October 2018 Scholarship at Scuola Normale Superiore of Pisa October 2015 Post Doc at the Freie University of Berlin - September 2018 April 2013 - Post Doc at the Humboldt University of Berlin September 2015 January 2012 Scholarship at Scuola Normale Superiore of Pisa - January 2013 January 2009 Ph.D. student at Scuola Normale Superiore of Pisa under the supervision of - January Prof. Angelo Vistoli 2012 Italian National Scientific Habilitation (ASN) May 2021 - Professore II fascia May 2030 Education May 2013 Ph.D. at Scuola Normale Superiore of Pisa December Diploma at Scuola Normale Superiore of Pisa 2008 September Master’s Degree in Pure Mathematics, University of Pisa, with honors 2008 July 2006 Bachelor’s Degree in Pure Mathematics, University of Pisa, with honors Universitá degli Studi di Firenze, Dipartimento di Matematica e Informatica ’Ulisse Dini’, Viale Morgagni, 67/a, Firenze, 50134 Italy B fabio.tonini@unifi.it • Í people.dimai.unifi.it/tonini/ PhD’s Thesis Title Stacks of ramified Galois covers defended the 2 May 2013 pdf online link Advisor Angelo Vistoli Master’s Thesis Title Rivestimenti di Gorenstein (Gorenstein covers) pdf online link Advisor Angelo Vistoli Research Interests { Algebraic Geometry { Algebraic stacks, Moduli theory { Action of algebraic groups and Galois covers { Representation theory { Algebraic fundamental groups and gerbes Memberships { GNSAGA, INdAM, Gruppo Nazionale per le Strutture Algebriche, Geomet- riche e le loro Applicazioni Teaching Experience 2020/21 Course Title: Matematica e statistica, First year at “Scienze Farmaceutiche”, University of Florence 2020/21 Course Title: Matematica con elementi di Statistica, First year at “Scienze Naturali”, University of Florence.
    [Show full text]
  • A Historical Outline of the Theorem of Implicit Nctions
    Divulgaciones Matem acute-a t icas Vol period 10 No period 2 open parenthesis 2002 closing parenthesis commannoindent pp periodDivulgaciones 171 endash 180 Matem $ nacutefag $ t icas Vol . 10No . 2 ( 2002 ) , pp . 171 −− 180 A .... Historical .... Outline .... of the .... Theorem .... of nnoindentImplicit ..A F-un h nctions f i l l H i s t o r i c a l n h f i l l Outline n h f i l l o f the n h f i l l Theorem n h f i l l o f Un Bosquejo Hist acute-o rico del Teorema de las Funciones Impl dotlessi-acute citas n centerlineGiovanni Mingarif I m pScarpello l i c i t nquad open parenthesis$ F−u $ giovannimingari n c t i o n s g at l ibero period it closing parenthesis Daniele Ritelli dr itelli at e c onomia period unibo period it n centerlineDipartimentofUn di Matematica BosquejoDivulgaciones per Hist Matem le Scienzea´ $ tn icasacute Economiche Vol .f 10og No$ .e 2 Sociali( rico 2002 )delcomma , pp . Teorema 171 { 180 de las Funciones Impl $ nBolognaacutefn ItalyimathgA$ c Historical i t a s g Outline of the Theorem Abstract n centerline f Giovanniof Mingari Scarpello ( giovannimingari $ @ $ l ibero . it ) g In this article a historical outline ofImplicit the implicit functionsF theory− u nctions is presented startingUn from Bosquejo the wiewpoint Hist ofo´ Descartesrico del Teorema algebraic geometry de las Funciones Impl ´{ citas n centerline f Daniele Ritelli dr itelli $@$ e c onomia . unibo . it g open parenthesisGiovanni 1 637 closing Mingari parenthesis Scarpello and Leibniz ( giovannimingari open parenthesis 1 676@ l or ibero 1 677 closing .
    [Show full text]
  • HOMOTECIA Nº 6-15 Junio 2017
    HOMOTECIA Nº 6 – Año 15 Martes, 1º de Junio de 2017 1 Entre las expectativas futuras que se tienen sobre un docente en formación, está el considerar como indicativo de que logrará realizarse como tal, cuando evidencia confianza en lo que hace, cuando cree en sí mismo y no deja que su tiempo transcurra sin pro pósitos y sin significado. Estos son los principios que deberán pautar el ejercicio de su magisterio si aspira tener éxito en su labor, lo cual mostrará mediante su afán por dar lo bueno dentro de sí, por hacer lo mejor posible, por comprometerse con el porvenir de quienes confiadamente pondrán en sus manos la misión de enseñarles. Pero la responsabilidad implícita en este proceso lo debería llevar a considerar seriamente algunos GIACINTO MORERA (1856 – 1907 ) aspectos. Obtener una acreditación para enseñar no es un pergamino para exhib ir con petulancia ante familiares y Nació el 18 de julio de 1856 en Novara, y murió el 8 de febrero de 1907, en Turín; amistades. En otras palabras, viviendo en el mundo educativo, es ambas localidades en Italia. asumir que se produjo un cambio significativo en la manera de Matemático que hizo contribuciones a la dinámica. participar en este: pasó de ser guiado para ahora guiar. No es que no necesite que se le orie nte como profesional de la docencia, esto es algo que sucederá obligatoriamente a nivel organizacional, Giacinto Morera , hijo de un acaudalado hombre de pero el hecho es que adquirirá una responsabilidad mucho mayor negocios, se graduó en ingeniería y matemáticas en la porque así como sus preceptores universitarios tuvieron el compromiso de formarlo y const ruirlo cultural y Universidad de Turín, Italia, habiendo asistido a los académicamente, él tendrá el mismo compromiso de hacerlo con cursos por Enrico D'Ovidio, Angelo Genocchi y sus discípulos, sea cual sea el nivel docente donde se desempeñe.
    [Show full text]
  • Continuous Nowhere Differentiable Functions
    2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously).
    [Show full text]
  • A New Vision of the Senses in the Work of Galileo Galilei
    Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.
    [Show full text]
  • On the Origin and Early History of Functional Analysis
    U.U.D.M. Project Report 2008:1 On the origin and early history of functional analysis Jens Lindström Examensarbete i matematik, 30 hp Handledare och examinator: Sten Kaijser Januari 2008 Department of Mathematics Uppsala University Abstract In this report we will study the origins and history of functional analysis up until 1918. We begin by studying ordinary and partial differential equations in the 18th and 19th century to see why there was a need to develop the concepts of functions and limits. We will see how a general theory of infinite systems of equations and determinants by Helge von Koch were used in Ivar Fredholm’s 1900 paper on the integral equation b Z ϕ(s) = f(s) + λ K(s, t)f(t)dt (1) a which resulted in a vast study of integral equations. One of the most enthusiastic followers of Fredholm and integral equation theory was David Hilbert, and we will see how he further developed the theory of integral equations and spectral theory. The concept introduced by Fredholm to study sets of transformations, or operators, made Maurice Fr´echet realize that the focus should be shifted from particular objects to sets of objects and the algebraic properties of these sets. This led him to introduce abstract spaces and we will see how he introduced the axioms that defines them. Finally, we will investigate how the Lebesgue theory of integration were used by Frigyes Riesz who was able to connect all theory of Fredholm, Fr´echet and Lebesgue to form a general theory, and a new discipline of mathematics, now known as functional analysis.
    [Show full text]
  • NSP4 Pragmatist Kant
    Nordic NSP Studies in Pragmatism Helsinki — 2019 Giovanni Maddalena “Anti-Kantianism as a Necessary Characteristic of Pragmatism” In: Krzysztof Piotr Skowronski´ and Sami Pihlstrom¨ (Eds.) (2019). Pragmatist Kant—Pragmatism, Kant, and Kantianism in the Twenty-first Century (pp. 43–59). Nordic Studies in Pragmatism 4. Helsinki: Nordic Pragmatism Network. issn-l 1799-3954 issn 1799-3954 isbn 978-952-67497-3-0 Copyright c 2019 The Authors and the Nordic Pragmatism Network. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. CC BY NC For more information, see http://creativecommons.org/licenses/by-nc/3.0/ Nordic Pragmatism Network, NPN Helsinki 2019 www.nordprag.org Anti-Kantianism as a Necessary Characteristic of Pragmatism Giovanni Maddalena Universit`adel Molise 1. Introduction Pragmatists declared their anti-Cartesianism at the first appearance of the movement, in Peirce’s series on cognition written for the Journal of Specu- lative Philosophy (1867–8). As is well known, the brilliant young scientist characterized Cartesian doubt as a “paper doubt”, by opposing it to sci- entists’ true “living doubt” (Peirce 1998 [1868], 115).1 Some readers have not understood the powerful novelty that his opposition to Cartesianism implies. According to Peirce, research does not proceed from skeptical, “paper” doubt. For Peirce, doubt is possible because of a previous cer- tainty, a position which is similar to the one held by Augustine (Augustine 1970). Research moves from one certainty to another; the abandonment of an initial certainty is only reasonable in the presence of a real and surprising phenomenon that alters one of the pillars on which it stands.
    [Show full text]
  • Reflections on Vailati's Pragmatism
    Reflections on Vailati's Pragmatism M. CAAMANO AND P. SUPPES Preliminary remarks The pragmatic project of developing a richer notion of experience Classical pragmatists made a sustained effort to develop a new con­ ception of experience, free from some simplistic assumptions shared by both traditional rationalists and empiricists, like the idea that experi­ enceresults from a combination of simple sensations. In his main paper on pragmatism, "The origins and the fundamental idea.of pragmatism" (1909b), Giovanni Vailati characterized our experience of permanent, objective existence in terms of a certain kind of conditional expecta­ tions, in particular, those which are conditioned to certain deliberate actions of ours being performed. His experiential account of objective existence, based on a systematic relation between deliberate actions and expectations, is a permanent contribution to pragmatic thought, which we analyze and assess. We also consider Vailati's revision of the l"eircean pragmatic maxim, the pragmatic evaluation of meaningless assertions, and his vindication of inferential usefulness as a determin­ ing factor in both formal systems and empirical theories. Our discus­ sion will as well include a critical analysis of some less satisfactory aspects of Vailati's thought, whose Brentanian conception of mental facts contrasts sharply with James' sophisticated study of the mind in The Principles of Psychology (1890). But let us now make some prelim­ inary comments to place Vailati's work within the broader pragmatic tradition. Evans' bibliography (1930) of the references to pragmatism Logic and Pragmatism. Selected Essays QY Giovanni Vailati. C. Arrighi, P. Cantu, M. De Zan, and P. Suppes. Copyright © 2009, CSLI Publications.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world,
    [Show full text]
  • On History of Epsilontics
    ANTIQUITATES MATHEMATICAE Vol. 10(1) 2016, p. xx–zz doi: 10.14708/am.v10i0.805 Galina Ivanovna Sinkevich∗ (St. Petersburg) On History of Epsilontics Abstract. This is a review of genesis of − δ language in works of mathematicians of the 19th century. It shows that although the sym- bols and δ were initially introduced in 1823 by Cauchy, no functional relationship for δ as a function of was ever ever specied by Cauchy. It was only in 1861 that the epsilon-delta method manifested itself to the full in Weierstrass denition of a limit. The article gives various interpretations of these issues later provided by mathematicians. This article presents the text [Sinkevich, 2012d] of the same author which is slightly redone and translated into English. 2010 Mathematics Subject Classication: 01A50; 01A55; 01A60. Key words and phrases: History of mathematics, analysis, continu- ity, Lagrange, Ampére, Cauchy, Bolzano, Heine, Cantor, Weierstrass, Lebesgue, Dini.. It is mere feedback-style ahistory to read Cauchy (and contemporaries such as Bernard Bolzano) as if they had read Weierstrass already. On the contrary, their own pre-Weierstrassian muddles need historical reconstruction. [Grattan-Guinness 2004, p. 176]. Since the early antiquity the concept of continuity was described throgh the notions of time, motion, divisibility, contact1 . The ideas about functional accuracy came with the extension of mathematical interpretation to natural-science observations. Physical and geometrical notions of continuity became insucient, ultimately ∗ Galina Ivanovna Sinkeviq 1The 'continuous' is a subdivision of the contiguous: things are called continuous when the touching limits of each become one and the same and are, as the word implies, contained in each other: continuity is impossible if these extremities are two.
    [Show full text]
  • Professor ADDRESS: Department of Mathematics University of Florida
    CURRICULUM VITAE NAME: Krishnaswami Alladi PRESENT POSITION: Professor ADDRESS: Department of Mathematics University of Florida Gainesville, Florida 32611 Ph: (352) 294-2290 e-mail: alladik@ufl.edu BORN: October 5, 1955 Trivandrum, India DEGREES: Ph.D., U.C.L.A. - 1978; Advisor-E.G. Straus M.A., U.C.L.A. - 1976 B.Sc., Madras University, India - 1975 RESEARCH INTERESTS: Number Theory - Analytic Number Theory, Sieve Methods, Probabilistic Number Theory, Diophantine Approximations, Partitions, q-hypergeometric identities PROFESSIONAL EXPERIENCE: T.H. Hildebrandt Research Assistant Professor, University of Michigan, Ann Arbor, Michigan, 1978-1981. Visiting Member, Institute for Advanced Study, Princeton, New Jersey, 1981-1982. Visiting Associate Professor, University of Texas, Austin, Texas, 1982-1983. Visiting Associate Professor, University of Hawaii, Honolulu, Hawaii, 1984-1985. Associate Professor, Institute of Mathematical Sciences, Madras, India, 1981-1986. Associate Professor, University of Florida, 1986-1989. Professor, University of Florida, 1989-present. Visiting Professor, Pennsylvania State University, University Park, Pennsylvania, in 1992-93 (on sabbatical from University of Florida) and in Fall 1994. Chairman, Department of Mathematics, University of Florida, 1998-2008 AWARDS AND HONORS: Chancellor's Fellowship for the Ph.D., 1975-78, UCLA. Alumni Medal for one of 5 best Ph.D. theses (all subjects) at UCLA in 1978. CLAS Research Awards at University of Florida thrice: 1987, 1994, 2000 TIP Award for distinguished teaching at the University of Florida in 1994-95. STEP/SPP Awards for distinguished performance in the rank of Full Professor at the University of Florida twice: 2001, 2010. Elected Fellow of the American Mathematical Society in 2012-13 during inaugural year of the Fellows Program of the AMS.
    [Show full text]