H a L L O F F a M E Academy of Engineering and American Academy of Arts and Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Shakey the Robot" [Videorecording]
http://oac.cdlib.org/findaid/ark:/13030/kt2s20358k No online items Guide to "Shakey the Robot" [videorecording] Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to "Shakey the Robot" V0209 1 [videorecording] Overview Call Number: V0209 Creator: Stanford University Title: "Shakey the Robot" [videorecording] Dates: 1995 Physical Description: 0.125 Linear feet (1 videotape-VHS) Summary: Program of the Bay Area Computer History Perspectives held at SRI International on October 24, 1995, on a 1970 SRI project to create a robot (dubbed Shakey) that used rudimentary artificial intelligence to interact with its surroundings. Speakers were Nils Nilsson, Charles Rosen, Bertram Raphael, Bruce Donald, Richard Fikes, Peter Hart, and Stuart Russell. The video includes clips from the original "Shakey the Robot" movie. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. -
Prominence of Expert System and Case Study- DENDRAL Namita Mirjankar, Shruti Ghatnatti Karnataka, India [email protected],[email protected]
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282 Prominence of Expert System and Case Study- DENDRAL Namita Mirjankar, Shruti Ghatnatti Karnataka, India [email protected],[email protected] Abstract—Among many applications of Artificial Intelligence, Expert System is the one that exploits human knowledge to solve problems which ordinarily would require human insight. Expert systems are designed to carry the insight and knowledge found in the experts in a particular field and take decisions based on the accumulated knowledge of the knowledge base along with an arrangement of standards and principles of inference engine, and at the same time, justify those decisions with the help of explanation facility. Inference engine is continuously updated as new conclusions are drawn from each new certainty in the knowledge base which triggers extra guidelines, heuristics and rules in the inference engine. This paper explains the basic architecture of Expert System , its first ever success DENDRAL which became a stepping stone in the Artificial Intelligence field, as well as the difficulties faced by the Expert Systems Keywords—Artificial Intelligence; Expert System architecture; knowledge base; inference engine; DENDRAL I INTRODUCTION the main components that remain same are: User Interface, Knowledge Base and Inference Engine. For more than two thousand years, rationalists all over the world have been striving to comprehend and resolve two unavoidable issues of the universe: how does a human mind work, and can non-people have minds? In any case, these inquiries are still unanswered. As humans, we all are blessed with the ability to learn and comprehend, to think about different issues and to decide; but can we design machines to do all these things? Some philosophers are open to the idea that machines will perform all the tasks a human can do. -
The Mother of All Demos
UC Irvine Embodiment and Performativity Title The Mother of All Demos Permalink https://escholarship.org/uc/item/91v563kh Author Salamanca, Claudia Publication Date 2009-12-12 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Mother of All Demos Claudia Salamanca PhD Student, Rhetoric Department University of California Berkeley 1929 Fairview St. Apt B. Berkeley, CA, 94703 1 510 735 1061 [email protected] ABSTRACT guide situated at the mission control and from there he takes us This paper analyses the documentation of the special session into another location: a location that Levy calls the final frontier. delivered by Douglas Engelbart and William English on This description offered by Levy as well as the performance in December 9, 1968 at the Fall Computer Joint Conference in San itself, shows a movement in time and space. The name, “The Francisco. Mother of All Demos,” refers to a temporality under which all previous demos are subcategories of this performance. Furthermore, the name also points to a futurality that is constantly Categories and Subject Descriptors in production: all future demos are also included. What was A.0 [Conference Proceedings] delivered on December 9, 1968 captured the past but also our future. In order to explain this extended temporality, Engelbart’s General Terms demo needs to be addressed not only from the perspective of the Documentation, Performance, Theory. technological breakthroughs but also the modes in which they were delivered. This mode of futurality goes beyond the future simple tense continuously invoked by rhetorics of progress and Keywords technology. The purpose of this paper is to interrogate “The Demo, medium performance, fragmentation, technology, Mother of All Demos” as a performance, inquiring into what this augmentation system, condensation, space, body, mirror, session made and is still making possible. -
Communicative Capital for Prosthetic Agents Patrick M
This is an unpublished technical report undergoing peer review, not a final typeset article. First draft: July 23, 2016. Current Draft: November 9, 2017. Communicative Capital for Prosthetic Agents Patrick M. Pilarski 1;2∗, Richard S. Sutton 2, Kory W. Mathewson 1;2, Craig Sherstan 1;2, Adam S. R. Parker 1;2, and Ann L. Edwards 1;2 1Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada 2Reinforcement Learning and Artificial intelligence Laboratory, Department of Computing Science, University of Alberta, Edmonton, AB, Canada Correspondence*: Patrick M. Pilarski, Division of Physical Medicine and Rehabilitation, Department of Medicine, 5-005 Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada, T6G 2E1. [email protected] ABSTRACT This work presents an overarching perspective on the role that machine intelligence can play in enhancing human abilities, especially those that have been diminished due to injury or illness. As a primary contribution, we develop the hypothesis that assistive devices, and specifically artificial arms and hands, can and should be viewed as agents in order for us to most effectively improve their collaboration with their human users. We believe that increased agency will enable more powerful interactions between human users and next generation prosthetic devices, especially when the sensorimotor space of the prosthetic technology greatly exceeds the conventional control and communication channels available to a prosthetic user. To more concretely examine an agency-based view on prosthetic devices, we propose a new schema for interpreting the capacity of a human-machine collaboration as a function of both the human’s and machine’s degrees of agency. -
Awards and Distinguished Papers
Awards and Distinguished Papers IJCAI-15 Award for Research Excellence search agenda in their area and will have a first-rate profile of influential re- search results. e Research Excellence award is given to a scientist who has carried out a e award is named for John McCarthy (1927-2011), who is widely rec- program of research of consistently high quality throughout an entire career ognized as one of the founders of the field of artificial intelligence. As well as yielding several substantial results. Past recipients of this honor are the most giving the discipline its name, McCarthy made fundamental contributions illustrious group of scientists from the field of artificial intelligence: John of lasting importance to computer science in general and artificial intelli- McCarthy (1985), Allen Newell (1989), Marvin Minsky (1991), Raymond gence in particular, including time-sharing operating systems, the LISP pro- Reiter (1993), Herbert Simon (1995), Aravind Joshi (1997), Judea Pearl (1999), Donald Michie (2001), Nils Nilsson (2003), Geoffrey E. Hinton gramming languages, knowledge representation, commonsense reasoning, (2005), Alan Bundy (2007), Victor Lesser (2009), Robert Anthony Kowalski and the logicist paradigm in artificial intelligence. e award was estab- (2011), and Hector Levesque (2013). lished with the full support and encouragement of the McCarthy family. e winner of the 2015 Award for Research Excellence is Barbara Grosz, e winner of the 2015 inaugural John McCarthy Award is Bart Selman, Higgins Professor of Natural Sciences at the School of Engineering and Nat- professor at the Department of Computer Science, Cornell University. Pro- ural Sciences, Harvard University. Professor Grosz is recognized for her pio- fessor Selman is recognized for expanding our understanding of problem neering research in natural language processing and in theories and applica- complexity and developing new algorithms for efficient inference. -
Radical Atoms: Beyond Tangible Bits, Toward Transformable Materials Cover Story by Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-Baptiste Labrune
Volume XIX.1 | january + february 2012 Radical Atoms: Beyond Tangible Bits, Toward Transformable Materials Cover Story by Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-Baptiste Labrune Association for Computing Machinery CoVer storY Radical Atoms: Beyond Tangible Bits, Toward Transformable Materials Hiroshi Ishii MIT Media Lab | [email protected] Dávid Lakatos MIT Media Lab | [email protected] Leonardo Bonanni MIT Media Lab | [email protected] Jean-Baptiste Labrune MIT Media Lab | [email protected] Graphical user interfaces (GUIs) appearance dynamically, so they let users see digital informa- are as reconfigurable as pixels on tion only through a screen, as if a screen. Radical Atoms is a vision looking into a pool of water, as for the future of human-material depicted in Figure 1 on page 40. interactions, in which all digital We interact with the forms below information has physical mani- through remote controls, such as festation so that we can interact a mouse, a keyboard, or a touch- directly with it—as if the iceberg screen (Figure 1a). Now imagine had risen from the depths to reveal an iceberg, a mass of ice that pen- its sunken mass (Figure 1c). etrates the surface of the water 2 012 and provides a handle for the mass From GuI to TuI beneath. This metaphor describes Humans have evolved a heightened tangible user interfaces: They act ability to sense and manipulate Februar y as physical manifestations of com- the physical world, yet the digital + putation, allowing us to interact world takes little advantage of our directly with the portion that is capacity for hand-eye coordina- made tangible—the “tip of the ice- tion. -
“History of Artificial Intelligence (AI)”
The Privacy Foundation “History Of Artificial Intelligence (AI)” 1308 Catalan poet and theologian Ramon Llull publishes Ars generalis ultima (The Ultimate General Art), further perfecting his method of using paper-based mechanical means to create new knowledge from combinations of concepts. 1666 Mathematician and philosopher Gottfried Leibniz publishes Dissertatio de arte combinatoria (On the Combinatorial Art), following Ramon Llull in proposing an alphabet of human thought and arguing that all ideas are nothing but combinations of a relatively small number of simple concepts. 1763 Thomas Bayes develops a framework for reasoning about the probability of events. Bayesian inference will become a leading approach in machine learning. 1898 At an electrical exhibition in the recently completed Madison Square Garden, Nikola Tesla makes a demonstration of the world’s first radio-controlled vessel. The boat was equipped with, as Tesla described, “a borrowed mind.” 1914 The Spanish engineer Leonardo Torres y Quevedo demonstrates the first chess-playing machine, capable of king and rook against king endgames without any human intervention. 1921 Czech writer Karel Čapek introduces the word "robot" in his play R.U.R. (Rossum's Universal Robots). The word "robot" comes from the word "robota" (work). 1925 Houdina Radio Control releases a radio-controlled driverless car, travelling the streets of New York City. 1927 The science-fiction film Metropolis is released. It features a robot double of a peasant girl, Maria, which unleashes chaos in Berlin of 2026—it was the first robot depicted on film, inspiring the Art Deco look of C-3PO in Star Wars. 1929 Makoto Nishimura designs Gakutensoku, Japanese for "learning from the laws of nature," the first robot built in Japan. -
Seinfeld's Recent Comments on Zoom…. Energy
Stanford Data Science Departmental 2/4/2021 Seminar Biomedical AI: Its Roots, Evolution, and Early Days at Stanford Edward H. Shortliffe, MD, PhD Chair Emeritus and Adjunct Professor Department of Biomedical Informatics Columbia University Department of Biomedical Data Science Seminar Stanford Medicine Stanford, California 2:30pm – 4:50pm – February 4, 2021 Seinfeld’s recent comments on Zoom…. Energy, attitude and personality cannot be “remoted” through even the best fiber optic lines Jerry Seinfeld: So You Think New York Is ‘Dead’ (It’s not.) Aug. 24, 2020 © E.H. Shortliffe 1 Stanford Data Science Departmental 2/4/2021 Seminar Disclosures • No conflicts of interest with content of presentation • Offering a historical perspective on medical AI, with an emphasis on US activities in the early days and specific work I know personally • My research career was intense until I became a medical school dean in 2007 • Current research involvement is largely as a textbook author and two decades as editor-in-chief of a peer- reviewed journal (Journal of Biomedical Informatics [Elsevier]) Goals for Today’s Presentation • Show that today’s state of the art in medical AI is part of a 50-year scientific trajectory that is still evolving • Provide some advice to today’s biomedical AI researchers, drawing on that experience • Summarize where we are today in the evolution, with suggestions for future emphasis More details on slides than I can include in talk itself – Full deck available after the talk © E.H. Shortliffe 2 Stanford Data Science Departmental -
The People Who Invented the Internet Source: Wikipedia's History of the Internet
The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. -
UC Berkeley Previously Published Works
UC Berkeley UC Berkeley Previously Published Works Title Building the Second Mind, 1961-1980: From the Ascendancy of ARPA-IPTO to the Advent of Commercial Expert Systems Permalink https://escholarship.org/uc/item/7ck3q4f0 ISBN 978-0-989453-4-6 Author Skinner, Rebecca Elizabeth Publication Date 2013-12-31 eScholarship.org Powered by the California Digital Library University of California Building the Second Mind, 1961-1980: From the Ascendancy of ARPA to the Advent of Commercial Expert Systems copyright 2013 Rebecca E. Skinner ISBN 978 09894543-4-6 Forward Part I. Introduction Preface Chapter 1. Introduction: The Status Quo of AI in 1961 Part II. Twin Bolts of Lightning Chapter 2. The Integrated Circuit Chapter 3. The Advanced Research Projects Agency and the Foundation of the IPTO Chapter 4. Hardware, Systems and Applications in the 1960s Part II. The Belle Epoque of the 1960s Chapter 5. MIT: Work in AI in the Early and Mid-1960s Chapter 6. CMU: From the General Problem Solver to the Physical Symbol System and Production Systems Chapter 7. Stanford University and SRI Part III. The Challenges of 1970 Chapter 8. The Mansfield Amendment, “The Heilmeier Era”, and the Crisis in Research Funding Chapter 9. The AI Culture Wars: the War Inside AI and Academia Chapter 10. The AI Culture Wars: Popular Culture Part IV. Big Ideas and Hardware Improvements in the 1970s invert these and put the hardware chapter first Chapter 11. AI at MIT in the 1970s: The Semantic Fallout of NLR and Vision Chapter 12. Hardware, Software, and Applications in the 1970s Chapter 13. -
The Profile of Edward Feigenbaum Begins of Leadership That He Has
v#' ■/ '■J1 A PROFILE OF EDWARD A. FEIGENBAUM, OFFERED IN CONNECTION WITH THE MCI COMMUNICATIONS INFORMATION TECHNOLOGY LEADERSHIP AWARD FOR INNOVATION The profile of Edward Feigenbaum begins with his Curriculum Vitae, which is attached. Those facts indicate the dimensions of leadership that he has offered to innovation in information technology and the applications of computers. Briefly summarized, the dimensions of his leadership are: a. scientific and technological: pioneering in applied artificial intelligence, an information technology that has created important new applications of computers and that offers promise of major future gains in productivity and quality of work in the new economy of "knowledge workers/ the so-called post-industrial knowledge-based society. b. literary: i.e. "entrepreneuring" with the word, writing books to disseminate an understanding of the new developments to both lay and professional audiences. This also includes appearances on television and radio broadcasts, public lectures, and the making of an award-winning film. c. corporate: i.e. entrepreneuring in the usual sense of establishing companies to transfer the fruits of university basic research to industry and business. This also includes service on boards of large corporations. d. professional: serving his university, the national government, and his science in a variety of leadership positions. This also includes his role in helping to found the American Association for Artificial Intelligence and serving as its second president. HONORS For his scientific innovation and leadership, Feigenbaum has been accorded many honors. Among the most prominent are his election to the National Academy of Engineering and to the American Academy of Arts and Sciences; his honorary degree from Aston University in England; his election to fellow status in the American Association for the Advancement of Science and the Society of Medical Informatics; and his Lee Kuan Yew Professorship, as well as his election to the Productivity Hall of Fame, in the Republic of Singapore. -
Die Multiple Identität Der Technik
Kirstin Lenzen Die multiple Identität der Technik | Band 9 Editorial Moderne Gesellschaften sind nur zu begreifen, wenn Technik und Körper konzeptu- ell einbezogen werden. Erst in diesen Materialitäten haben Handlungen einen fes- ten Ort, gewinnen soziale Praktiken und Interaktionen an Dauer und Ausdehnung. Techniken und Körper hingegen ohne gesellschaftliche Praktiken zu beschreiben – seien es diejenigen des experimentellen Herstellens, des instrumentellen Handelns oder des spielerischen Umgangs –, bedeutete den Verzicht auf das sozialtheoreti- sche Erbe von Marx bis Plessner und von Mead bis Foucault sowie den Verlust der kritischen Distanz zu Strategien der Kontrolle und Strukturen der Macht. Die biowissenschaftliche Technisierung des Körpers und die Computer-, Nano- und Netzrevolutionen des Technischen führen diese beiden materiellen Dimensionen des Sozialen nunmehr so eng zusammen, dass Körper und Technik als »sozio-orga- nisch-technische« Hybrid-Konstellationen analysierbar werden. Damit gewinnt aber auch die Frage nach der modernen Gesellschaft an Kompliziertheit: die Grenzen des Sozialen ziehen sich quer durch die Trias Mensch – Tier – Maschine und müssen neu vermessen werden. Die Reihe Technik | Körper | Gesellschaft stellt Studien vor, die sich dieser Frage nach den neuen Grenzziehungen und Interaktionsgeflechten des Sozialen annä- hern. Sie machen dabei den technischen Wandel und die Wirkung hybrider Kon- stellationen, die Prozesse der Innovation und die Inszenierung der Beziehungen zwischen Technik und Gesellschaft und/oder Körper und Gesellschaft zum Thema und denken soziale Praktiken und die Materialitäten von Techniken und Körpern konsequent zusammen. Die Reihe wird herausgegeben von Gesa Lindemann und Werner Rammert. Kirstin Lenzen (Dr.), geb. 1972, forschte als Arbeitswissenschaftlerin am Lehrstuhl und Institut für Arbeitswissenschaft (IAW) der RWTH Aachen sowie als Technik- soziologin an den Instituten für Soziologie der RWTH Aachen und der TU Berlin, wo sie bei Werner Rammert promovierte.