Rudi Mathematici

Rudi Mathematici

Rudi Mathematici x4-8184x 3+25144736x 2-34251153024x+17515362723840=0 Rudi Mathematici Gennaio 1 1 G (1803) Guglielmo LIBRI Carucci dalla Sommaja USAMO 1994 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Siano k1<k 2<k 3<… interi positivi non (1912) Boris GNEDENKO consecutivi, e sia sm= k 1+k 2+…+k m per 2 V (1822) Rudolf Julius Emmanuel CLAUSIUS m=1 ;2;…;m. Provate che per ogni intero (1905) Lev Genr ichovich SHNIRELMAN positivo n, l’inter vallo [s n;s n+1 ) contiene (1938) Anatoly SAMOILENKO almeno un quadrato perfetto. 3 S (1917) Yuri Alexeievich MITROPOLSHY Perché un Regolo Calcolatore, Carta e 4 D (1643) Isaac NEWTON Matita sono meglio di qualsiasi computer 2 5 L (1838) Marie Ennemond Camille JORDAN (1871) Federigo ENRIQUES Un Regolo Calcolatore non si spegne (1871) Gino FANO improvvisamente quando fa troppo caldo. (1807) Jozeph Mitza PETZVAL 6 M Il Meraviglioso Mondo della Statistica (1841) Rudolf STURM 7 M (1871) Felix Edouard Justin Emile BOREL 1. Il 10% dei ladri d’auto sono mancini. (1907) Raymond Edward Alan Christopher PALEY 2. Tutti gli orsi polari sono mancini 8 G (1888) Richard COURANT Se vi hanno rubato la macchina, ci sono il (1924) Paul Moritz COHN 10% di probabilità che ve l'abbia soffiata (1942) Stephen William HAWKING un orso polare. 9 V (1864) Vladimir Adreievich STELKOV Someone told me that each equation I 10 S (1875) Issai SCHUR (1905) Ruth MOU FANG included in the book would halve its 11 D (1545) Guidobaldo DEL MONTE sales. (1707) Vincenzo RICCATI Step hen William HAWKING (1734) Achille Pierre Dionis DU SEJOUR 3 12 L (1906) Kurt August HIRSCH Physics is becoming too difficult for the 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN physicists. (1876) Luther Pfahler EISENHART David HILBERT (1876) Erhard SCHMIDT 14 M (1 902) Alfred TARSKI The proof of the Hilbert Basis Theorem is 15 G (1704) Johann CASTILLON not mathematics; it is theology. (1717) Mattew STEWART Camille JORDAN (1850) Sofia Vasilievna KOVALEVSKAJA 16 V (1801) Thomas KLAUSEN Say what you know, do what you must, come what may. 17 S (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS Sofia Vasilievna KOVALEVSK AJA 18 D (1856) Luigi BIANCHI (1880) Paul EHRENFEST When we ask advice, we are usually 4 19 L (1813) Rudolf Friedrich Alfred CLEBSCH looking for an accomplice. (1879) Guido FUBINI (1908) Aleksandr Gennadievich KUROS Joseph -Louis LAGRANGE 20 M (1775) Andrè Marie AMPERE It gives me the same pleasure when (1895) Gabor SZEGO (1904) Renato CACCIOPPOLI someone else proves a good theorem as 21 M (1846) Pieter Hendrik SCHOUTE when I do it myself. (1915) Yuri Vladimirovich LINNIK Lev Davidovich LANDAU 22 G (1 592) Pierre GASSENDI (1908) Lev Davidovich LANDAU I have no certainties, at most probabilities. (1840) Ernst ABBE 23 V Renato CACCIOPPOLI (1862) David HILBERT 24 S (1891) Abram Samoilovitch BESICOVITCH "When I use a word," Humpty Dumpty (1914) Vladimir Petrovich POTAPOV said, in a rather scornful tone, "it means 25 D (1627) Robert BOYLE (1736) Joseph -Louis LAGRANGE just what I choose it to mean - neither (1843) Karl Herman Amandu s SCHWARTZ more nor less." 5 26 L (1799) Benoit Paul Emile CLAPEYRON "The question is," said Alice, "whether 27 M (1832) Charles Lutwidge DODGSON you can make words mean so many 28 M (1701) Charles Marie de LA CONDAMINE different things." (1892) Carlo Emilio BONFERRONI "The question is," said Humpty Dumpty, 29 G (1817) William FERREL (1888) Sidney CHAPMAN "which is to be master - that's all." 30 V (1619) Michelangelo RICCI Charles DODGSON 31 S (1715) Giovanni Francesco FAGNANO dei Toschi (1841) Samuel LOYD (1896) Sofia Alexandrovna JANOWSKAJA www.rudimathematici.com Rudi Mathematici Febbraio 5 1 D (1900) John Charles BURKILL USAMO 1994 [2] 6 2 L (1522) Lodovico FERRARI I lati di un 99 -agono sono inizialmente colorati 3 M (1893) Gaston Maurice JULIA in modo tale che i lati consecutivi siano rosso, blu, rosso, blu, …, rosso, blu, giallo. Generiamo 4 M (1905) Eric Cristopher ZEEMAN una sequenza di modifiche nella colorazione 5 G (1757) Jean Marie Constant D UHAMEL cambiando colore ad un lato per volta e 6 V (1612) Antoine ARNAULD scegliendo tra i tre colori dati, sotto la (1695) Nicolaus (II) BERNOULLI restrizione che due lati adiace nti non siano mai 7 S (1877) Godfried Harold HARDY dello stesso colore. È possibile generare una (1883) Eric Temple BELL sequenza tale che la successione dei colori sia 8 D (1700) Daniel BERNOULLI (1875) Francis Ysidro EDGEWORTH rosso, blu, rosso, blu, rosso, blu, …, rosso, giallo, blu? 7 9 L (1775) Farkas Wolfgang BOLYAI (1907) Harod Scott MacDonald COXETER Perché un Regolo Calcolatore, Carta e 10 M (1747) A ida YASUAKI Matita sono meglio di qualsiasi computer (1800) William Henry Fox TALBOT 11 M Cent o persone che stiano usando Regoli (1839) Josiah Willard GIBBS (1915) Richard Wesley HAMMING Calcolatori, Carta e Matita non si mettono a strillare per un errore in virgola mobile. 12 G (1914) Hanna CAEMMERER NEUMANN If you have a cross-CAP on your sphere, 13 V (1805) Johann Peter Gustav Lejeune DIRICHLET And you give it a circle -shaped tear, (1468) Johann WERNER 14 S Then just shake it about (1849) Hermann HANKEL (1896) Edward Artur M ILNE And untangle it out 15 D (1564) Galileo GALILEI And a Moe bius strip will appear! (1861) Alfred North WHITEHEAD Measure what is measurable, and make (1946) Douglas HOFSTADTER measurable what is not so. 8 16 L (1822) Francis GALTON (1853) Georgorio RICCI -CURBASTRO Galileo GALILEI (1903) Beniamino SEGRE Whenever you can, count. 17 M (1890) Sir Ronald Aymler FISHER (1891) Adolf Abraham Halevi FRAENKEL Francis GALTON 18 M (1404) Leon Batti sta ALBERTI Mathematics is a language 19 G (1473) Nicolaus COPERNICUS Josiah Willard GIBBS 20 V (1844) Ludwig BOLTZMANN Mathematics is an interesting intellectual 21 S (1591) Girard DESARGUES (1915) Evgenni Michailovitch LIFSHITZ sport but it should n ot be allowed to stand 22 D (1903) Frank Plumpton RAMSEY in the way of obtaining sensible information about physical processes. 9 23 L (1583) Jean -Baptiste MORIN (1951) Shigefumi MORI Richard Wesley HAMMING 24 M (1871) Felix BERNSTEIN In most sciences one generation tears down 25 M (1827) Henry WATSON what another has built, and what one has 26 G (1786) Dominique Francois Jean ARAGO established, another undoes. In 27 V (1881) Luitzen Egbertus Jan BROUWER mathematics alone each generation adds a 28 S (1735) Alexandre Theophile VANDERMONDE new storey to the old structure. 29 D (1860) Herman HOLLERITH Hermann HANKEL I am interested in mathematics only as a creative art. Godfried Harold HARDY www.rudimathematici.com Rudi Mathematici arzo 10 1 L (1611) John PELL USAMO 1994 [3] 2 M (1836) Julius WEINGARTEN Un esagono convesso ABCDEF è iscritto in 3 M (1838) George William HILL una circonferenza in modo tale che (1845) Georg CANTOR AB=CD=EF e le diagonali AD , BE e CF sono 4 G (1822) Jules Antoine LISSAJUS concorrenti. Sia P l’intersezione di AD con CE . 5 V (1512) Gerardus MERCATOR Provate che CP/PE=(AC/CE) 2. (1759) Benjamin GOMPERTZ (1817) Angelo GENOCCHI Perché un Regolo Calcolatore, Carta e 6 S (1866) Ettore BORTOLOTTI Matita sono meglio di qualsiasi computer 7 D (1792) William HERSCHEL Un Regolo Calcolatore non comincia a fumare (1824) Delfino CODAZZI quando l’alimentazione ha il singhiozzo. E non 11 8 L (1851) George CHRYSTAL si preoccupa se cominciate a fumare o avete il 9 M (1818) Ferdinand JOACHIMSTHAL singhiozzo. (1900) Howard Hathaway AIKEN When I set k equal to 0, 10 M (1864) William Fogg OSGOOD I can be a mathema tical hero: 11 G (1811) Urbain Jean Joseph LE VERRIER If I should decide (1853) Salvatore PINCHERLE By k to divide, 12 V (1685) George BERKELEY Then it's clear that 1 = 0. (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO We [he and Halmos] share a philosophy 13 S (1861) Jules Joseph DRACH about linear algebra: we think basis -free, (1957) Rudy D'ALEMBERT we write basis -free, but when the chips are 14 D (1864) Jozef KURSCHAK down we close the office door and (1879) Albert EINSTEIN compute with matrices like fury. 12 15 L (1860) Walter Frank Raphael WELDON (1868) Grace CHISOLM YOUNG Irving KAPLANSKY 16 M (1750) Caroline HERSCHEL (1789) Georg Simon OHM Nature laughs at the difficulties of (1846) Magnus Gosta MITTAG -LEFFLER integration. 17 M (1876) Ernest Benja min ESCLANGON (1897) Charles FOX Pierre -Simon de LAPLACE 18 G (1640) Philippe de LA HIRE The mathematician's best work is art, a (1690) Christian GOLDBACH (1796) Jacob STEINER high perfect art, as daring as the most 19 V (1862) Adolf KNESER secret dreams of imagination, clear and (1910) Jacob WOLFOWITZ limpid. Mathematical genius and a rtistic 20 S (1840) Franz MERTENS (1884) Philip FRANCK genius touch one another. (1938) Sergi Petrovich NOVIKOV Magnus Gosta MITTAG- LEFFLER 21 D (1768 ) Jean Baptiste Joseph FOURIER (1884) George David BIRKHOFF A mathematician is a person who can find 13 22 L (1917) Irving KAPLANSKY analogies between theorems; a better mathematician is one who can see 23 M (1754) Georg Freiherr von VEGA (1882) Emmy Amalie NOETHER analogies between proofs and the best (1897) John Lighton SYNGE mathematician can notice analogies 24 M (1809) Joseph LIOUVILLE (1948) Sun -Yung (Alice) CHANG between th eories. One can imagine that the 25 G (153 8) Christopher CLAUSIUS ultimate mathematician is one who can see 26 V (1848) Konstantin ADREEV analogies between analogies. (1913) Paul ERDOS Stefan BANACH 27 S (1857) Karl PEARSON The essence of mathematics lies in its 28 D (1749) Pierre Simon de LAPLACE freedom.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us