Definitions of Time and Frequency Standard

Total Page:16

File Type:pdf, Size:1020Kb

Definitions of Time and Frequency Standard 2 Basics of Time and Frequency Standard 2-1 Definitions of Time and Frequency Stan- dard MORIKAWA Takao The definition of most basic concepts in the time and frequency standards field, time and timescale, depends on the science and technology level of the times and is never immutable. In this paper, the historical change in the definitions of time and timescales such as International Atomic Time and Coordinated Universal Time are reviewed. Keywords Time and frequency standard, Standard time, International atomic Time, Coordinated universal time, International system of units 1 History of time and frequency role in many high-technologies, such as satel- standards lite positioning technology (exemplified by the GPS), synchronization in high-data-rate Time―together with its inverse quantity, digital communication networks, and preci- frequency―stands as one of the most basic sion measurement applications. physical quantities of daily life, included among quantities such as length and mass. 2 Establishment of standard time Since ancient times, humans have attempted to systems measure time more and more precisely, rely- ing on a variety of physical phenomena Humans have developed precise time- observed in nature. It is well known that the measurement technologies by applying the calendar was developed in ancient Egypt best scientific knowledge available in each through celestial observations, a result of the era. Meanwhile, the definition of time itself need for precise time in agriculture, the basic has grown in importance since the 19th centu- industry of the time. As overseas trade devel- ry, with improvements in measurement accu- oped in Europe in the 17th and 18th centuries, racy and the evolution of economic activities. the establishment of a technology to determine In Europe in the 18th century, particularly in longitude precisely, needed for safe and effi- Britain, mechanical clocks became popular cient navigation, became one of the greatest among the middle class. At that time, there challenges for sea-fairing nations. Major was no such thing as standard time; as a refer- European countries set up astronomical obser- ence, noon was determined as the moment the vatories, including the Greenwich Observatory sun crosses the meridian in a given local area. and the Paris Observatory, and encouraged the This method posed no real problems, as development of accurate clocks, in part by human activities were generally limited to offering generous rewards for success. The individual local areas. However, in the 19th marine chronometer was one of the products century, as railways developed and people and of such policies[1]. In today's advanced scien- goods moved more quickly over long dis- tific world, the atomic clock plays a crucial tances, time differences among local areas MORIKAWA Takao 3 became a problem. In response, the London the Convention of the Metre (Convention du and Northwestern Railway determined a stan- Métre) of 1875. The Comité International des dard time in 1848, based on the time in Green- Poids et Mesures (International Committee of wich, England. As this standard railway time Weights and Measures, or CIPM) was formed gained acceptance, Greenwich Time became below the governing organization Conférence adopted by law in 1880 as British standard Générale des Poids et Mesures (the General time[2]. At the same time, discussions were Conference on Weights and Measures, or taking place regarding an international stan- CGPM, which met every four years). The dard time, and in October 1884, the Interna- Bureau International des Poids et Mesures tional Meridian Conference was held in Wash- (International Bureau of Weights and Mea- ington D.C. in the United States to discuss sures, or BIPM) was then established to con- world standard time. The following points duct various metrological activities under the were agreed upon[3][4]. control of the CIPM. After 1875, a number of ① A single prime meridian for all nations metrological units, including time, were would be adopted in place of multiplicity of defined internationally within the framework initial meridians. of the Convention of the Metre. In Resolution ② The adoption of the meridian passing 12 of the 11th CGPM, 1960, the International through the center of the transit instrument at System of Units (SI unit) was established, and the Observatory of Greenwich would be pro- remains in use to this day[5]. SI units can be posed to member countries as the initial classified into basic units and derivative units, meridian for longitude. combinations of basic units. This method of ③ From this meridian longitude shall be count- dividing units into two classes is not uniquely ed in two directions up to 180 degrees, east determined by physics but is in fact somewhat longitude being plus and west longitude minus. subjective. Nevertheless, from viewpoints of ④ A universal day would be adopted. This international exchange, education, and would not interfere with the use of local times. research, there were many advantages to the ⑤ The universal day would be a mean solar establishment of a single, practical, interna- day, begin for all the world at the moment of tional unit system. Considering these advan- mean midnight of the initial meridian, and be tages, the CGPM has adopted seven clearly counted from zero up to twenty-four hours. defined units (the meter, the kilogram, the sec- ⑥ The astronomical and nautical days should ond, the ampere, the Kelvin degree, the can- start at midnight. dela, and the mol, the last of which was added ⑦ Angular space and time should be expressed to the original basic units in 1971) and 27 by the decimal system. derivative units (including frequency). How- Based on these resolutions, Japan issued ever, although the official definitions of SI Imperial Edict No.51, entitled "Initial Meridi- units are authorized by the CGPM, these defi- an Longitude Calculation Method and Stan- nitions are not immutable. They reflect the dard Time" on July 13, 1886[4], the first estab- progress of science and technology in each era lishment of a standard time in Japan. At this and are subject to corresponding revision. In time, the second was defined as 1/86,400 of a this context, in 1927 the CIPM established a mean solar day. committee to discuss a number of issues, including revisions to the definition of the var- 3 The Convention of the Metre ious units. In particular, the group thus and definition of the second formed―the Consultative Committee for Time and Frequency (CCTF)―convened to discuss In the late 19th century, an important event the definition of the second. As mentioned took place with respect to the measurement of earlier, the second was initially defined as length, a physical quantity as basic as time: 1/86,400 of a mean solar day. However, astro- 4 Journal of the National Institute of Information and Communications Technology Vol.50 Nos.1/2 2003 nomical measurements had indicated that the "International atomic time (TAI) is the irregularity of the Earth's rotation affected the time reference coordinate established by the accuracy of time measured in this manner. Bureau International de l'Heure on the basis of Thus the 11th CGPM, 1960 adopted the follow- the readings of atomic clocks operating in var- ing definition of the second[5], based on the ious establishments in accordance with the solar year as defined by the International definition of the second, the time unit of time Astronomical Union. of the International System of Units." "The second is the fraction 1/31,556,925. The definition of TAI was revised as fol- 9747 of the tropical year for 1900 January 0 at lows in 1980 based on the theory of relativity 12 hours ephemeris time." [5]. This definition, however, posed a problem "TAI is a coordinate time scale defined in in that long-term astronomical observations a geocentric reference frame with the SI sec- would be required to provide accurate meas- ond as realized on the rotating geoid as the urements of the second. Meanwhile, the Cs scale unit." atomic frequency standard, developed in the We cannot ignore the effects of relativity rapidly evolving field of microwave spec- when considering precise time in the context troscopy, was found to be able to determine of modern science and technology. The the length of a second with a much higher effects of relativity on space-time have been degree of accuracy. From 1955 to 1958, the discussed in detail elsewhere[7]. Note that British NPL and the American USNO jointly TAI is designated as starting at 0 sec 0 min 0 measured the frequency of a Cs frequency hr on January 1, 1958 of UT1. Until 1969, standard based on ephemeris time[6]. Using TAI was provided by averaging the times of the results of this measurement, the definition the atomic clocks in what was then the Bureau of the second was revised as follows by the International de l'Heure. Since 1969, TAI has th 13 CGPM in 1967-1968[5]. been provided by averaging the atomic clocks "The second is the duration of 9,192,631,770 of research institutes in many countries, in periods of the radiation corresponding to the order to improve the reliability and short-term transition between the two hyperfine levels of stability of TAI[8]. Most of the clocks used to the ground state of the cesium 133 atom" determine TAI are commercial Cs atomic The above definition assumes that all the clocks with accuracies of approximately 10-12. Cs atoms are in the ideal state, free of any Thus to increase the accuracy of TAI, frequen- physical disturbance. This definition was cy calibration using a primary frequency stan- epoch-making in the sense that for the first dard becomes very important. As a case in time in the history humans adopted the atomic point, in 1976, all the primary Cs frequency time in stead of astronomical time, the latter standards of the U.S.
Recommended publications
  • Ast 443 / Phy 517
    AST 443 / PHY 517 Astronomical Observing Techniques Prof. F.M. Walter I. The Basics The 3 basic measurements: • WHERE something is • WHEN something happened • HOW BRIGHT something is Since this is science, let’s be quantitative! Where • Positions: – 2-dimensional projections on celestial sphere (q,f) • q,f are angular measures: radians, or degrees, minutes, arcsec – 3-dimensional position in space (x,y,z) or (q, f, r). • (x,y,z) are linear positions within a right-handed rectilinear coordinate system. • R is a distance (spherical coordinates) • Galactic positions are sometimes presented in cylindrical coordinates, of galactocentric radius, height above the galactic plane, and azimuth. Angles There are • 360 degrees (o) in a circle • 60 minutes of arc (‘) in a degree (arcmin) • 60 seconds of arc (“) in an arcmin There are • 24 hours (h) along the equator • 60 minutes of time (m) per hour • 60 seconds of time (s) per minute • 1 second of time = 15”/cos(latitude) Coordinate Systems "What good are Mercator's North Poles and Equators Tropics, Zones, and Meridian Lines?" So the Bellman would cry, and the crew would reply "They are merely conventional signs" L. Carroll -- The Hunting of the Snark • Equatorial (celestial): based on terrestrial longitude & latitude • Ecliptic: based on the Earth’s orbit • Altitude-Azimuth (alt-az): local • Galactic: based on MilKy Way • Supergalactic: based on supergalactic plane Reference points Celestial coordinates (Right Ascension α, Declination δ) • δ = 0: projection oF terrestrial equator • (α, δ) = (0,0):
    [Show full text]
  • Ephemeris Time, D. H. Sadler, Occasional
    EPHEMERIS TIME D. H. Sadler 1. Introduction. – At the eighth General Assembly of the International Astronomical Union, held in Rome in 1952 September, the following resolution was adopted: “It is recommended that, in all cases where the mean solar second is unsatisfactory as a unit of time by reason of its variability, the unit adopted should be the sidereal year at 1900.0; that the time reckoned in these units be designated “Ephemeris Time”; that the change of mean solar time to ephemeris time be accomplished by the following correction: ΔT = +24°.349 + 72s.318T + 29s.950T2 +1.82144 · B where T is reckoned in Julian centuries from 1900 January 0 Greenwich Mean Noon and B has the meaning given by Spencer Jones in Monthly Notices R.A.S., Vol. 99, 541, 1939; and that the above formula define also the second. No change is contemplated or recommended in the measure of Universal Time, nor in its definition.” The ultimate purpose of this article is to explain, in simple terms, the effect that the adoption of this resolution will have on spherical and dynamical astronomy and, in particular, on the ephemerides in the Nautical Almanac. It should be noted that, in accordance with another I.A.U. resolution, Ephemeris Time (E.T.) will not be introduced into the national ephemerides until 1960. Universal Time (U.T.), previously termed Greenwich Mean Time (G.M.T.), depends both on the rotation of the Earth on its axis and on the revolution of the Earth in its orbit round the Sun. There is now no doubt as to the variability, both short-term and long-term, of the rate of rotation of the Earth; U.T.
    [Show full text]
  • An Introduction to Orbit Dynamics and Its Application to Satellite-Based Earth Monitoring Systems
    19780004170 NASA-RP- 1009 78N12113 An introduction to orbit dynamics and its application to satellite-based earth monitoring systems NASA Reference Publication 1009 An Introduction to Orbit Dynamics and Its Application to Satellite-Based Earth Monitoring Missions David R. Brooks Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Informalion Office 1977 PREFACE This report provides, by analysis and example, an appreciation of the long- term behavior of orbiting satellites at a level of complexity suitable for the initial phases of planning Earth monitoring missions. The basic orbit dynamics of satellite motion are covered in detail. Of particular interest are orbit plane precession, Sun-synchronous orbits, and establishment of conditions for repetitive surface coverage. Orbit plane precession relative to the Sun is shown to be the driving factor in observed patterns of surface illumination, on which are superimposed effects of the seasonal motion of the Sun relative to the equator. Considerable attention is given to the special geometry of Sun- synchronous orbits, orbits whose precession rate matches the average apparent precession rate of the Sun. The solar and orbital plane motions take place within an inertial framework, and these motions are related to the longitude- latitude coordinates of the satellite ground track through appropriate spatial and temporal coordinate systems. It is shown how orbit parameters can be chosen to give repetitive coverage of the same set of longitude-latitude values on a daily or longer basis. Several potential Earth monitoring missions which illus- trate representative applications of the orbit dynamics are described. The interactions between orbital properties and the resulting coverage and illumina- tion patterns over specific sites on the Earth's surface are shown to be at the heart of satellite mission planning.
    [Show full text]
  • Measurement of Time
    Measurement of Time M.Y. ANAND, B.A. KAGALI* Department of Physics, Bangalore University, Bangalore 560056 *email: [email protected] ABSTRACT Time was historically measured using the periodic motions of the sun and stars. Various types of sun clocks were devised in Egypt, Greece and Europe. Different types of water clocks were assembled with ever greater accuracy. Only in the seventeenth century did the mechanical clock with pendulums and springs appeared. Accurate quartz clocks and atomic clocks were developed in the first half of the twentieth century. Now we have clocks that have better than microsecond accuracy. This article gives a brief account of all these topics. Keywords: Sun clocks, Water clocks, Mechanical clocks, Quartz clocks, Atomic clocks, World Time, Indian Standard time We all know intuitively what time is. It can be civilizations relied upon the apparent motion of roughly equated with change or motions. From these bodies through the sky to determine the very beginning man has been interested in seasons, months, and years. understanding and measuring time. More We know little about the details of recently, he has been looking for ways to limit timekeeping in prehistoric eras, but we find the “damaging” effects of time and going that in every culture, some people were backward in time! preoccupied with measuring and recording the Celestial bodies—the Sun, Moon, planets, passage of time. Ice-age hunters in Europe over and stars—have provided us a reference for 20,000 years ago scratched lines and gouged measuring the passage of time. Ancient holes in sticks and bones, possibly counting the Physics Education • January − March 2007 277 days between phases of the moon.
    [Show full text]
  • Leapseconds and Spacecraft Clock Kernels LSK and SCLK
    N IF Navigation and Ancillary Information Facility Leapseconds and Spacecraft Clock Kernels LSK and SCLK January 2020 N IF Topics Navigation and Ancillary Information Facility • Kernels Supporting Time Conversions – LSK – SCLK • Forms of SCLK Time Within SPICE • Backup LSK & SCLK 2 N IF SPICE Time Conversion Kernels Navigation and Ancillary Information Facility In most cases one or two kernel files are needed to perform conversions between supported time systems. • LSK - The leapseconds kernel is used in conversions between ephemeris time (ET/TDB) and Coordinated Universal Time (UTC). • SCLK - The spacecraft clock kernel is used in conversions between spacecraft clock time (SCLK) and ephemeris time (ET/TDB). – It’s possible there could be two or more clocks associated with a given spacecraft. Ephemeris Time, ET and Barycentric Dynamical Time, TDB, are the same LSK & SCLK 3 N IF The Leapseconds Kernel (LSK) Navigation and Ancillary Information Facility The leapseconds kernel contains a tabulation of all the leapseconds that have occurred, plus additional terms. • Used in ET UTC and in ET SCLK conversions. – Subroutines using LSK: STR2ET, TIMOUT, ET2UTC, etc. – Utility programs using LSK: spkmerge, chronos, spacit, etc. • Use FURNSH to load it. • NAIF updates the LSK when a new leap second is announced by the International Earth Rotation Service (IERS). – The latest LSK file is always available from the NAIF server. » The latest is LSK always the best one to use. – Announcement of each new LSK is typically made months in advance using the “spice_announce” system. » http://naif.jpl.nasa.gov/mailman/listinfo/spice_announce – New LSKs take effect ONLY on January 1st and July 1st LSK & SCLK 4 N IF LSK File Example Navigation and Ancillary Information Facility KPL/LSK .
    [Show full text]
  • Astronomical Time Keeping file:///Media/TOSHIBA/Times.Htm
    Astronomical Time Keeping file:///media/TOSHIBA/times.htm Astronomical Time Keeping Introduction Siderial Time Solar Time Universal Time (UT), Greenwich Time Timezones Atomic Time Ephemeris Time, Dynamical Time Scales (TDT, TDB) Julian Day Numbers Astronomical Calendars References Introduction: Time keeping and construction of calendars are among the oldest branches of astronomy. Up until very recently, no earth-bound method of time keeping could match the accuracy of time determinations derived from observations of the sun and the planets. All the time units that appear natural to man are caused by astronomical phenomena: The year by Earth's orbit around the Sun and the resulting run of the seasons, the month by the Moon's movement around the Earth and the change of the Moon phases, the day by Earth's rotation and the succession of brightness and darkness. If high precision is required, however, the definition of time units appears to be problematic. Firstly, ambiguities arise for instance in the exact definition of a rotation or revolution. Secondly, some of the basic astronomical processes turn out to be uneven and irregular. A problem known for thousands of years is the non-commensurability of year, month, and day. Neither can the year be precisely expressed as an integer number of months or days, nor does a month contain an integer number of days. To solves these problems, a multitude of time scales and calenders were devised of which the most important will be described below. Siderial Time The siderial time is deduced from the revolution of the Earth with respect to the distant stars and can therefore be determined from nightly observations of the starry sky.
    [Show full text]
  • A Short Guide to Celestial Navigation5.16 MB
    A Short Guide to elestial Na1igation Copyright A 1997 2011 (enning -mland Permission is granted to copy, distribute and/or modify this document under the terms of the G.2 Free Documentation -icense, 3ersion 1.3 or any later version published by the Free 0oftware Foundation% with no ,nvariant 0ections, no Front Cover 1eIts and no Back Cover 1eIts. A copy of the license is included in the section entitled "G.2 Free Documentation -icense". ,evised October 1 st , 2011 First Published May 20 th , 1997 .ndeB 1reface Chapter 1he Basics of Celestial ,aEigation Chapter 2 Altitude Measurement Chapter 3 )eographic .osition and 1ime Chapter 4 Finding One's .osition 0ight Reduction) Chapter 5 Finding the .osition of an Advancing 2essel Determination of Latitude and Longitude, Direct Calculation of Chapter 6 .osition Chapter 7 Finding 1ime and Longitude by Lunar Distances Chapter 8 Rise, 0et, 1wilight Chapter 9 )eodetic Aspects of Celestial ,aEigation Chapter 0 0pherical 1rigonometry Chapter 1he ,aEigational 1riangle Chapter 12 )eneral Formulas for ,aEigation Chapter 13 Charts and .lotting 0heets Chapter 14 Magnetic Declination Chapter 15 Ephemerides of the 0un Chapter 16 ,aEigational Errors Chapter 17 1he Marine Chronometer AppendiB -02 ,ree Documentation /icense Much is due to those who first bro-e the way to -now.edge, and .eft on.y to their successors the tas- of smoothing it Samue. Johnson Prefa e Why should anybody still practice celestial naRigation in the era of electronics and 18S? 7ne might as Sell ask Shy some photographers still develop black-and-Shite photos in their darkroom instead of using a digital camera.
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]
  • NOAA Technical Memorandum ERL ARL-94
    NOAA Technical Memorandum ERL ARL-94 THE NOAA SOLAR EPHEMERIS PROGRAM Albion D. Taylor Air Resources Laboratories Silver Spring, Maryland January 1981 NOAA 'Technical Memorandum ERL ARL-94 THE NOAA SOLAR EPHEMERlS PROGRAM Albion D. Taylor Air Resources Laboratories Silver Spring, Maryland January 1981 NOTICE The Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories or to this publication furnished by the Environmental Research Laboratories in any advertising or sales promotion which would indicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this Environmental Research Laboratories publication. Abstract A system of FORTRAN language computer programs is presented which have the ability to locate the sun at arbitrary times. On demand, the programs will return the distance and direction to the sun, either as seen by an observer at an arbitrary location on the Earth, or in a stan- dard astronomic coordinate system. For one century before or after the year 1960, the program is expected to have an accuracy of 30 seconds 5 of arc (2 seconds of time) in angular position, and 7 10 A.U. in distance. A non-standard algorithm is used which minimizes the number of trigonometric evaluations involved in the computations. 1 The NOAA Solar Ephemeris Program Albion D. Taylor National Oceanic and Atmospheric Administration Air Resources Laboratories Silver Spring, MD January 1981 Contents 1 Introduction 3 2 Use of the Solar Ephemeris Subroutines 3 3 Astronomical Terminology and Coordinate Systems 5 4 Computation Methods for the NOAA Solar Ephemeris 11 5 References 16 A Program Listings 17 A.1 SOLEFM .
    [Show full text]
  • Representations of Time Coordinates in FITS
    Astronomy & Astrophysics manuscript no. WCSPaper-IV-v1.1 c ESO 2018 September 30, 2018 Representations of Time Coordinates in FITS Time and Relative Dimension in Space Arnold H. Rots1, Peter S. Bunclark2,⋆, Mark R. Calabretta3, Steven L. Allen4, Richard N. Manchester3, and William T. Thompson5 1 Harvard-Smithsonian Center for Astrophysics/Smithsonian Astrophysical Observatory, 60 Garden Street MS 67, Cambridge, MA 02138, USA; [email protected] 2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK 3 CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia 4 UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA 5 Adnet Systems, Inc., NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771, USA Received 22 July 2014 / Accepted 26 September 2014 ABSTRACT Context. In a series of three previous papers, formulation and specifics of the representation of World Coordinate Transformations in FITS data have been presented. This fourth paper deals with encoding time. Aims. Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self- consistent manner. Methods. Employing the well–established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. Results. World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above. Key words. time – reference systems – standards – methods: data analysis – techniques: miscellaneous – astronomical databases: miscellaneous 1.
    [Show full text]
  • TIME 1. Introduction 2. Time Scales
    TIME 1. Introduction The TCS requires access to time in various forms and accuracies. This document briefly explains the various time scale, illustrate the mean to obtain the time, and discusses the TCS implementation. 2. Time scales International Atomic Time (TIA) is a man-made, laboratory timescale. Its units the SI seconds which is based on the frequency of the cesium-133 atom. TAI is the International Atomic Time scale, a statistical timescale based on a large number of atomic clocks. Coordinated Universal Time (UTC) – UTC is the basis of civil timekeeping. The UTC uses the SI second, which is an atomic time, as it fundamental unit. The UTC is kept in time with the Earth rotation. However, the rate of the Earth rotation is not uniform (with respect to atomic time). To compensate a leap second is added usually at the end of June or December about every 18 months. Also the earth is divided in to standard-time zones, and UTC differs by an integral number of hours between time zones (parts of Canada and Australia differ by n+0.5 hours). You local time is UTC adjusted by your timezone offset. Universal Time (UT1) – Universal time or, more specifically UT1, is counted from 0 hours at midnight, with unit of duration the mean solar day, defined to be as uniform as possible despite variations in the rotation of the Earth. It is observed as the diurnal motion of stars or extraterrestrial radio sources. It is continuous (no leap second), but has a variable rate due the Earth’s non-uniform rotational period.
    [Show full text]
  • A Biography of the Second
    A BIOGRAPHY OF THE SECOND By Jessica Hendrickson B.A. Natural Sciences Hampshire College, 2006 SUBMITTED TO THE PROGRAM IN COMPARATIVE MEDIA STUDIES/WRITING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN SCIENCE WRITING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2020 © 2020 Jessica Hendrickson. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created Signature of Author: ____________________________________________________________ Jessica Hendrickson Department of Comparative Media Studies/Writing August 7, 2020 Certified by: __________________________________________________________________ Tom Levenson Department of Comparative Media Studies/Writing Thesis Advisor Accepted by: _________________________________________________________________ Alan Lightman Department of Comparative Media Studies/Writing Graduate Program of Science Writing Director A BIOGRAPHY OF THE SECOND By Jessica Hendrickson Submitted to the Program in Comparative Media Studies/Writing on August 7, 2020 in partial fulfillment of the requirements for the degree of Master of Science in Science Writing ABSTRACT A few blinks of an eye. The time it takes a hummingbird to flap its wings 80 times. For a photon of light to travel from Los Angeles to New York and back almost 40-fold. The second has been there since the literal dawn of time, if one exists. But what defines the second? Like a pop star constantly reinventing themselves, the second has undertaken a myriad of identities, first defined as a brief moment in the daily rotation of the earth around its axis. Today, the second is officially defined by over 9 billion oscillations of a cesium atom.
    [Show full text]