Watershed-Based Design of Stormwater Treatment Facilities: Model Development and Applications
Watershed-based design of stormwater treatment facilities: model development and applications Thomas Larm Atmosphere Watershed boundary Precipitation Rural land uses Treatment Urban land uses Diffuse load Evapo- transpiration Infiltration Point load Soil Percolation Atmospheric Evaporation deposition Groundwater Sedimentation Rock Stockholm 2000 Doctoral Thesis Division of Water Resources Engineering Department of Civil and Environmental Engineering Royal Institute of Technology Corrections to "Watershed-based design of stormwater treatment facilities: model development and applications" by T. Larm Correction Current Pages No. Corrected 1rd=runoff depth rd=rain depth Summary: vii,7,13,23, 36,51,52,60 Paper I: 1,9,10,11,20, Table 1 2rda=yearly average rda=yearly average Summary: 13,23,60 runoff depth precipitation depth Paper I: 6,10,11,20, Table 1 3Captured,Included, Summary: 36,53,60 capturing including Paper I: 10 4 85% 90% Paper I: 10 19 mm (18-20 mm) 13-15 mm 16-17 9-10 5 15-20 mm 9-15 mm Paper I: 11 1.9-6.7 1.1-5 6 18 (5-35) mm 9-15 (5-35) mm Paper I: Table 1 7 Q * Q * Paper I: 5 ϕ* = ϕ* = pA** pA 8 137 1371 Paper I: Table 3 9Q1=Qoutx822x1217 Q1=Qoutx822/1217 Paper III: 66 10 1 g/l 1 mg/l Paper IV: 6 Watershed-based design of stormwater treatment facilities: model development and applications Thomas Larm Doctoral Thesis Division of Water Resources Engineering Department of Civil and Environmental Engineering Royal Institute of Technology S-100 44 Stockholm Sweden TRITA-AMI PHD 1038 ISSN 1400-1284 ISRN KTH/AMI/PHD 1038-SE ISBN 91-7283-027-1 December 2000 ii Acknowledgements Many people have helped and encouraged me during my studies at the Royal Institute of Technology (KTH) and my consultant work at VBB VIAK (SWECO INTERNATIONAL).
[Show full text]