Lighting Control Guide

Total Page:16

File Type:pdf, Size:1020Kb

Lighting Control Guide www.thelia.org.uk LIGHTING CONTROL GUIDE. LIA Copyright © 2018. All information stated within this brochure is correct at time of publication – October 2018. www.thelia.org.uk OBJECTIVES OF THE GUIDE The aims of this guide are: To provide an appreciation of the benefits of lighting controls • To demonstrate that the benefits and abilities extend beyond electricity use reduction • To make the terminology of lighting controls more familiar • To inform those who are considering the use of lighting controls • To help match controls and light sources to ensure optimum results • To show where expert and reputable advice may be sought • To provide an introduction to a deeper understanding of the subject through training • To provide a decision tree to assist in the selection of the most suitable lighting controls The creation of this guide would not have been possible without the valuable help provided by members of the LIA Controls Equipment Technical Committee (CETC). Automatic lighting controls are often thought to be a dark art. In reality, they work in the background to manage the lighting without fuss. You can rely on a number of reputable suppliers to sort out the details to suit your application. Just explain how, and when, your business works and they will design the best control strategy and system for your needs. www.thelia.org.uk INTRODUCTION This guide has been structured to give the reader a logical progression through the subject of lighting controls. The subject is divided into a number of sections, which are defined in the table below. Each section can be read independently, and links will guide the reader to any logical connections, both within this guide and to other relevant sources. NAVIGATING THIS GUIDE Route to determine the control type for the application. EVOLUTION OF CONTROLS FOR LIGHTING This section provides the context for the guide and begins to familiarise the reader with the reasons for using lighting controls. It describes the origins of the solutions and products available today, while demonstrating that it is an established and reliable industry. BENEFITS Lighting controls are not only provided to reduce electricity use; there are much wider benefits. They can be the means to deliver good lighting designs; to set moods and ambience. Controls ensure that the right light is provided in the right place, at the right time. TECHNIQUES There are a number of ways to control lights; from simple wall switches to fully networked management systems. This section describes the various ways lights are controlled both manually and automatically; including daylight references and occupancy control. APPLICATIONS Different building types and accommodation require different lighting control solutions. The most common applications are described and appropriate controls suggested. Sub- headings include offices, industry, schools, hospitality, museums, floodlighting and shops. TECHNOLOGIES A brief technical description of generic lighting control products and systems is provided in this section. All the component parts of a lighting control system are introduced, including manual overrides, sensors, lighting control modules, software and interconnections. STANDARDS AND REGULATIONS An overview of the standards, regulations and guides that are relevant to the specification, application and use of lighting controls. A number of links to Government and professional bodies are provided here. GLOSSARY A dictionary of lighting and control terminology. www.thelia.org.uk NAVIGATING THIS GUIDE www.thelia.org.uk EVOLUTION OF CONTROLS FOR LIGHTING Lighting controls have existed for as long as we have had electric artificial lighting. However, today the term lighting controls is generally taken to refer to some form of electronic, or automatic solution, rather than the simple, mains ON/OFF switch. This section is intended to create a context for the understanding of lighting controls by explaining their origins, and how they have developed over time; both technically and functionally. Lighting Controls - the two branches and how they came about The first lighting controls can be traced to the theatre / entertainment world where there was a need to vary light output as well as to turn it ON and OFF. Initially largely manual in nature, theatrical controls evolved into highly complex systems and began to spread to wider - but related - applications. This branch has become known today as scene setting lighting controls. More recently - from the late 1960s onwards - automatic lighting controls entered the commercial built environment. The first systems were little more than an electronic switch that allowed the use of pushbuttons and extra low voltage wiring. The first energy crisis in the mid-1970s brought energy use in buildings into focus for the first time and gave purpose to this branch of the lighting control evolution - to reduce lighting electricity consumption. The two branches of lighting controls familiar to the built environment are, therefore: - Scene setting and Energy Saving Dedicated theatrical control systems continued to evolve separately, but today they have returned to influence the main stream market. In order to assist the designer to select the most suitable lighting controls solution for the application, a decision tree is provided for this purpose – follow this link. Scene setting The applications related to theatre lighting that led to scene setting lighting controls moving into the built environment were auditoria, lecture theatres and conference facilities. The term scene setting was derived from the fact that the systems generally allowed the user to select a specific lighting effect; normally by pushing one button. This action would set the various lighting circuits into a pre-set state - ON, OFF, or at a specific dimmed level. These systems were usually manually operated and offered a wide range of static scenes - i.e. once selected the lighting remained fixed until another scene was chosen. Scene setting systems also dictated the choice of lighting source because not all could be readily dimmed. Even today there are restrictions on certain light sources with respect to their control. These systems were seen to be an integral part of the lighting design and often specified by the lighting designer www.thelia.org.uk Energy saving The early systems developed to control the use of lighting electricity relied heavily on the use of localised switches overlaid with an automatic function that ensured lighting was turned OFF when the building was expected to be empty. These functions included day light levels and time of day. Most of the early energy saving lighting control systems were retrofitted into existing installations and therefore had to be economical to install; they also only needed to be able to turn lights ON and OFF. Dimming had not yet become practical in the commercial building world. And, in stark contrast to the scene setting branch, energy saving lighting controls generally ignored the lighting design. Little or no notice was taken of the original design intent. This was especially true when pull switches were fitted to individual fixtures, allowing staff to choose which lights were ON and which were OFF. The resulting ‘non-uniform’ lighting levels were the subject of much debate (back then) in the world of lighting designers. The impact on the original lighting design was, however, somewhat relieved by the fact that most of these systems gave individual users far more control of their local lighting. This led to higher satisfaction being observed in affected staff, and avoidance of the design issue. +25% +50% +60% +75% No dimming Manual PIR + manual Daylight linked Daylight linked dimming dimming dimming dimming + PIR Convergence The two branches of lighting control began to converge when dimming became a practical element of the energy saving systems. The introduction of the dimmable high frequency electronic ballast for fluorescent lighting was the enabling technology. As already mentioned, the past scene setting systems were all about dimming and levels and energy saving systems relied on ON and OFF commands. Now the dimming function was easily implemented in the building wide lighting controls; the basic functions of a light were no longer just ON and OFF but DIM or BRIGHT according to current need. Convergence, DALI, DMX and LEDs In the meantime pure theatrical lighting control had moved down its own evolutionary path and developed its own protocols; the most used of which is the DMX512. (See Sections 5 and 6.) This protocol was developed to allow theatres to buy stage lighting from multiple vendors and link it all to the ever more complex show control desks that delivered the lighting (and other) effects on cue. As a result the DMX512 protocol is a highly robust and dynamic control method. In a way two branches had become three; i.e. energy saving, scene setting and show control. The arrival of LEDs onto the commercial lighting market has now brought the third way into the convergence of lighting control systems. LEDs came first to the theatre and early luminaires were all developed with DMX interfaces. As a consequence many of the evolved products moving into the commercial market continued to support this technology. As LED fixtures have become viable as commercial lighting solutions, the protocols from building lighting control systems have been adopted. DALI and IP (internet protocol) interfaces are to be found in both LED luminaires and drivers. www.thelia.org.uk Integration and networks The evolution of lighting control systems has involved many proprietary as well as open protocols in creating networks. With these diverse communication methods the question of integration to wider building management systems has been considered over the years. The subject of integration is discussed in the technology section alongside the various network protocols and interfacing options. Conclusion Lighting controls today are now developing along a more flexible, but integrated path, with the idea that all the control needs of any lighting application can be met by a single system.
Recommended publications
  • Application Note AN-50 Linkswitch-PL Family
    Application Note AN-50 LinkSwitch-PL™ Family Design Guide (Flyback Topology) Introduction The LinkSwitch-PL family of highly integrated monolithic off-line may be used in both the flyback or buck-boost topologies switcher ICs enables implementation of single-stage isolated or however only the flyback is covered in this document. Support, non-isolated, power factor corrected, constant current output with a separate PIXls spreadsheet, for the buck-boost topology is drivers for LED lighting applications. Non-isolated designs are planned and will be covered in a separate application note. compatible with low cost TRIAC based dimmers and provide In addition to this application note, the reader may also find the >300:1 dimming range. The low component count simplifies Reference Design Kits (RDKs) useful. Each contains a fully meeting space constraints of LED retrofit designs (e.g. A19 and functional engineering prototype board, engineering report and candelabra lamp sizes) while the >0.9 PF, low THD and harmonic device samples. Further details on downloading PI Expert, input currents allows a single driver design to be used worldwide. obtaining an RDK, reviewing additional Design Example Reports (DERs) and updates to this document can be found at www. Scope powerint.com. This application note is intended for engineers designing an Basic Circuit Configuration isolated or non-isolated AC to DC power supply driving a A typical application schematic is shown below for a TRIAC constant current LED load. It provides step-by-step guidance on dimmable, non-isolated LED driver. Circuit blocks required for the use of the PIXls design spreadsheet, part of the PI Expert™ interface with TRIAC based phase angle control dimmers are software suite, selection of key components and optimization of labeled Passive, Active Damper, and Bleeder and can be designs especially for TRIAC based dimmers.
    [Show full text]
  • Contract No. IST 2005-034891 Hydra
    Contract No. IST 2005-034891 Hydra Networked embedded system middleware for heterogeneous physical devices in a distributed architecture D3.1 Existing applications, services, devices and standards Integrated Project SO 2.5.3 Embedded systems Project start date: 1st July 2006 Duration: 48 months Published by the Hydra Consortium 2007-02-20 - version 1.0 Lead Contractor: CNet Svenska AB Project co-funded by the European Commission within the Sixth Framework Programme (2002 -2006) Dissemination Level: Confidential Hydra D3.1 Existing applications, services, devices and standards Document file: D3.1_v10.doc Work package: WP3 – Architecture Design Specification Task: T3.1 - Analysis of existing applications, services, devices and standards: Gather, analyse and harmonise existing devices, services, standards, systems and applications. Document owner: CNet Svenska AB Document history: Version Author(s) Date Changes made 0.2 Matts Ahlsén, Peter 10-10- Initial structure defined Rosengren 2006 0.3 Matts Ahlsén, Peter 04-11- Updates before WP3 kick-off Rosengren 2006 meeting 0.5 Matts Ahlsén, Peter 20-12- Chapter on KNX and other Rosengren. Peeter Kool, 2006 standards added. Appendix on Pablo Antolin Rafael intelligent homes added. 0.7 Matts Ahlsén, Peter 21-12- Chapter on devices in agriculture Rosengren. Peeter Kool, 2006 added Pablo Antolin Rafael, Klaus Marius Hansen 0.9 Matts Ahlsén, Peter 18-01- Conclusions added Rosengren. Peeter Kool, 2007 Pablo Antolin Rafael, Klaus Marius Hansen 0.95 Matts Ahlsén, Peter 19-01- Peer-reviewed by FIT. Documented Rosengren. Peeter Kool, 2007 updated. Pablo Antolin Rafael, Klaus Marius Hansen 0.99 Matts Ahlsén, Peter 20-02- Peer-reviewed by FIT (second Rosengren.
    [Show full text]
  • Designing LED Drivers for the Challenges of Phase Cut Dimmers
    ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others.
    [Show full text]
  • The Principles of Dimming Leading Edge Dimming – Triac and Thyristor
    The Principles Of Dimming An artificial light source such as a lamp or one or more lamps in a fitting (luminaire) will be specified for a purpose. Often this purpose will need a lot of light but may be too much at other times. This is nothing new, candle lamps used mechanical screens and oil lamps adjustable wicks. Aesthetic, artistic, mood setting, visual comfort, or energy saving are all valid reasons for changing lighting levels, or in other words dimming the lamps. Dimming an electric lamp is achieved by reducing the current and thereby the power to the lamp. Early dimmers used series resistance but this generates a lot of heat and is inefficient. All modern dimmers use semiconductor technology and digital control with typical losses of less than 2% of full load. Mains “chopping” or Phase Control The most widely used form of dimming is phase control. Phase control dimming uses a switching device to “chop” the supply such that only part of each half cycle Normal line voltage, full power for the load of the AC mains supply is applied to the load. For the remaining part the switch is open and no power is applied to the load. The amount of power to the load is therefore determined by the phase angle of the AC supply at which the switching occurs and thereby altering the ratio of off to on time from always open, no power, to allows closed, full power. The switching is synchronised to each half cycle to minimise the visual impact of momentarily turning the lamp off.
    [Show full text]
  • Lonworks® Platform Revision 2
    Introduction to the LonWorks® Platform revision 2 ® 078-0183-01B Echelon, LON, LonWorks, LonMark, NodeBuilder, , LonTalk, Neuron, 3120, 3150, LNS, i.LON, , ShortStack, LonMaker, the Echelon logo, and are trademarks of Echelon Corporation registered in the United States and other countries. LonSupport, , , OpenLDV, Pyxos, LonScanner, LonBridge, and Thinking Inside the Box are trademarks of Echelon Corporation. Other trademarks belong to their respective holders. Neuron Chips, Smart Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright
    [Show full text]
  • Wireless Lighting Control System
    Wireless Lighting Control System Patient Rooms and Healthcare Introducing PathWave — an EnOcean-based wireless lighting control system that lets you remotely power on/off or dim any* of Pathway Lighting’s fixtures that use 0-10V dimming. PathWave Advanced Features and Benefits: Two-way Wireless Communication A fixture-based relay communicates wirelessly with an occupancy sensor, one or more rocker switches, or both. The relay receives dimming control commands, which it then translates into 0-10V analog dimming signals for the LED driver. Benefit Wirelessly controls virtually any fixture that uses 0-10V dimming LED driver, without the added labor and material costs associated with additional wiring. Self-powered Rocker Switch Low-profile single or double rocker switch provides wireless control, and requires no electricity or battery power, to remotely power on/off or dim lighting in any space. Benefit No additional power required means reduced operating costs and a more environmentally friendly solution. Wireless technology enables mounting or storing the switch wherever convenient. Easy On-site System Set Up Associate one or more rocker switches to a single fixture or a group of fixtures, establish fixture groupings, or set up system parameters, using a PC and an optional USB programming dongle with the PathWave Software Application. Benefit System set up is easy and takes minutes to complete. It is future-proof – should changes in the way the space is used in the future require new fixture groupings, or new switches need to be added, the system can be reprogrammed at any time – all without the need for fixture rewiring, running additional wires or disrupting occupancy.
    [Show full text]
  • Implementation of LED Control System Based on Zigbee Network for Energy-Saving
    International Conference on Computer, Electrical and Communication Engineering (ICCECE'2015) June 18-19, 2015 Pattaya (Thailand) Implementation of LED control system based on Zigbee network for energy-saving Sang Woo Jung1, Jun Yeong Lee2, Seung Hyeop Yang3, Seung Hyun Paik4, and Hong Bae Park5 device does the same operation at the same time so unnecessary Abstract—In this paper, we study human body detecting using lighting devises are still turned on [6]-[8]. PIR sensor and design LED control system based on star network In this paper, a new LED control system which consists of topology of Zigbee. The human body detecting information using PIR human body detecting using PIR sensor, LED lighting, Zigbee sensor is transmitted to the status monitoring system, and the network, and power control system is proposed. The LED management system controls the LED lighting devices based on control system separates the lighting area, and the separated transmitted information. The information and control signals are lighting devises are interconnected by Zigbee network. The transmitted using Zigbee network. The structure of the proposed LED control system is suitable for energy-saving because the LED lighting LED control board cooperates with the nearby others, and the devices are controlled by area. operation is determined through their communication. So the LED lighting devices are controlled by area and are determined Keywords—human body detecting, PIR sensor, LED control whether to be turned on or not. system, Zigbee network, energy-saving The organization of this paper is as follows. In section 2, we describe a component of the LED control system, a flowchart I.
    [Show full text]
  • Outdoor Lighting Control System Fundamentals
    OUTDOOR LIGHTING CONTROL SYSTEM FUNDAMENTALS 9:00am Sunday 5/3/2015 Mark Wilbur, GE Lighting Solutions Michael Poplawski, Pacific Northwest National Laboratory ATTENDEE SURVEY: BACKGROUND 3 Manufacturer Municipal user Utility user Contractor, Consultant Market Analyst Investment, Finance Other ATTENDEE SURVEY: BACKGROUND 4 Manufacturer experience User experience Lighting control system Installed system Lighting control sub-system Pilot project Lighting control component Demonstration project Luminaire Mock-up Other Technical review None ATTENDEE SURVEY: EXPECTATIONS 5 General education Features and options of commercially available products Value propositions Barriers to adoption Planning a project Specific questions Market analysis WHO IS THIS COURSE DESIGNED FOR? 6 • Specifiers, owners, and operators of outdoor lighting systems • System integrators, start-up and commissioning agents • Manufacturers of non-lighting equipment that could get integrated into networked outdoor lighting systems A (NETWORKED) OUTDOOR LIGHTING CONTROL SYSTEM 7 NETWORKED CONTROL SYSTEMS 8 • Network (from IES TM-23-11): A group of systems that function cooperatively and/or interdependently to provide a chain of command for lighting control • Field Device Network: typically a Local Area Network (LAN) that connects and enables communication between (exclusively) Field Devices • Backhaul Network: typically a Wide Area Network (WAN) that connects and facilitates communication between (at a minimum) one or more Field Device networks with a
    [Show full text]
  • Honours Engineering Thesis DALI Building Automation, BMS Integration and Communication Using Modbus
    SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY Honours Engineering Thesis DALI Building Automation, BMS Integration and Communication using Modbus By Robert Pezzaniti Supervisor Associate Professor Graeme Cole A thesis submitted to Murdoch University School of Engineering and Information Technology to fulfil the requirements for the Bachelor of Engineering Honours Degree in the discipline of Industrial Computer Systems Engineering & Electrical Power Engineering Murdoch University, Western Australia, 2017 © Murdoch University & Robert Pezzaniti 2017 Author’s Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. X Robert Pezzaniti Abstract The protocol of Digital Addressable Lighting Interface (DALI) was established in the early 1990s by a conglomerate of lighting product manufacturers to replace the original 0-10 V lighting control systems. It was designed as an open standard substitute to Digital Signal Interface (DSI), on which its structure is based [1]. The scope of this project was to control the lighting in the Murdoch University, South Street Campus, Western Australia by using a chosen controller to connect those modules to the chosen Schneider Enterprise/Automation server in the most efficient manner. This control would effectively allow Murdoch University to save more money on power, diminishing the impact on the environment due to power usage. This also gives a better suited environment to staff and students where lighting levels can be set at optimum levels defined by The Commission for Occupational Safety and Health [2] to reduce fatigue and glare. To achieve this control a microcontroller was used to sit as an intermediate path between the DALI devices and the Schneider BMS (Building Management System) that runs and monitors Murdoch’s South Street Campus by using Modbus.
    [Show full text]
  • C-Bus Application Note Function Rooms and Ballrooms
    C-Bus Application Note Function Rooms and Ballrooms Overview A function venue or hotel will generally include large spaces purpose designed and built for holding functions. Function rooms and Ballrooms are designed for multiple uses including; corporate meetings, presentations, or large seated dinners like wedding or gala events. The spaces may be smaller purpose designed rooms, or be built as a larger space which can be partitioned appropriately. Regardless, each space needs to be flexible from a lighting and audio visual perspective. A lighting control system will allow the venue flexible control of a room or multiple joined rooms. The user will benefit from professional, seamless and intuitive control of the room for events, particular to the type of event required. One of the key elements required of the lighting control system, is the smooth transition between lighting scenes and specific modes that can be easily customised and adapted according to events and time of day. When designing the room’s functionality a lighting control system will provide the lighting designer the ability to deliver concepts and scenes that showcase the function areas full potential. With the correct lighting control strategy energy efficiency gains can be achieved, providing additional benefits and savings to the building owner. All of this can be achieved using a Clipsal C-Bus system. Example Area Layout & Features Features: • Dimmable LED fittings • Dimmable Compact Fluorescent Light fittings (CFL) • Motorised blinds • Motorised projector screen • C-Bus
    [Show full text]
  • Stage Lighting Technician Handbook
    The Stage Lighting Technician’s Handbook A compilation of general knowledge and tricks of the lighting trade Compiled by Freelancers in the entertainment lighting industry The Stage Lighting Technician's Handbook Stage Terminology: Learning Objectives/Outcomes. Understanding directions given in context as to where a job or piece of equipment is to be located. Applying these terms in conjunction with other disciplines to perform the work as directed. Lighting Terms: Learning Objectives/Outcome Learning the descriptive terms used in the use and handling of different types of lighting equipment. Applying these terms, as to the location and types of equipment a stagehand is expected to handle. Electrical Safety: Learning Objectives/Outcomes. Learning about the hazards, when one works with electricity. Applying basic safety ideas, to mitigate ones exposure to them in the field. Electricity: Learning Objectives/Outcomes. Learning the basic concepts of what electricity is and its components. To facilitate ones ability to perform the mathematics to compute loads, wattages and the like in order to safely assemble, determine electrical needs and solve problems. Lighting Equipment Learning Objectives/Outcomes. Recognize the different types of lighting equipment, use’s and proper handling. Gain basic trouble shooting skills to successfully complete a task. Build a basic understanding of applying these skills in the different venues that we work in to competently complete assigned tasks. On-sight Lighting Techniques Learning Objectives/Outcomes. Combing the technical knowledge previously gained to execute lighting request while on site, whether in a ballroom or theatre. Approaches, to lighting a presentation to aspects of theatrical lighting to meet a client’s expectations.
    [Show full text]
  • LIGHTING CONTROL HISTORY Their Immediate Technological Predecessors
    not exist if preset boards had not been LIGHTING CONTROL HISTORY their immediate technological predecessors. AND The first type of control for electrical MODERN PROGRAMMING lighting was simply a bank of switches STRATAGIES that turned the lights on and off. Not surprisingly, artists in the theatre were not entirely satisfied with the “lights up, lights Modern lighting control methods are down,” nature of switches in controlling governed by complex computer systems lighting for sensitive scenes. Not long that make it possible to operate hundreds after the use of electric lighting became of lights at one time. They also make it widespread, resistance dimmers were possible to use the many digital lights and developed so that it was possible to fade in accessories developed over the past two and out of scenes. Fading indicates that decades. Although each manufacturer has the lighting change occurs over a period of its own particular method of handling time, which is an important element in technical issues, the core technology that lighting design. The term blackout is used makes all of them work is basically the to describe what happens when all of the same. This chapter is not intended to be stage lights go out instantly. (or as fast as an exhaustive review of every OEM system the cooling filaments will allow) on the market, but rather as an overview Although blackouts are frequently used to of the basic philosophy that is used in indicate a sudden end to the action on designing digital products for the control stage, they are not appropriate for most of stage lighting.
    [Show full text]